The Python Library Reference
Release 3.5.0

Guido van Rossum
and the Python development team

September 13, 2015

Python Software Foundation
Email: docs@python.org

Introduction

Built-in Functions

Built-in Constants
3.1 Constants added by the site module

Built-in Types

4.1 Truth Value Testing
4.2 Boolean Operations — and, or, not
4.3 Comparisons
4.4 Numeric Types — int, float, complex
4.5 Tterator Types
4.6 Sequence Types — list, tuple, range
4.7 Text Sequence Type — str
4.8 Binary Sequence Types — bytes, bytearray, memoryview
49 SetTypes — set, frozenset
4.10 Mapping Types — dict
4.11 Context Manager Types
4.12 Other Built-in Types
4.13 Special Attributes

Built-in Exceptions
5.1 Base classes

5.2 Concrete exceptions
5.3 Warnings
5.4 Exception hierarchy

Text Processing Services

6.1 string— Common string operations
6.2 re — Regular expression operations
6.3 difflib — Helpers for computing deltas
6.4 textwrap — Text wrapping and filling
6.5 unicodedata — Unicode Database
6.6 stringprep — Internet String Preparation
6.7 readline — GNU readline interface
6.8 rlcompleter — Completion function for GNU readline

Binary Data Services
7.1 struct — Interpret bytes as packed binary data
7.2 codecs — Codec registry and base classes

Data Types

8.1 datetime — Basic date and time types
8.2 calendar — General calendar-related functions
8.3 collections — Container datatypes

CONTENTS

9

84 collections.abc — Abstract Base Classes for Containers
8.5 heapg—Heapqueuealgorithm e
8.6 bisect — Array bisection algorithm L L
8.7 array — Efficient arrays of numeric values oL oL
8.8 weakref —Weakreferences e
8.9 types — Dynamic type creation and names for built-in types
8.10 copy — Shallow and deep cOpy Operations v v v v v v v v i e e e e
8.11 pprint —Datapretty printer o it e e e e e e e e e e e e e
8.12 reprlib — Alternate repr () implementation oo
8.13 enum— Support for enumerations L. Lo e e

Numeric and Mathematical Modules

9.1 numbers — Numeric abstractbaseclasses
9.2 math — Mathematical functions
9.3 cmath — Mathematical functions for complex numbers
9.4 decimal — Decimal fixed point and floating point arithmetic
9.5 fractions—Rationalnumbers e
9.6 random— Generate pseudo-random numbers oL
9.7 statistics — Mathematical statistics functions

10 Functional Programming Modules

10.1 itertools — Functions creating iterators for efficient looping
10.2 functools — Higher-order functions and operations on callable objects
10.3 operator — Standard operators as functionso

11 File and Directory Access

11.1 pathlib — Object-oriented filesystem paths
11.2 os.path — Common pathname manipulations
11.3 fileinput — Iterate over lines from multiple input streams
11.4 stat — Interpreting stat () results o e e
11.5 filecmp — File and Directory Comparisons
11.6 tempfile — Generate temporary files and directories
11.7 glob — Unix style pathname pattern expansion v v ..
11.8 fnmatch — Unix filename pattern matching
119 linecache —Randomaccesstotextlines
11.10 shutil — High-level file operations
11.11 macpath — Mac OS 9 path manipulation functions

12 Data Persistence

12.1 pickle — Python object serialization
12.2 copyreg— Register pickle support functions
12.3 shelve — Pythonobject persistence o o vt e
124 marshal — Internal Python object serialization
12.5 dbm — Interfaces to Unix “databases”
12.6 sglite3 — DB-API 2.0 interface for SQLite databases

13 Data Compression and Archiving

13.1 zlib — Compression compatible withgzip
13.2 gzip—Supportforgzipfiles
13.3 bz2 — Support for bzip2 compression e
13.4 1lzma — Compression using the LZMA algorithm
13,5 zipfile—Work withZIP archives i i
13.6 tarfile —Readand write tar archivefiles L.

14 File Formats

14.1 csv—CSV File Readingand Writing i i v i it et
142 configparser — Configuration fileparser
143 netrc—netrc file processing Lo e
144 xdrlib —Encode anddecode XDRdata

239
239
242
246
249
274
276
280

287
287
300
306

313
313
328
331
333
338
340
344
345
346
346
354

355
355
367
367
370
371
374

145 plistlib — Generate and parse Mac OS X .plistfiles. 447

15 Cryptographic Services 451
15.1 hashlib — Secure hashes and message digests 451
15.2 hmac — Keyed-Hashing for Message Authentication 453

16 Generic Operating System Services 457
16.1 os — Miscellaneous operating system interfaces 457
16.2 io— Core tools for working with streams 497
16.3 time — Time access and CONVEISIONS« « v v v v v v vttt e e e e e e e e 508
16.4 argparse — Parser for command-line options, arguments and sub-commands 515
16.5 getopt — C-style parser for command lineoptions 543
16.6 logging — Logging facility for Python o o, 545
16.7 logging.config— Logging configuration 559
16.8 logging.handlers —Logginghandlers 569
169 getpass — Portable passwordinput Lo e e 580
16.10 curses — Terminal handling for character-cell displays 580
16.11 curses.textpad — Text input widget for curses programs 596
16.12 curses.ascii — Utilities for ASCII characters 597
16.13 curses.panel — A panel stack extension forcurses 599
16.14 plat form — Access to underlying platform’s identifyingdata 600
16.15 errno — Standard errno system symbolso 0oL Lo 603
16.16 ctypes — A foreign function library for Pythono 609

17 Concurrent Execution 639
17.1 threading— Thread-based parallelism 639
17.2 multiprocessing — Process-based parallelism 650
17.3 The concurrent package L 688
17.4 concurrent.futures — Launching parallel tasks 688
17.5 subprocess — Subprocess management o v u e e e e e e e e e e e 693
17.6 sched—Eventscheduler 707
177 queue — A synchronized queue class oL oo, 708
17.8 dummy_threading — Drop-in replacement for the threadingmodule 711
179 _thread — Low-level threading API 711
17.10 _dummy_thread — Drop-in replacement for the _threadmodule 713

18 Interprocess Communication and Networking 715
18.1 socket — Low-level networking interface 715
18.2 ss1 — TLS/SSL wrapper for socket objects o e 733
183 select — Waiting forI/O completion L. .. 758
18.4 selectors —High-level /O multiplexing 764
18.5 asyncio — Asynchronous I/O, event loop, coroutines and tasks 767
18.6 asyncore — Asynchronous sockethandler 819
18.7 asynchat — Asynchronous socket command/response handler 823
18.8 signal — Set handlers for asynchronousevents 0., 826
18.9 mmap — Memory-mapped file support oL 830

19 Internet Data Handling 835
19.1 email — Anemail and MIME handling package 835
19.2 json—IJSONencoder anddecoder 886
193 mailcap —Mailcap filehandling L 894
19.4 mailbox — Manipulate mailboxes in various formats 0oL 895
19.5 mimetypes — Map filenames to MIME types e 911
19.6 base64 — Basel6, Base32, Base64, Base85 Data Encodings 914
19.7 binhex — Encode and decode binhex4 files L L. 917
19.8 binascii — Convert between binary and ASCII 917
19.9 quopri — Encode and decode MIME quoted-printable data 919

19.10 uu — Encode and decode uuencode files e 919

20 Structured Markup Processing Tools

21

22

23

20.1 html — HyperText Markup Language support o v v i v v v v e e e o
20.2 html.parser — Simple HTML and XHTML parser
20.3 html.entities — Definitions of HTML general entities
20.4 XML Processing Modules e
20.5 xml.etree.ElementTree — The ElementTree XML API
20.6 xml.dom— The Document Object Model API
20.7 xml.dom.minidom— Minimal DOM implementation
20.8 xml.dom.pulldom— Support for building partial DOM trees
20.9 xml.sax — Support for SAX2 parsers i i e e e e e e
20.10 xml.sax.handler — Base classes for SAX handlers
20.11 xml.sax.saxutils —SAXUtilities i e
20.12 xml.sax.xmlreader — Interface for XML parsers
20.13 xml .parsers.expat — Fast XML parsingusing Expat

Internet Protocols and Support

21.1 webbrowser — Convenient Web-browser controller
21.2 cgi — Common Gateway Interface support
21.3 cgitb — Traceback manager for CGIscripts
21.4 wsgiref — WSGI Utilities and Reference Implementation
21.5 urllib—URLhandlingmodules
21.6 urllib.request — Extensible library for opening URLs
217 urllib.response — Response classesusedbyurllib
21.8 urllib.parse —Parse URLsintocomponents
21.9 urllib.error — Exception classes raised by urllibrequest
21.10 urllib.robotparser — Parser forrobots.txt
21.11 http—HTTPmodules e e e
21.12 http.client — HTTP protocol client
21.13 ftplib —FTPprotocolclient e
21.14 poplib —POP3 protocol client e
21.15 imaplib —IMAP4 protocol client
21.16 nntplib — NNTP protocolclient ettt
21.17 smtplib — SMTPprotocolclient e
21.18 smtpd — SMTP Server e e
21.19 telnetlib—Telnetclient e
21.20 uuid — UUID objects according to RFC 4122
21.21 socketserver — A framework for network servers oL
21.22 http.server — HTTPservers i i
21.23 http.cookies — HTTP state management v ..
21.24 http.cookiejar — Cookie handling for HTTPclients
21.25 xmlrpc — XMLRPC server and clientmodules
21.26 xmlrpc.client — XML-RPCclientaccess v i i i i ii i ..
21.27 xmlrpc.server — Basic XML-RPCservers
21.28 ipaddress — IPv4/IPv6 manipulation library

Multimedia Services

22.1 audioop — Manipulate raw audiodata Lo
222 aifc—Read and write AIFFand AIFCfiles
223 sunau—Readandwrite Sun AUfiles
224 wave —Read and write WAV files e e
22,5 chunk —ReadIFFchunkeddata
22.6 colorsys — Conversions between color systems o .o e
227 imghdr — Determine the type of animage
22.8 sndhdr — Determine type of sound file o Lo
22.9 ossaudiodev — Access to OSS-compatible audio devices

Internationalization
23.1 gettext — Multilingual internationalization services
23.2 locale — Internationalization SEIVICES v v v v v v v v e e e e e e e e e e

921
921
921
926
926
927
941
951
955
956
958
962
963
967

24

25

26

27

28

29

30

Program Frameworks

24.1 turtle —Turtle graphics 0 0 i e e e e e e e e
24.2 cmd — Support for line-oriented command interpreters
243 shlex — Simple lexical analysis L e

Graphical User Interfaces with Tk

25.1 tkinter —Pythoninterfaceto Tcl/Tk
25.2 tkinter.ttk —Tkthemedwidgets o
253 tkinter.tix —Extensionwidgetsfor Tk
254 tkinter.scrolledtext — Scrolled Text Widget,
255 IDLE e e e
25.6 Other Graphical User Interface Packages

Development Tools

26.1 typing—Supportfortypehints. e e e e
26.2 pydoc — Documentation generator and online help system
26.3 doctest — Testinteractive Pythonexamples
264 unittest — Unittesting framework oL Lo
26.5 unittest.mock —mockobjectlibrary oo
26.6 unittest.mock —gettingstarted e e e e
26.7 2to3 - Automated Python 2 to 3 code translation
26.8 test — Regression tests package forPython.o 0oL
26.9 test.support — Utilities for the Python testsuite

Debugging and Profiling

27.1 bdb —Debugger frameworko L
27.2 faulthandler — Dump the Python traceback
27.3 pdb — The Python Debugger
27.4 The Python Profilers e e e e e e
27.5 timeit — Measure execution time of small code snippets
27.6 trace — Trace or track Python statement execution
2777 tracemalloc — Trace memory allocations

Software Packaging and Distribution

28.1 distutils — Building and installing Pythonmodules
28.2 ensurepip — Bootstrapping the pipinstaller L.
28.3 venv — Creation of virtual environments L e e e
28.4 zipapp — Manage executable python zip archives

Python Runtime Services

29.1 sys — System-specific parameters and functions oL
29.2 sysconfig— Provide access to Python’s configuration information.
293 builtins —Built-inobjects L. e e e e e
294 _ _main__ — Top-level scriptenvironment
29.5 warnings — Warningcontrol Lo Lo
29.6 contextlib — Utilities for with-statement contexts oo v v ..
29.7 abc—Abstract Base Classes o i e e e e
29.8 atexit —Exithandlers e
29.9 traceback — Print or retrieve a stack traceback L o Lo oL
29.10 _ future_ — Future statement definitions e
29.11 gc — Garbage Collector interface e
29.12 inspect — Inspectlive objects L.
29.13 site — Site-specific configurationhook Lo Lo
29.14 fpectl — Floating point exceptioncontrol L. o oL

Custom Python Interpreters
30.1 code — Interpreter base classes L. e e e
30.2 codeop — Compile Pythoncode L

31 Importing Modules 1455

31.1 zipimport — Import modules from Zip archives. 1455
31.2 pkgutil — Package extension utility Lo 1457
31.3 modulefinder —Find modulesused by ascript 1459
31.4 runpy — Locating and executing Pythonmodules 1460
31.5 importlib —The implementation of import 1462
32 Python Language Services 1477
32.1 parser — Access Pythonparsetrees e 1477
322 ast — Abstract Syntax Treeso e e 1481
32.3 symtable — Access to the compiler’s symboltables 1485
32.4 symbol — Constants used with Python parsetrees 1487
32.5 token — Constants used with Python parsetrees 1488
32.6 keyword — Testing for Pythonkeywords 1489
32.7 tokenize — Tokenizer for Pythonsource 1489
32.8 tabnanny — Detection of ambiguous indentation 1493
32.9 pyclbr —Pythonclass browser sSupport L e e e 1494
32.10 py_compile — Compile Python source files 1495
32.11 compileall — Byte-compile Python libraries 1496
32.12 dis — Disassembler for Python bytecode L. 1498
32.13 pickletools — Tools for pickle developers 1508
33 Miscellaneous Services 1511
33.1 formatter — Generic output formattingo 1511
34 MS Windows Specific Services 1515
34.1 msilib — Read and write Microsoft Installer files 1515
34.2 msvcrt — Useful routines from the MS VC++ runtime 1520
343 winreg— WIndows regiStry QCCeSS . . v v v v v v v v v e e e e e e e e e e e e e e e e e 1521
344 winsound — Sound-playing interface for Windows oL 1529
35 Unix Specific Services 1531
35.1 posix — The most common POSIX systemcalls 1531
35.2 pwd—The password database e e e 1532
35.3 spwd — The shadow password database 1532
354 grp—Thegroupdatabase 1533
35.5 crypt — Function to check Unix passwords o 1534
35,6 termios —POSIXstylettycontrol e 1535
35.7 tty — Terminal control functions 1536
35.8 pty —Pseudo-terminal utilities oL e e 1537
359 fcntl—The fentland ioctl systemcallso L o oL 1538
35.10 pipes — Interface to shell pipelines 1540
35.11 resource — Resource usage information Lo 1541
35.12 nis — Interface to Sun’s NIS (Yellow Pages) 1544
35.13 syslog— Unix syslog library routines 1545
36 Superseded Modules 1547
36.1 optparse — Parser for command lineoptions oL 1547
36.2 imp — Access the importinternals L e 1571
37 Undocumented Modules 1577
37.1 Platform specificmodules L e e e 1577
A Glossary 1579
Bibliography 1589
B About these documents 1591
B.1 Contributors to the Python Documentation 1591

vi

C History and License

C.1 Historyofthesoftware

C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright
Python Module Index

Index

1593
1593
1593
1596

1609

1611

1615

vii

viii

The Python Library Reference, Release 3.5.0

While reference-index describes the exact syntax and semantics of the Python language, this library reference
manual describes the standard library that is distributed with Python. It also describes some of the optional
components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of
contents listed below. The library contains built-in modules (written in C) that provide access to system func-
tionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as modules written
in Python that provide standardized solutions for many problems that occur in everyday programming. Some of
these modules are explicitly designed to encourage and enhance the portability of Python programs by abstracting
away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include
many additional components. For Unix-like operating systems Python is normally provided as a collection of
packages, so it may be necessary to use the packaging tools provided with the operating system to obtain some or
all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from individual
programs and modules to packages and entire application development frameworks), available from the Python
Package Index.

CONTENTS 1

https://pypi.python.org/pypi
https://pypi.python.org/pypi

The Python Library Reference, Release 3.5.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of an import statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions,
and finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of
the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see module random) and read a section or
two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter Built-in
Functions, as the remainder of the manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 3.5.0

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed

here in alphabetical order.

Built-in Functions

abs () dict () help () min () setattr ()
all() dir () hex () next () slice ()
any () divmod () id() object () sorted ()
ascii () enumerate () | input () oct () staticmethod/()
bin () eval () int () open () str()
bool () exec () isinstance () ord () sum ()
bytearray () filter () issubclass () pow () super ()
bytes () float () iter () print () tuple ()
callable () format () len () property () | type()
chr () frozenset () list () range () vars ()
classmethod () getattr () locals () repr () zip ()
compile () globals () map () reversed () _ _import__ ()
complex () hasattr() max () round ()
delattr () hash () memoryview () set ()

abs (x)

Return the absolute value of a number. The argument may be an integer or a floating point number. If the
argument is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iferable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable) :
for element in iterable:
if element:
return True
return False

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to
that returned by repr () in Python 2.

The Python Library Reference, Release 3.5.0

bin (x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python
int object, it has to define an ___index__ () method that returns an integer.

class bool ([x])
Return a Boolean value, i.e. one of True or False. x is converted using the standard truth testing
procedure. If x is false or omitted, this returns False; otherwise it returns True. The bool class is
a subclass of int (see Numeric Types — int, float, complex). It cannot be subclassed further. Its only
instances are False and True (see Boolean Values).

class bytearray ([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <=x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well
as most methods that the by tes type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

oIf it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray ()
then converts the string to bytes using str.encode ().

oIf it is an integer, the array will have that size and will be initialized with null bytes.

oIf it is an object conforming to the buffer interface, a read-only buffer of the object will be used to
initialize the bytes array.

oIf it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as
the initial contents of the array.

Without an argument, an array of size 0 is created.
See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes ([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256.
bytes is an immutable version of bytearray — it has the same non-mutating methods and the same
indexing and slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().
Bytes objects can also be created with literals, see strings.

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes, and Bytes and Bytearray Opera-
tions.

callable (object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible
that a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a
class returns a new instance); instances are callable if their classhasa _ call__ () method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string ’ a’, while chr (957) returns the string * v’ . This is the inverse of ord ().

The valid range for the argument is from O through 1,114,111 (Ox10FFFF in base 16). ValueError will
be raised if i is outside that range.

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.5.0

The @classmethod form is a function decorator — see the description of function definitions in function
for details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in
this section.

For more information on class methods, consult the documentation on the standard type hierarchy in fypes.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval ().
source can either be a normal string, a byte string, or an AST object. Refer to the a st module documentation
for information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if
it wasn’t read from a file (<string>’ is commonly used).

The mode argument specifies what kind of code must be compiled; it can be ' exec’ if source consists of a
sequence of statements, ' eval’ if it consists of a single expression, or * single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None
will be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the
compilation of source. If neither is present (or both are zero) the code is compiled with those future
statements that are in effect in the code that is calling compile (). If the flags argument is given and
dont_inherit is not (or is zero) then the future statements specified by the flags argument are used in addi-
tion to those that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it —
the future statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements.
The bitfield required to specify a given feature can be found as the compiler_flag attribute on the
_Featureinstance inthe _ future__ module.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects
the optimization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization;
__debug___istrue), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source con-
tains null bytes.

If you want to parse Python code into its AST representation, see ast .parse ().

Note: When compiling a string with multi-line code in ' single’ or 'eval’ mode, input must be
terminated by at least one newline character. This is to facilitate detection of incomplete and complete

statements in the code module.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also inputin ’ exec’ mode does not
have to end in a newline anymore. Added the optimize parameter.

class complex ([real [imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). If imag is omitted, it defaults to zero and the constructor serves as a
numeric conversion like int and f1oat. If both arguments are omitted, returns 0 J.

Note: When converting from a string, the string must not contain whitespace around the central + or —
operator. For example, complex (’ 1+273’) is fine, but complex (1 + 273’) raises ValueError.

The complex type is described in Numeric Types — int, float, complex.

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 3.5.0

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr (x, ’foobar’) isequivalenttodel x.foobar.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in 1 ist, set, and tuple classes, as well as the col lect ions module.

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return
a list of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of
attributes. This allows objects that implement a custom __getattr__ () or __getattribute__ ()
function to customize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

oIf the object is a module object, the list contains the names of the module’s attributes.

oIf the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

*Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and re-
cursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace

['__builtins__ ', ' _name_ ', 'struct']

>>> dir (struct) # show the names in the struct module

['Struct', '__all_ ', '__builtins__ ', '_ _cached__', '__doc__', '_ file_ ',
' __initializing__', '__loader__', '__name__', '__ _package__',

'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',

'unpack', 'unpack_from']
>>> class Shape:

def @ dir_ (self):

. return ['area', 'perimeter', 'location']
>>> s = Shape()
>>> dir(s)
['area', 'location', 'perimeter']

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of

names, and its detailed behavior may change across releases. For example, metaclass attributes are not in
the result list when the argument is a class.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % Db). For floating point numbers the result is

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.5.0

(g, a % b), where g isusually math.floor (a / b) but may be 1 less than that. In any case g =
b + a % bisveryclosetoa,ifa % b isnon-zero it has the same sign as b, and 0 <= abs(a % b)
< abs (b).

enumerate (iterable, start=0)

Return an enumerate object. iferable must be a sequence, an iterator, or some other object which supports
iteration. The __next__ () method of the iterator returned by enumerate () returns a tuple containing
a count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> geasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list (enumerate (seasons))

[(O, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list (enumerate (seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression, globals=None, locals=None)

The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition
list) using the globals and locals dictionaries as global and local namespace. If the globals dictionary is
present and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed.
This means that expression normally has full access to the standard builtins module and restricted
environments are propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both
dictionaries are omitted, the expression is executed in the environment where eval () is called. The return
value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval ('
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with " exec’ as the
mode argument, eval () ‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and
locals () functions returns the current global and local dictionary, respectively, which may be useful to
pass around for use by eval () orexec ().

See ast.literal_eval () for a function that can safely evaluate strings with expressions containing
only literals.

exec (object[, globals[, locals]])

This function supports dynamic execution of Python code. object must be either a string or a code object. If
itis a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error
occurs). ! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to
be valid as file input (see the section “File input” in the Reference Manual). Be aware that the return and
yield statements may not be used outside of function definitions even within the context of code passed
to the exec () function. The return value is None.

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

The Python Library Reference, Release 3.5.0

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary, which will be used for both the global and the local variables. If globals
and locals are given, they are used for the global and local variables, respectively. If provided, locals can
be any mapping object. Remember that at module level, globals and locals are the same dictionary. If exec
gets two separate objects as globals and locals, the code will be executed as if it were embedded in a class
definition.

If the globals dictionary does not contain a value for the key ___builtins__, areference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins
are available to the executed code by inserting your own ___builtins__ dictionary into globals before
passing it to exec ().

Note: The built-in functions globals () and locals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec () .

Note: The default locals act as described for function 1ocals () below: modifications to the default
locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the

code on locals after function exec () returns.

filter (function, iterable)

Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function (item)) if function is not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

class £loat ([x])

Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and option-
ally embedded in whitespace. The optional sign may be / +” or / =’ ;a ' +’ sign has no effect on the value
produced. The argument may also be a string representing a NaN (not-a-number), or a positive or nega-
tive infinity. More precisely, the input must conform to the following grammar after leading and trailing
whitespace characters are removed:

Sign L \\+II I ALY

infinity = “Infinity” | “inf”

nan = “nan”

numeric_value = floatnumber | infinity | nan

numeric_string

[sign] numeric_value

Here floatnumber is the form of a Python floating-point literal, described in floating. Case is not sig-
nificant, so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive
infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same
value (within Python’s floating point precision) is returned. If the argument is outside the range of a Python
float, an OverflowError will be raised.

For a general Python object x, f1loat (x) delegatesto x.__float__ ().
If no argument is given, 0. O is returned.

Examples:

>>> float ('+1.23")

10

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.5.0

1.23

>>> float (' -12345\n")
-12345.0

>>> float ('1le-003")
0.001

>>> float ('+1E6")
1000000.0

>>> float ('-Infinity'")
—-inf

The float type is described in Numeric Types — int, float, complex.

format (value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument, however there is a standard formatting syntax that
is used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st r (value).

Acallto format (value, format_spec) istranslatedto type (value) ._ format__ (value,
format_spec) which bypasses the instance dictionary when searching for the value’s ___format__ ()
method. A TypeError exception is raised if the method search reaches ob ject and the format_spec is
non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object()._ _format__ (format_spec) raises TypeError if for-
mat_spec is not an empty string.

class frozenset ([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the collections
module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one of
the object’s attributes, the result is the value of that attribute. For example, getattr (x, ’foobar’) is
equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the ob-
ject’s attributes, False if not. (This is implemented by calling getattr (object, name) and seeing
whether it raises an At t ributeError or not.)

hash (object)

Return the hash value of the object (if it has one). Hash values are integers. They are used to
quickly compare dictionary keys during a dictionary lookup. Numeric values that compare equal
have the same hash value (even if they are of different types, as is the case for 1 and 1.0).

Note: For object’s with custom __hash__ () methods, note that hash () truncates the return value
based on the bit width of the host machine. See __hash__ () for details.

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked

11

The Python Library Reference, Release 3.5.0

up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables
are now more comprehensive and consistent.

hex (x)

Convert an integer number to a lowercase hexadecimal string prefixed with “0x”, for example:

>>> hex (255)
'Oxff!
>>> hex (—42)
'-0x2a'’

If x is not a Python int object, it has to define an __index__() method that returns an integer.

See also int () for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When
EOF is read, EOFError is raised. Example:

>>> s = input ('-—> ")
—-—> Monty Python's Flying Circus
>>> 3

"Monty Python's Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and
history features.

class int (x=0)

class int (x, base=10)
Return an integer object constructed from a number or string x, or return 0 if no arguments are given. If x is
anumber, return x.___int__ (). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing
an integer literal in radix base. Optionally, the literal can be preceded by + or — (with no space in between)
and surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with a to z (or A to Z) having
values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 literals
can be optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base 0 means to
interpret exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int (010’ , 0) is
not legal, while int (010’) is,as well as int (' 010’ , 8).

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.___index_
method, that method is called to obtain an integer for the base. Previous versions used base.__int
instead of base._ _index_ .

isinstance (object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect or virtual)
subclass thereof. If object is not an object of the given type, the function always returns false. If classinfo is

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.5.0

not a class (type object), it may be a tuple of type objects, or may recursively contain other such tuples (other
sequence types are not accepted). If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised.

issubclass (class, classinfo)
Return true if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In
any other case, a TypeError exception is raised.

iter (object[, sentinel])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence protocol (the _ _getitem__ ()
method with integer arguments starting at 0). If it does not support either of those protocols, TypeError
is raised. If the second argument, sentinel, is given, then object must be a callable object. The iterator
created in this case will call object with no arguments for each call to its _ _next__ () method; if the
value returned is equal to sentinel, St opIteration will be raised, otherwise the value will be returned.

See also Iterator Types.

One useful application of the second form of iter () is to read lines of a file until a certain line is reached.
The following example reads a file until the readline () method returns an empty string:

with open('mydata.txt') as fp:
for line in iter (fp.readline, ''"):
process_line(line)

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (such as a string,
bytes, tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

class 1ist ([iterable])
Rather than being a function, 1ist is actually a mutable sequence type, as documented in Liszs and Se-
quence Types — list, tuple, range.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local
and free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables
in parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases
where the function inputs are already arranged into argument tuples, see itertools.starmap ().

max (iterable, *[, key, default])
max (argl, arg2, *args[, key])
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iferable. The largest item in the iterable is returned.
If two or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering
function like that used for 1ist . sort (). The default argument specifies an object to return if the provided
iterable is empty. If the iterable is empty and default is not provided, a Va lueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0]
and heapg.nlargest (1, iterable, key=keyfunc).

13

The Python Library Reference, Release 3.5.0

New in version 3.4: The default keyword-only argument.

memoryview (obj)
Return a “memory view” object created from the given argument. See Memory Views for more information.

min (iterable, *[key, default])
min (argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned.
If two or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering
function like that used for 1ist . sort (). The default argument specifies an object to return if the provided
iterable is empty. If the iterable is empty and default is not provided, a Va lueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent
with other sort-stability preserving tools such as sorted(iterable, key=keyfunc) [0] and
heapg.nsmallest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

next (iterator[, default])
Retrieve the next item from the iterator by calling its __next__ () method. If default is given, it is
returned if the iterator is exhausted, otherwise StopIteration is raised.

class object
Return a new featureless object. object is a base for all classes. It has the methods that are common to
all instances of Python classes. This function does not accept any arguments.

Note: object does not have a __dict__, so you can’t assign arbitrary attributes to an instance of the
object class.

oct (x)
Convert an integer number to an octal string. The result is a valid Python expression. If x is not a Python
int object, it has to define an ___index__ () method that returns an integer.

open (file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True,

opener=None)
Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised.

file is either a string or bytes object giving the pathname (absolute or relative to the current working direc-
tory) of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is
given, it is closed when the returned I/O object is closed, unless closefd is setto False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to / r’ which means
open for reading in text mode. Other common values are ' w’ for writing (truncating the file if it already
exists), ' x’ for exclusive creation and ' a’ for appending (which on some Unix systems, means that all
writes append to the end of the file regardless of the current seek position). In text mode, if encoding is
not specified the encoding used is platform dependent: locale.getpreferredencoding (False)
is called to get the current locale encoding. (For reading and writing raw bytes use binary mode and leave
encoding unspecified.) The available modes are:

Character | Meaning

"'r! open for reading (default)

"w! open for writing, truncating the file first

rx’ open for exclusive creation, failing if the file already exists
ra’ open for writing, appending to the end of the file if it exists
"o’ binary mode

e’ text mode (default)

"y open a disk file for updating (reading and writing)

'y’ universal newlines mode (deprecated)

The default mode is ” r’ (open for reading text, synonym of / rt). For binary read-write access, the mode
"w+b’ opens and truncates the file to 0 bytes. * r+b’ opens the file without truncation.

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.5.0

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary
mode (including ' b’ in the mode argument) return contents as bytes objects without any decoding. In
text mode (the default, or when ’ £’ is included in the mode argument), the contents of the file are returned
as str, the bytes having been first decoded using a platform-dependent encoding or using the specified
encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing
is done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed
in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the
size in bytes of a fixed-size chunk buffer. When no buffering argument is given, the default buffering policy
works as follows:

*Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT_BUFFER_SIZE.
On many systems, the buffer will typically be 4096 or 8192 bytes long.

*“Interactive” text files (files for which isatty () returns True) use line buffering. Other text files
use the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text
mode. The default encoding is platform dependent (whatever locale.getpreferredencoding ()
returns), but any fext encoding supported by Python can be used. See the codecs module for the list of
supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled-this cannot
be used in binary mode. A variety of standard error handlers are available (listed under Error Handlers),
though any error handling name that has been registered with codecs.register_error () is also
valid. The standard names include:

e’ strict’ toraise a ValueError exception if there is an encoding error. The default value of
None has the same effect.

*’ ignore’ ignores errors. Note that ignoring encoding errors can lead to data loss.

*’ replace’ causes a replacement marker (such as ’ ?’) to be inserted where there is malformed
data.

*’ surrogateescape’ will represent any incorrect bytes as code points in the Unicode Private Use
Area ranging from U+DC80 to U+DCFF. These private code points will then be turned back into the
same bytes when the surrogateescape error handler is used when writing data. This is useful for
processing files in an unknown encoding.

' xmlcharrefreplace’ is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference & #nnn; .

*’backslashreplace’ replaces malformed data by Python’s backslashed escape sequences.

*’namereplace’ (also only supported when writing) replaces unsupported characters with
\N{ ...} escape sequences.

newline controls how universal newlines mode works (it only applies to text mode). It can be None, 7 ’,
"An’,’\r’,and " \r\n’. It works as follows:

*When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines
in the input can end in " \n’, “\r’, or * \r\n’, and these are translated into ’ \n’ before being
returned to the caller. If it is ’ 7, universal newlines mode is enabled, but line endings are returned to
the caller untranslated. If it has any of the other legal values, input lines are only terminated by the
given string, and the line ending is returned to the caller untranslated.

*When writing output to the stream, if newline is None, any ’ \n’ characters written are translated
to the system default line separator, os. linesep. If newline is '/ or ' \n’, no translation takes
place. If newline is any of the other legal values, any ’ \n’ characters written are translated to the
given string.

15

The Python Library Reference, Release 3.5.0

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will
be kept open when the file is closed. If a filename is given closefd must be True (the default) otherwise an
error will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file
object is then obtained by calling opener with (file, flags). opener must return an open file descriptor
(passing os . open as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os.open () function to open a file relative to a
given directory:

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener (path, flags):
return os.open(path, flags, dir_fd=dir_fd)

>>> with open('spamspam.txt', 'w', opener=opener) as f:
print ('This will be written to somedir/spamspam.txt', file=f)

>>> os.close(dir_f£fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used
to open a file in a text mode (Y w’, "r’, 'wt’, ' rt’, etc.), it returns a subclass of io.Text IOBase
(specifically io.Text IOWrapper). When used to open a file in a binary mode with buffering, the re-
turned class is a subclass of io. Buf feredIOBase. The exact class varies: in read binary mode, it returns
aio.BufferedReader;in write binary and append binary modes, itreturns a io . Bufferediiriter,
and in read/write mode, it returns a io.Buf feredRandom. When buffering is disabled, the raw stream,
asubclass of io.RawIOBase, i0.FileIO, isreturned.

See also the file handling modules, such as, fileinput, io (where open () is declared), os, os.path,
tempfile,and shutil.

Changed in version 3.3: The opener parameter was added. The ’ x’ mode was added. TOError used to be
raised, it is now an alias of OSError. FileExistsError is now raised if the file opened in exclusive
creation mode (’ x’) already exists.

Changed in version 3.4: The file is now non-inheritable.
Deprecated since version 3.4, will be removed in version 4.0: The ' U’ mode.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception,
the function now retries the system call instead of raising an InterruptedError exception (see PEP
475 for the rationale).

ord (c)

Given a string representing one Unicode character, return an integer representing the Unicode code point of
that character. For example, ord (’ a’) returns the integer 97 and ord (' v’) returns 957. This is the
inverse of chr ().

pow (x,y[, z])

Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently
than pow (x, y) % z). The two-argument form pow (x, vy) is equivalent to using the power operator:
X**Y.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, 10+ 2 returns 100, but 10+ -2 returns 0. 01. If the second argument is negative, the third
argument must be omitted. If z is present, x and y must be of integer types, and y must be non-negative.

16

Chapter 2. Built-in Functions

http://www.python.org/dev/peps/pep-0475
http://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.0

print (*objects, sep=" ", end="\n’, file=sys.stdout, flush=False)
Print objects to the text stream file, separated by sep and followed by end. sep, end and file, if present, must
be given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated
by sep and followed by end. Both sep and end must be strings; they can also be None, which means to use
the default values. If no objects are given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None,
sys.stdout will be used. Since printed arguments are converted to text strings, print () cannot be
used with binary mode file objects. For these, use file.write (...) instead.

Whether output is buffered is usually determined by file, but if the flush keyword argument is true, the stream
is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

class property (fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a
function for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def _ init__ (self):
self._x = None

def getx(self):
return self._x

def setx(self, wvalue):
self._x = value

def delx(self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

If c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x
the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring
(if it exists). This makes it possible to create read-only properties easily using property () asadecorator:

class Parrot:
def _ init_ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with the
same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

17

The Python Library Reference, Release 3.5.0

class C:
def @ init__ (self):
self._x = None

@property

def x(self):
"""T'm the 'x' property."""
return self._x

@x.setter
def x(self, value):
self._x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name
as the original property (x in this case.)

The returned property object also has the attributes fget, fset, and £del corresponding to the construc-
tor arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

range (stop)

range (start, stop[, step])
Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and
Sequence Types — list, tuple, range.

repr (object)
Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval (), otherwise
the representation is a string enclosed in angle brackets that contains the name of the type of the object
together with additional information often including the name and address of the object. A class can control
what this function returns for its instances by defininga __repr___ () method.

reversed (seq)
Return a reverse iterator. seq must be an object which has a __reversed__ () method or supports the
sequence protocol (the __len__ () method and the __getitem__ () method with integer arguments
starting at 0).

round (number[, ndigits])
Return the floating point value number rounded to ndigits digits after the decimal point. If ndigits is omitted,
it returns the nearest integer to its input. Delegates to number._round__ (ndigits).

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example,
both round (0.5) and round (-0.5) are 0, and round (1.5) is 2). The return value is an integer if
called with one argument, otherwise of the same type as number.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives
2. 67 instead of the expected 2. 68. This is not a bug: it’s a result of the fact that most decimal fractions

can’t be represented exactly as a float. See tut-fp-issues for more information.

class set ([iterable])
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set
and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, 1ist, tuple, and dict classes, as well as the
collections module.

18 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.5.0

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, pro-
vided the object allows it. For example, setattr (x, ’foobar’, 123) isequivalentto x.foobar
= 123.

class slice (stop)

class slice (start, stop[, step])
Return a sl/ice object representing the set of indices specified by range (start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop and
step which merely return the argument values (or their default). They have no other explicit functionality;
however they are used by Numerical Python and other third party extensions. Slice objects are also generated
when extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop,
i]. See itertools.islice () for an alternate version that returns an iterator.

sorted (iterable[, key][, reverse])
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example,
sort by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see Sorting HowTo.

staticmethod (function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in function
for details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. Also see classmethod () for a
variant that is useful for creating alternate class constructors.

For more information on static methods, consult the documentation on the standard type hierarchy in types.

class str (object="")
class str (object=b’", encoding="utf-8’, errors="strict’)
Return a st r version of object. See st r () for details.

str is the built-in string c/ass. For general information about strings, see Text Sequence Type — str.

sum (iterable[, start])
Sums start and the items of an iferable from left to right and returns the total. start defaults to 0. The
iterable‘s items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum () . The preferred, fast way to concatenate a sequence
of strings is by calling ’ ’ . join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using itertools.chain ().

19

https://wiki.python.org/moin/HowTo/Sorting/

The Python Library Reference, Release 3.5.0

super ([type[, object-or-type]])

Return a proxy object that delegates method calls to a parent or sibling class of fype. This is useful for
accessing inherited methods that have been overridden in a class. The search order is same as that used by
getattr () except that the type itself is skipped.

The __mro___ attribute of the rype lists the method resolution search order used by both getattr () and
super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to
refer to parent classes without naming them explicitly, thus making the code more maintainable. This use
closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment.
This use case is unique to Python and is not found in statically compiled languages or languages that only
support single inheritance. This makes it possible to implement “diamond diagrams” where multiple base
classes implement the same method. Good design dictates that this method have the same calling signature
in every case (because the order of calls is determined at runtime, because that order adapts to changes in
the class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super () .method (arg) # This does the same thing as:
super (C, self).method(arg)

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such
as super () .__getitem__ (name). It does so by implementing its own __getattribute__ ()
method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument
form only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve
the class being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

tuple ([itemble])

Rather than being a function, tuple is actually an immutable sequence type, as documented in 7uples and
Sequence Types — list, tuple, range.

class type (object)
class type (name, bases, dict)

With one argument, return the type of an object. The return value is a type object and generally the same
object as returned by object.___class__.

The isinstance () built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, return a new type object. This is essentially a dynamic form of the c1ass statement.
The name string is the class name and becomes the __name___ attribute; the bases tuple itemizes the
base classes and becomes the __bases___ attribute; and the dict dictionary is the namespace containing
definitions for class body and becomes the __dict__ attribute. For example, the following two statements
create identical t ype objects:

>>> class X:
a =1

>>> X = type('X', (object,), dict(a=1))

20

Chapter 2. Built-in Functions

http://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.5.0

See also Type Objects.

vars ([object])
Return the __dict__ attribute for a module, class, instance, or any other object with a __dict__ at-
tribute.

Objects such as modules and instances have an updateable ___dict___ attribute; however, other objects
may have write restrictions on their ___dict___ attributes (for example, classes use a dictproxy to prevent
direct dictionary updates).

Without an argument, vars () acts like 1ocals (). Note, the locals dictionary is only useful for reads
since updates to the locals dictionary are ignored.

zip (*iterables)
Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument
sequences or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable
argument, it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

def zip(xiterables):
zip('ABCD', 'xy') —--> Ax By
sentinel = object ()
iterators = [iter (it) for it in iterables]
while iterators:
result = []
for it in iterators:
elem = next (it, sentinel)
if elem is sentinel:
return
result.append(elem)
yield tuple (result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering
a data series into n-length groups using zip (x [iter (s)] »n) . This repeats the same iterator n times so
that each output tuple has the result of n calls to the iterator. This has the effect of dividing the input into
n-length chunks.

zip () should only be used with unequal length inputs when you don’t care about trailing, unmatched val-
ues from the longer iterables. If those values are important, use itertools.zip_longest () instead.

z1ip () in conjunction with the » operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> vy = [4, 5, 6]

>>> zipped = zip(x, Vy)

>>> list (zipped)

[(1, 4), (2, 5), (3, 6)]

>>> x2, y2 = zip(xzip(x, y))

>>> x == list(x2) and y == list (y2)
True

__import___ (name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike
importlib.import_module ().

This function is invoked by the import statement. It can be replaced (by importing the bui 1t ins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but
doing so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the

21

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.5.0

same goals and does not cause issues with code which assumes the default import implementation is in use.
Direct use of __import__ () is also discouraged in favor of importlib.import_module ().

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should
be imported from the module given by name. The standard implementation does not use its locals argument
at all, and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. O (the default) means only perform absolute
imports. Positive values for level indicate the number of parent directories to search relative to the directory
of the module calling __import__ () (see PEP 328 for the details).

When the name variable is of the form package .module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument
is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:
spam = __import__ ('spam', globals(), locals(), [], 0)

The statement import spam.ham results in this call:

spam = __import__ ('spam.ham', globals(), locals(), [1, O)

Note how __import__ () returns the toplevel module here because this is the object that is bound to a
name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage'l],
eggs = _temp.eggs

saus = _temp.sausage

Here, the spam.ham module is returned from ___import__ (). From this object, the names to import are

retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use
importlib.import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default
value to 0).

22

Chapter 2. Built-in Functions

0)

http://www.python.org/dev/peps/pep-0328

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of the type NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which should be returned by the binary special methods (e.g. __eq (), __1t__ (),
__add__ (), rsub__ (), etc.) to indicate that the operation is not implemented with respect to the
other type; may be returned by the in-place binary special methods (e.g. __imul__ (), __iand__ (),

etc.) for the same purpose. Its truth value is true.

Note: When Not Implemented is returned, the interpreter will then try the reflected operation on the other
type, or some other fallback, depending on the operator. If all attempted operations return Not Implemented,

the interpreter will raise an appropriate exception.

See Implementing the arithmetic operations for more details.

Ellipsis
The same as Special value used mostly in conjunction with extended slicing syntax for user-defined
container data types.

__debug___
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and ___debug___ cannot be reassigned (assignments to them, even as
an attribute name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is
given) adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and
should not be used in programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called,
raise SystemExit with the specified exit code.

copyright
license

23

The Python Library Reference, Release 3.5.0

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

24 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and
don’t return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested
for truth value, and converted to a string (with the repr () function or the slightly different st r () function).
The latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

* None

* False

* zero of any numeric type, for example, 0, 0.0, 0.
* any empty sequence, for example, ', (), [].

* any empty mapping, for example, { }.

¢ instances of user-defined classes, if the class definesa ___bool__ () or __len__ () method, when that
method returns the integer zero or bool value False.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True
for true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of
their operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes

X Or y if x is false, then y, else x @))

x and y if x is false, then x, else y 2)

not x if x is false, then True, else False | (3)
Notes:

! Additional information on these special methods may be found in the Python Reference Manual (customization).

25

The Python Library Reference, Release 3.5.0

1. This is a short-circuit operator, so it only evaluates the second argument if the first one is False.
2. This is a short-circuit operator, so it only evaluates the second argument if the first one is True.

3. not has alower priority than non-Boolean operators, so not a == Db isinterpreted as not (a == b),
and a == not Db is a syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x <
y and y <= z,except that y is evaluated only once (but in both cases z is not evaluated at all when x < vy is
found to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

I= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types (for
example, function objects) support only a degenerate notion of comparison where any two objects of that type are
unequal. The <, <=, > and >= operators will raise a TypeError exception when comparing a complex number
with another built-in numeric type, when the objects are of different types that cannot be compared, or in other
cases where there is no defined ordering.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods ___1t__ (),__le_ (),__gt__ (),and__ge__ () (in general,
__1t_ () and_eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects
and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported only by sequence types
(below).

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition,
Booleans are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually imple-
mented using double in C; information about the precision and internal representation of floating point numbers
for the machine on which your program is running is available in sys.float_info. Complex numbers have
a real and imaginary part, which are each a floating point number. To extract these parts from a complex number
z,use z.real and z.imag. (The standard library includes additional numeric types, fractions that hold
rationals, and decimal that hold floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or
an exponent sign yield floating point numbers. Appending ’ j’ or ’ J’ to a numeric literal yields an imaginary
number (a complex number with a zero real part) which you can add to an integer or float to get a complex number
with real and imaginary parts.

26 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating
point, which is narrower than complex. Comparisons between numbers of mixed type use the same rule. > The
constructors int (), float (), and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (all numeric
operations have a higher priority than comparison operations):

Operation Result Notes | Full
documentation
X +y sum of x and y
X -y difference of x and y
X *x y product of x and y
x /vy quotient of x and y
x //y floored quotient of x and y (1)
X %y remainder of x / y)
-x x negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)(®6) | int ()
float (x) x converted to floating point @)(6) | float ()
complex (re, a complex number with real part re, imaginary part im. im (6) complex ()
im) defaults to zero.
c.conjugate ()| conjugate of the complex number ¢
divmod(x, y) | thepair (x // vy, x % V) 2) divmod ()
pow (x, V) x to the power y ®)) pow ()
X *%x Y X to the power y o)
Notes:

1. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//21is 0, (-1) //2is-1,1// (-2)
is—-1,and (-1)//(-2) is 0.

2. Not for complex numbers. Instead convert to floats using abs () if appropriate.

3. Conversion from floating point to integer may round or truncate as in C; see functions math.floor ()
and math.ceil () for well-defined conversions.

4. float also accepts the strings “nan” and “inf”” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

5. Python defines pow (0, 0) and O x% 0 to be 1, as is common for programming languages.

6. The numeric literals accepted include the digits 0 to 9 or any Unicode equivalent (code points with the Nd
property).

See http://www.unicode.org/Public/8.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of code
points with the Nd property.

All numbers.Real types (int and float) also include the following operations:

Operation Result Notes
math.trunc (x) | x truncated to Integral

round (x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math.floor (x) | the greatest integral float <= x

math.ceil (x) the least integral float >=x

For additional numeric operations see the math and cmath modules.

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 27

http://www.unicode.org/Public/8.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.5.0

4.4.1 Bitwise Operations on Integer Types
Bitwise operations only make sense for integers. Negative numbers are treated as their 2’s complement value (this
assumes a sufficiently large number of bits that no overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the
comparisons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bitwise operations sorted in ascending priority:

Operation | Result Notes
x |y bitwise or of x and y
x Ny bitwise exclusive or of x and y
X &y bitwise and of x and y
x << n x shifted left by n bits (H©2)
X >> n x shifted right by n bits (H(3)
~X the bits of x inverted

Notes:

1. Negative shift counts are illegal and cause a ValueError to be raised.
2. A left shift by #n bits is equivalent to multiplication by pow (2, n) without overflow check.

3. A right shift by n bits is equivalent to division by pow (2, n) without overflow check.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers.Integral abstract base class. In addition, it provides a few more
methods:

int.bit_length()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin (n)
'-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, then x.bit_length () is the unique positive integer k such that
2x% (k=1) <= abs(x) < 2*xk. Equivalently, when abs (x) is small enough to have a correctly
rounded logarithm, then k = 1 + int (log(abs(x), 2)). If xis zero, then x.bit_length ()
returns O.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) —--> '-0b100101"'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101') ——> 6

New in version 3.1.

int.to_bytes (length, byteorder, *, signed=False)
Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big')

b'\x04\x00"

>>> (1024) .to_bytes (10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"'

>>> (-1024) .to_bytes (10, byteorder='big', signed=True)

28 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

b'\xff\xff\xff\xEff\xEf\xEf\xEff\xff\xfc\x00"'

>>> x = 1000

>>> x.to_bytes ((x.bit_length() // 8) + 1, byteorder='little')
b'\xe8\x03"

The integer is represented using length bytes. An OverflowError is raised if the integer is not repre-
sentable with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "1ittle", the most sig-
nificant byte is at the end of the byte array. To request the native byte order of the host system, use
sys.byteorder as the byte order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed is
False and a negative integer is given, an OverflowError is raised. The default value for signed is
False.

New in version 3.2.

classmethod int . from_bytes (bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes (b'\x00\x10', byteorder='big")

16

>>> int.from_bytes (b'\x00\x10', byteorder='little')

4096

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=False)
64512

>>> int.from_bytes ([255, 0, 0], byteorder='big'")

16711680

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big",
the most significant byte is at the beginning of the byte array. If byteorder is "1ittle", the most sig-
nificant byte is at the end of the byte array. To request the native byte order of the host system, use
sys.byteorder as the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.

New in version 3.2.

4.4.3 Additional Methods on Float

The float type implements the numbers .Real abstract base class. float also has the following additional meth-
ods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.
Raises OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).1is_integer ()
True

>>> (3.2).1s_integer()
False

4.4. Numeric Types — int, float, complex 29

The Python Library Reference, Release 3.5.0

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful
when debugging, and in numerical work.

float .hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent.

classmethod f1oat . fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace.

Note that f1oat .hex () is an instance method, while f1oat . fromhex () is a class method.
A hexadecimal string takes the form:
[sign] ['Ox'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits,
and exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at
least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in
section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output
of float.hex () is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings
produced by C’s $a format character or Java’s Double.toHexString are accepted by float . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number
(3 + 10./16 + 7./16%%x2) * 2.0x%10,0r3740.0:

>>> float.fromhex ('0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex (3740.0)
'0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and vy, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x
== y(seethe __hash__ () method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float,decimal.Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number,
and hence applies to all instances of int and fractions.Fraction, and all finite instances of £ 1oat and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of
P is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime used is P = 2x++31 - 1 on machines with 32-bit C
longsand P = 2x%61 - 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / n is a nonnegative rational number and n is not divisible by P, define hash (x) as m =
invmod(n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

e If x = m / n is a nonnegative rational number and n is divisible by P (but m is not) then n has no
inverse modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value
sys.hash_info.inf.

e If x = m / nisanegative rational number define hash (x) as —hash (-x) . If the resulting hash is -1,
replace it with —2.

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

* The particular values sys.hash_info.inf, -sys.hash_info.inf and sys.hash_info.nan
are used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans
have the same hash value.)

e For a complex number z, the hash values of the real and imaginary parts are combined
by computing hash (z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo
2+«xsys.hash_info.width so that it lies in range (—2** (sys.hash_info.width - 1),
2x% (sys.hash_info.width - 1)). Again, if the result is —1, it’s replaced with —2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the
hash of a rational number, f1oat, or complex:

import sys, math

def hash_fraction(m, n):
"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

mmn

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary 1f m and n already coprime.)
while m $ P == % == 0:

m, n=m// P, n// P

ifn % P == 0:
hash_ = sys.hash_info.inf
else:

Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_ = (abs(m) % P) % pow(n, P - 2, P) % P
if m < O:

hash_ = -hash_
if hash_ == -1:

hash_ = -2

return hash_

def hash_ float (x):
"""Compute the hash of a float x."""

if math.isnan (x) :

return sys.hash_info.nan
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

def hash_complex(z):
"""Compute the hash of a complex number z."""

hash_ = hash_float(z.real) + sys.hash_info.imag * hash_float (z.imag)
do a signed reduction modulo 2x%*sys.hash_info.width
M = 2x«%(sys.hash_info.width - 1)
hash_ = (hash_ & (M - 1)) - (hash & M)
if hash_ == -1:
hash_ == -2
return hash_

4.4. Numeric Types — int, float, complex 31

The Python Library Reference, Release 3.5.0

4.5 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration support:

container._ iter_ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a
container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp_1iter slot of the type structure for Python objects in the Python/C APIL.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter_ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for and in statements. This method corresponds to the tp_iter slot of the type structure for Python
objects in the Python/C APIL

iterator._ _next__ ()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
APIL

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s ___next__ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (technically, a
generator object) supplying the __iter__ () and __next__ () methods. More information about generators
can be found in the documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for
processing of binary data and text strings are described in dedicated sections.

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations on
custom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and ¢ are sequences of the same
type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not 1in operations have the same priorities as the comparison operations. The + (concatenation) and
x (repetition) operations have the same priority as the corresponding numeric operations.

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

Operation Result Notes
X in s True if an item of s is equal to x, else False @))

x not in s False if an item of s is equal to x, else True (D

s + t the concatenation of s and ¢ ©)(7)
S * norn x s n shallow copies of s concatenated @)(7)
s[i] ith item of s, origin 0 3
s[i:7] slice of s from i to j 3)4)
s[i:j:k] slice of s from i to j with step k 3)(5)
len (s) length of s

min(s) smallest item of s

max (s) largest item of s

s.index (x[, 1il, index of the first occurrence of x in s (at or after index i and before (8)
311) index j)

s.count (x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicograph-
ically by comparing corresponding elements. This means that to compare equal, every element must compare
equal and the two sequences must be of the same type and have the same length. (For full details see comparisons
in the language reference.)

Notes:

1. Whilethe in and not in operations are used only for simple containment testing in the general case, some

specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:

>>> Hgg" in Heggsﬂ
True

. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]] = 3
>>> lists

(e, 1, 11

>>> 1lists[0] .append(3)
>>> lists

(31, 31, [31]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of
[[1]1 = 3 are(pointers to) this single empty list. Modifying any of the elements of 1ists modifies this
single list. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> lists[0] .append(3)

>>> lists[1l].append(5)

>>> lists[2].append(7)

>>> lists

[e31, 51, (711

. If i orj is negative, the index is relative to the end of the string: 1len (s) + iorlen(s) + 7 issubsti-
tuted. But note that —0 is still 0.

. The slice of s from i to j is defined as the sequence of items with index k suchthat i <= k < j.Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s).
If i is greater than or equal to j, the slice is empty.

. The slice of s from i to j with step k is defined as the sequence of items with index x = i + nxk such
that 0 <= n < (j-1i)/k. In other words, the indices are i, i+k, i+2+k, 1+3+k and so on, stopping
when j is reached (but never including j). If i or j is greater than 1len (s), use len (s). If i or j are omitted
or None, they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is
None, it is treated like 1.

4.6. Sequence Types — list, tuple, range 33

The Python Library Reference, Release 3.5.0

6. Concatenating immutable sequences always results in a new object. This means that building up a sequence
by repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear
runtime cost, you must switch to one of the alternatives below:

« if concatenating st r objects, you can build a list and use str. join () at the end or else write to a
io.StringIO instance and retrieve its value when complete

* if concatenating bytes objects, you can similarly use bytes. join () or io.BytesIO, or you
can do in-place concatenation with a bytearray object. bytearray objects are mutable and have
an efficient overallocation mechanism

* if concatenating t uple objects, extend a 1 ist instead
« for other types, investigate the relevant class documentation

7. Some sequence types (such as range) only support item sequences that follow specific patterns, and hence
don’t support sequence concatenation or repetition.

8. index raises ValueError when x is not found in s. When supported, the additional arguments to the
index method allow efficient searching of subsections of the sequence. Passing the extra arguments is
roughly equivalent to using s[i:j].index (x), only without copying any data and with the returned
index being relative to the start of the sequence rather than the start of the slice.

4.6.2 Immutable Sequence Types
The only operation that immutable sequence types generally implement that is not also implemented by mutable
sequence types is support for the hash () built-in.

This support allows immutable sequences, such as tuple instances, to be used as dict keys and stored in set
and frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The
collections.abc.MutableSequence ABC is provided to make it easier to correctly implement
these operations on custom sequence types.

In the table s is an instance of a mutable sequence type, ¢ is any iterable object and x is an arbitrary object that
meets any type and value restrictions imposed by s (for example, bytearray only accepts integers that meet the
value restriction 0 <= x <= 255).

Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:3] = t slice of s from i to j is replaced by the contents of the iterable ¢
del s[i:7] sameas s[i:j] = []
s[i:j:k] =t the elements of s [1: j:k] are replaced by those of ¢)
del s[i:7:k] removes the elements of s [1i:j:k] from the list
s.append (x) appends x to the end of the sequence (same as s[len (s) :len(s)] =

[x])
s.clear () removes all items from s (same as del s[:]) 5)
s.copy () creates a shallow copy of s (sameas s[:]) (@)
s.extend (t) extends s with the contents of # (same as s[len (s) :1len(s)] = t)
s.insert (i, inserts x into s at the index given by i (same as s [1:1] = [x])
x)
s.pop ([1]) retrieves the item at i and also removes it from s 2)
s.remove (x) remove the first item from s where s [1] == x 3)
s.reverse () reverses the items of s in place “4)

Notes:

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

1. ¢ must have the same length as the slice it is replacing.
The optional argument i defaults to —1, so that by default the last item is removed and returned.

remove raises ValueError when x is not found in s.

A

The reverse () method modifies the sequence in place for economy of space when reversing a large
sequence. To remind users that it operates by side effect, it does not return the reversed sequence.

5. clear () and copy () are included for consistency with the interfaces of mutable containers that don’t
support slicing operations (such as dict and set)

New in version 3.3: clear () and copy () methods.

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree
of similarity will vary by application).

class 1list ([iterable])
Lists may be constructed in several ways:

*Using a pair of square brackets to denote the empty list: []

*Using square brackets, separating items with commas: [a], [a, b, c]
*Using a list comprehension: [x for x in iterable]

*Using the type constructor: 1ist () or list (iterable)

The constructor builds a list whose items are the same and in the same order as iterable‘s items. iterable
may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a
list, a copy is made and returned, similar to iterable[:]. For example, 1ist (’ abc’) returns ["a’,
"b’, 'c’land list((1, 2, 3)) returns [1, 2, 3].If noargument is given, the constructor
creates a new empty list, [].

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following
additional method:

sort (* key=None, reverse=None)
This method sorts the list in place, using only < comparisons between items. Exceptions are not
suppressed - if any comparison operations fail, the entire sort operation will fail (and the list will
likely be left in a partially modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element
(for example, key=str.lower). The key corresponding to each item in the list is calculated once
and then used for the entire sorting process. The default value of None means that list items are sorted
directly without calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key
function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted () to
explicitly request a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

4.6. Sequence Types — list, tuple, range 35

The Python Library Reference, Release 3.5.0

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or
even inspect, the list is undefined. The C implementation of Python makes the list appear empty for
the duration, and raises ValueError if it can detect that the list has been mutated during a sort.

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples
produced by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homo-
geneous data is needed (such as allowing storage in a set or dict instance).

class tuple ([iterable])
Tuples may be constructed in a number of ways:

*Using a pair of parentheses to denote the empty tuple: ()

*Using a trailing comma for a singleton tuple: a, or (a,)
*Separating items with commas: a, b, cor (a, b, c)
*Using the tuple () built-in: tuple () or tuple (iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable‘s items. iterable
may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a
tuple, it is returned unchanged. For example, tuple (' abc’) returns (‘a’, 'b’, ’c’) andtuple (
[1, 2, 3]) returns (1, 2, 3).Ifno argument is given, the constructor creates a new empty tuple,

0.

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional,
except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, £ (a,
b, c¢) is a function call with three arguments, while £ ((a, b, c¢)) is a function call with a 3-tuple as
the sole argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index,
collections.namedtuple () may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific
number of times in for loops.

class range (stop)

class range (start, stop[, step])
The arguments to the range constructor must be integers (either built-in int or any object that implements
the ___index___ special method). If the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r [1] = start + stepx*i
where i >= Oandr[i] < stop.

For a negative step, the contents of the range are still determined by the formula r[1] = start +
step=*1i, but the constraintsare i >= Oandr[i] > stop.

A range object will be empty if r[0] does not meet the value constraint. Ranges do support negative
indices, but these are interpreted as indexing from the end of the sequence determined by the positive
indices.

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as
len ()) may raise OverflowError.

Range examples:

36 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

>>> list (range (10))

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range(l, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

(o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list (range (0))

>>> list (range (1, 0))

Ranges implement all of the common sequence operations except concatenation and repetition (due to the
fact that range objects can only represent sequences that follow a strict pattern and repetition and concate-
nation will usually violate that pattern).

The advantage of the range type over a regular 1ist or tuple is that a range object will always take the
same (small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop
and step values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range (0, 20, 2)
>>> 1

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare equal
might have different start, stop and step attributes, for example range (0) == range(2, 1, 3) or
range (0, 3, 2) == range(0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int objects
for membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘=="and ‘!=" to compare range objects based on the sequence of values they define
(instead of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.

4.7 Text Sequence Type — str

Textual data in Python is handled with st r objects, or strings. Strings are immutable sequences of Unicode code
points. String literals are written in a variety of ways:

4.7. Text Sequence Type — str 37

The Python Library Reference, Release 3.5.0

* Single quotes: ' allows embedded "double" quotes’
* Double quotes: "allows embedded ’single’ quotes".
e Triple quoted: ’ /' Three single quotes’’’,"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly
converted to a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r
(“raw”) prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st r constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty
string s, s[0] == s[0:1].

There is also no mutable string type, but str. join () or io.StringIO can be used to efficiently construct
strings from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted
on string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

class str (object="")

class str (object=b’", encoding="utf-8’, errors="strict’)
Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior
of str () depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, str (object) returns object.__str__ (), which is the “in-
formal” or nicely printable string representation of object. For string objects, this is the string itself. If
object does nothave a __str__ () method, then str () falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytes
or bytearray). In this case, if object is a bytes (or bytearray) object, then str (bytes,
encoding, errors) is equivalent to bytes.decode (encoding, errors). Otherwise, the
bytes object underlying the buffer object is obtained before calling bytes.decode (). See Binary Se-
quence Types — bytes, bytearray, memoryview and bufferobjects for information on buffer objects.

Passing a bytes object to str () without the encoding or errors arguments falls under the first case of
returning the informal string representation (see also the —b command-line option to Python). For example:

>>> str(b'Zoot!")
"b'Zoot!""

For more information on the str class and its methods, see Text Sequence Type — str and the String
Methods section below. To output formatted strings, see the String Formatting section. In addition, see the
Text Processing Services section.

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization
(see str.format (), Format String Syntax and String Formatting) and the other based on C printf style
formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the
cases it can handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various
text related utilities (including regular expression support in the re module).

str.capitalize ()
Return a copy of the string with its first character capitalized and the rest lowercased.

38 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

str.casefold()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinc-
tions in a string. For example, the German lowercase letter 3’ is equivalent to "ss". Since it is already
lowercase, Lower () would do nothingto ' B’ ; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.
New in version 3.3.

str.center (width[, fillchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII
space). The original string is returned if width is less than or equal to 1en (s).

str.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

str.encode (encoding="utf-8”, errors="strict”)
Return an encoded version of the string as a bytes object. Default encoding is 'utf-8’. er-
rors may be given to set a different error handling scheme. The default for errors is ' strict’,
meaning that encoding errors raise a UnicodeError. Other possible values are ’ignore’,
"replace’, 'xmlcharrefreplace’, "backslashreplace’ and any other name registered via
codecs.register_error (), see section Error Handlers. For a list of possible encodings, see section
Standard Encodings.

Changed in version 3.1: Support for keyword arguments added.

str.endswith (su]ﬁx[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple
of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing
at that position.

str.expandtabs (fabsize=8)

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. Tab positions occur every tabsize characters (default is 8, giving tab
positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the
string is examined character by character. If the character is a tab (\t), one or more space characters are
inserted in the result until the current column is equal to the next tab position. (The tab character itself is
not copied.) If the character is a newline (\n) or return (\r), it is copied and the current column is reset to
zero. Any other character is copied unchanged and the current column is incremented by one regardless of
how the character is represented when printed.

>>> '01\t012\t0123\t01234".expandtabs ()

'01 012 0123 01234"
>>> '01\t012\t0123\t01234"' .expandtabs (4)
'01 012 0123 01234"

str.find (sub[, start[, end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub
is not found.

Note: The find () method should be used only if you need to know the position of sub. To check if sub
is a substring or not, use the in operator:

>>> 'Py' in 'Python'
True

str.format (*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text

4.7. Text Sequence Type — str 39

The Python Library Reference, Release 3.5.0

str.

str.

str.

str.

str.

str.

str.

str

str.

or replacement fields delimited by braces {}. Each replacement field contains either the numeric index
of a positional argument, or the name of a keyword argument. Returns a copy of the string where each
replacement field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is {0}".format (1+2)
'The sum of 1 + 2 is 3"

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

format_map (mapping)
Similar to str. format (x*mapping), except that mapping is used directly and not copied toa dict.
This is useful if for example mapping is a dict subclass:

>>> class Default (dict) :
def _ missing__ (self, key):
return key

>>> '{name} was born in {country}'.format_map (Default (name='Guido'))
'Guido was born in country'

New in version 3.2.

index (sub[, start[, end]])
Like find (), but raise ValueError when the substring is not found.

isalnum ()

Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
A character c is alphanumeric if one of the following returns True: c.isalpha (), c.isdecimal (),
c.isdigit (),orc.isnumeric().

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those
with general category property being one of “Lm”, “Lt”, “Lu”, “L1”, or “Lo”. Note that this is different
from the “Alphabetic” property defined in the Unicode Standard.

isdecimal ()

Return true if all characters in the string are decimal characters and there is at least one character, false oth-
erwise. Decimal characters are those from general category “Nd”. This category includes digit characters,
and all characters that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-INDIC DIGIT
ZERO.

isdigit ()

Return true if all characters in the string are digits and there is at least one character, false otherwise. Digits
include decimal characters and digits that need special handling, such as the compatibility superscript digits.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

isidentifier ()
Return true if the string is a valid identifier according to the language definition, section identifiers.

Use keyword. iskeyword () to test for reserved identifiers such as def and class.

.islower ()

Return true if all cased characters * in the string are lowercase and there is at least one cased character, false
otherwise.

isnumeric ()
Return true if all characters in the string are numeric characters, and there is at least one character, false
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric

3 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “LI” (Letter, lowercase), or “Lt” (Letter,
titlecase).

40

Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

value property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those
with the property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

str.isprintable ()
Return true if all characters in the string are printable or the string is empty, false otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, except-
ing the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are
those which should not be escaped when repr () is invoked on a string. It has no bearing on the handling
of strings written to sys . stdout or sys.stderr.)

str.isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false
otherwise. Whitespace characters are those characters defined in the Unicode character database as “Other”
or “Separator” and those with bidirectional property being one of “WS”, “B”, or “S”.

str.istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

str.isupper ()
Return true if all cased characters # in the string are uppercase and there is at least one cased character, false
otherwise.

str.join (iterable)
Return a string which is the concatenation of the strings in the iterable iterable. A TypeError will
be raised if there are any non-string values in iterable, including bytes objects. The separator between
elements is the string providing this method.

str.ljust (width[,ﬁllchar])
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1en (s).

str.lower ()
Return a copy of the string with all the cased characters # converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.lstrip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious ".1strip ()
'spacious
>>> 'www.example.com'.lstrip('cmowz.")
'example.com'

static st r .maketrans (x[, y[, z]])
This static method returns a translation table usable for str.translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters
(strings of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be
converted to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each char-
acter in X will be mapped to the character at the same position in y. If there is a third argument, it must be a
string, whose characters will be mapped to None in the result.

str.partition (sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
the string itself, followed by two empty strings.

4.7. Text Sequence Type — str 41

The Python Library Reference, Release 3.5.0

str

str.

str.

str.

str.

str

str

str.

.replace (old, new[, count])

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

rfind (sub[, start[, end]])

Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return —1 on
failure.

rindex (sub[, start[, end]])
Like rfind () butraises ValueError when the substring sub is not found.

rjust (width[,ﬁllchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar
(default is an ASCII space). The original string is returned if width is less than or equal to len (s) .

rpartition (sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
two empty strings, followed by the string itself.

.rsplit (sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator.
Except for splitting from the right, rsplit () behaves like split () which is described in detail below.

.rstrip([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.rstrip()

! spacious'

>>> 'mississippi'.rstrip('ipz'")
'mississ'

split (sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1,
then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, ' 1,2’ .split (’,’) returns ["1’, 7', ’'2’]). The sep argument may consist of multiple
characters (for example, ’ 1<>2<>37 . split (/<>") returns [' 17, ’2’, ’3’1]). Splitting an empty
string with a specified separator returns [’].

For example:

>>> '1,2,3".split (', ")

[ll‘, l2l, 13']

>>> '1,2,3".split (', "', maxsplit=1)
[ll‘, V2’3l]

>>> '1,2,,3,".split (', ")

[lll, l2', ll, |3l, l']

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the string
has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just
whitespace with a None separator returns [].

For example:

42

Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

>>> 'l 2 3'.split ()

[lll, l2', '3|]

>>> '] 2 3'.split (maxsplit=1)
[ll‘, V2 3']

>>> ! 1 2 3 '.split ()
['l', l2l, '3']

str.splitlines ([keepends])

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal

newlines.
Representation | Description
\n Line Feed
\r Carriage Return
\r\n Carriage Return + Line Feed
\vor \x0b Line Tabulation
\f or \x0c Form Feed
\xlc File Separator
\x1ld Group Separator
\xle Record Separator
\x85 Next Line (C1 Control Code)
\u2028 Line Separator
\u2029 Paragraph Separator

Changed in version 3.2: \v and \ £ added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines/()

['ab ¢', "', 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
['ab c\n', '\n', 'de fg\r', 'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty
string, and a terminal line break does not result in an extra line:

>>>
[]
>>> "One line\n".splitlines ()
['One line']

""_splitlines()

For comparison, split (’ \n’) gives:

>>> "' split ('\n")

['"l

>>> 'Two lines\n'.split('\n")
['"Two lines', '']

str.startswith (preﬁx[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes
to look for. With optional start, test string beginning at that position. With optional end, stop comparing
string at that position.

str.strip ([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

4.7. Text Sequence Type — str 43

The Python Library Reference, Release 3.5.0

str.

>>> ! spacious ".strip()
'spacious'’

>>> 'www.example.com'.strip('cmowz.")
'example'

The outermost leading and trailing chars argument values are stripped from the string. Characters are
removed from the leading end until reaching a string character that is not contained in the set of characters
in chars. A similar action takes place on the trailing end. For example:

>>> comment_string = "#....... Section 3.2.1 Issue #32
>>> comment_string.strip('.#! ")
'Section 3.2.1 Issue #32'

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is
not necessarily true that s . swapcase () . swapcase () == s.

str.title()

Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

For example:

>>> 'Hello world'.title()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters.
The definition works in many contexts but it means that apostrophes in contractions and possessives form
word boundaries, which may not be the desired result:

>>> "they're bill's friends from the UK".title ()
"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r" [A-Za-z]+ (' [A-Za-z]+
lambda mo: mo.group(0) [0] .upper () +
mo.group (0) [1:].lower (),

)2,

s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate (table)

Return a copy of the string in which each character has been mapped through the given translation table. The
table must be an object that implements indexing via___getitem__ (), typically a mapping or sequence.
When indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a
Unicode ordinal or a string, to map the character to one or more other characters; return None, to delete the
character from the return string; or raise a LookupError exception, to map the character to itself.

You can use str.maketrans () to create a translation map from character-to-character mappings in
different formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper ()

Return a copy of the string with all the cased characters * converted to uppercase. Note that

str.upper () .isupper () might be False if s contains uncased characters or if the Unicode cat-
egory of the resulting character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

44

Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.z£ill (width)
Return a copy of the string left filled with ASCII ’ 0’ digits to make a string of length width. A leading
sign prefix (* +’/’ -’) is handled by inserting the padding after the sign character rather than before. The
original string is returned if width is less than or equal to 1en (s).

For example:
>>> "42" z£f111(5)
'00042"

>>> "-42" z£fil1l (5)
'-0042"

4.7.2 print£-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). Using the newer str.format () interface helps

avoid these errors, and also provides a generally more powerful, flexible and extensible approach to formatting
text.

String objects have one unique built-in operation: the $ operator (modulo). This is also known as the string format-
ting or interpolation operator. Given format % values (where format is a string), $ conversion specifications
in format are replaced with zero or more elements of values. The effect is similar to using the sprint £ () in the
C language.

If format requires a single argument, values may be a single non-tuple object. * Otherwise, values must be a
tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

1. The " %’ character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ’ =’ (asterisk), the actual width is read from the next
element of the tuple in values, and the object to convert comes after the minimum field width and optional
precision.

5. Precision (optional), given as a .’ (dot) followed by the precision. If specified as ’ =’ (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after
the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the %’ character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print ('$ (language)s has % (number)03d quote types.' %
Ce. {'"language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

4 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.7. Text Sequence Type — str 45

The Python Library Reference, Release 3.5.0

Flag | Meaning

& 24 The value conversion will use the “alternate form” (where defined below).

"0’ | The conversion will be zero padded for numeric values.

" -7 | The converted value is left adjusted (overrides the * 0’ conversion if both are given).
s (a space) A blank should be left before a positive number (or empty string) produced by a signed
conversion.

T4 A sign character (“ +’ or ’ -) will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is
identical to $d.

The conversion types are:

Conver- | Meaning Notes

sion

ra’ Signed integer decimal.

rir Signed integer decimal.

"o’ Signed octal value. (D)

ru’ Obsolete type — it is identical to * d” . @)

rx’ Signed hexadecimal (lowercase). 2)

¢ Signed hexadecimal (uppercase). 2)

ref Floating point exponential format (lowercase). 3)

"B’ Floating point exponential format (uppercase). 3)

rfr Floating point decimal format. 3)

"E’ Floating point decimal format. 3)

rg’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

rG’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

el Single character (accepts integer or single character string).

i String (converts any Python object using repr ()). 5)

rs’ String (converts any Python object using str ()). o)

ra’ String (converts any Python object using ascii ()). o)

"% No argument is converted, results in a * $’ character in the result.

Notes:

1. The alternate form causes a leading zero (* 0’) to be inserted between left-hand padding and the formatting
of the number if the leading character of the result is not already a zero.

2. The alternate form causes a leading ’ Ox’ or ' 0X’ (depending on whether the ’ x’ or ' X’ format was
used) to be inserted between left-hand padding and the formatting of the number if the leading character of
the result is not already a zero.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed
as they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to

6.

5. If precision is N, the output is truncated to N characters.

7. See PEP 237.

Since Python strings have an explicit length, $s conversions do not assume that * \ 0’ is the end of the string.

Changed in version 3.1: £ conversions for numbers whose absolute value is over 1e50 are no longer replaced by
%g conversions.

46

Chapter 4. Built-in Types

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.5.0

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by
memoryview which uses the buffer protocol to access the memory of other binary objects without needing
to make a copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-
precision floating values.

4.8.1 Bytes

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII
text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data
and are closely related to string objects in a variety of other ways.

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:
» Single quotes: b’ still allows embedded "double" quotes’
* Double quotes: b"still allows embedded ’single’ quotes".
 Triple quoted: b’’’ 3 single quotes’’’,b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any
binary values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See strings
for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to violate
this restriction will trigger ValueError. This is done deliberately to emphasise that while many binary formats
include ASCII based elements and can be usefully manipulated with some text-oriented algorithms, this is not
generally the case for arbitrary binary data (blindly applying text processing algorithms to binary data formats that
are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
* A zero-filled bytes object of a specified length: bytes (10)
* From an iterable of integers: bytes (range (20))
» Copying existing binary data via the buffer protocol: bytes (ob7)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytes type has an additional class method to read data in that
format:

classmethod bytes . fromhex (string)
This bytes class method returns a bytes object, decoding the given string object. The string must contain
two hexadecimal digits per byte, with ASCII spaces being ignored.

>>> bytes.fromhex ('2Ef0 F1£f2 ")

b' A\xfO\xfl\xf2"'
A reverse conversion function exists to transform a bytes object into its hexadecimal representation.
bytes.hex ()

Return a string object containing two hexadecimal digits for each byte in the instance.

>>> pb'\xfO\x£f1\x£f2' . hex ()
'fOf1£2"

4.8. Binary Sequence Types — bytes, bytearray, memoryview 47

The Python Library Reference, Release 3.5.0

New in version 3.5.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b [0] will be an integer, while
b[0:1] will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytes objects uses the literal format (b’ . ..’) since it is often more useful than e.g.
bytes ([46, 46, 46]). You can always convert a bytes object into a list of integers using 1ist (b).

Note: For Python 2.x users: In the Python 2.x series, a variety of implicit conversions between 8-bit strings (the
closest thing 2.x offers to a built-in binary data type) and Unicode strings were permitted. This was a backwards

compatibility workaround to account for the fact that Python originally only supported 8-bit text, and Unicode text
was a later addition. In Python 3.x, those implicit conversions are gone - conversions between 8-bit binary data
and Unicode text must be explicit, and bytes and string objects will always compare unequal.

4.8.2 Bytearray Objects
bytearray objects are a mutable counterpart to bytes objects. There is no dedicated literal syntax for bytear-
ray objects, instead they are always created by calling the constructor:

* Creating an empty instance: bytearray ()

 Creating a zero-filled instance with a given length: bytearray (10)

* From an iterable of integers: bytearray (range (20))

» Copying existing binary data via the buffer protocol: bytearray (b’ Hi!’)

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common bytes
and bytearray operations described in Bytes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytearray type has an additional class method to read data in
that format:

classmethod bytearray . fromhex (string)
This bytearray class method returns bytearray object, decoding the given string object. The string must
contain two hexadecimal digits per byte, with ASCII spaces being ignored.

>>> bytearray.fromhex ('2Ef0 F1f2 ')
bytearray (b' . \xf0\xfl\xf2")

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.
bytearray.hex ()

Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray (b'\x£f0\xf1\x£f2') .hex ()
'fOf1£2!

New in version 3.5.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b [0] will be an integer,
while b [0:1] will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and
slicing will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (oytearray (b’ ...’)) since it is often
more useful than e.g. bytearray ([46, 46, 46]). You can always convert a bytearray object into a list of
integers using 1ist (b).

48 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with
operands of the same type, but with any byres-like object. Due to this flexibility, they can be freely mixed in
operations without causing errors. However, the return type of the result may depend on the order of operands.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on
strings don’t accept bytes as their arguments. For example, you have to write:

a = "abc"
b = a.replace("a", "f")

a = b"abc"
b = a.replace (b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be
avoided when working with arbitrary binary data. These restrictions are covered below.

Note: Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format
may lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.

bytes.count (sub[, start[, end]])

bytearray.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

The subsequence to search for may be any byzes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.decode (encoding="utf-8”, errors="strict”)

bytearray.decode (encoding="utf-8”, errors="strict”)
Return a string decoded from the given bytes. Default encoding is ut £-8' . errors may be given to set a
different error handling scheme. The default for errors is * strict’, meaning that encoding errors raise a
UnicodeError. Other possible values are * ignore’, ' replace’ and any other name registered via
codecs.register_error (), see section Error Handlers. For a list of possible encodings, see section
Standard Encodings.

Note: Passing the encoding argument to str allows decoding any bytes-like object directly, without
needing to make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

bytes.endswith (su]ﬁx[, start[, end]])

bytearray.endswith (suﬁ‘ix[, start[, end]])
Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be
a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The suffix(es) to search for may be any bytes-like object.

bytes.find (sub[, start[, end]])

bytearray.find (sub[, start[, end]])
Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the
slice s [start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if
sub is not found.

The subsequence to search for may be any byzes-like object or an integer in the range 0 to 255.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 49

The Python Library Reference, Release 3.5.0

Note: The find () method should be used only if you need to know the position of sub. To check if sub
is a substring or not, use the in operator:

>>> pb'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.index (sub[, start[, end])
bytearray.index (sub[, start|, end]])
Like £ind (), but raise ValueError when the subsequence is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes. join (iterable)

bytearray. join (iterable)
Return a bytes or bytearray object which is the concatenation of the binary data sequences in the iterable
iterable. A TypeError will be raised if there are any values in iferable that are not bytes-like objects,
including str objects. The separator between elements is the contents of the bytes or bytearray object
providing this method.

static bytes.maketrans (from, to)

static bytearray.maketrans (from, to)
This static method returns a translation table usable for bytes.translate () that will map each char-
acter in from into the character at the same position in to; from and to must both be bytes-like objects and
have the same length.

New in version 3.1.

bytes.partition (sep)

bytearray.partition (sep)
Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator, and the part after the separator. If the separator is not found, return a 3-tuple containing a copy
of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.replace (0ld, new[, count])

bytearray.replace (old, new[, count])
Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

bytes.rfind (sub[, start[, end]])

bytearray.rfind (sub[, start[, end]])
Return the highest index in the sequence where the subsequence sub is found, such that sub is contained
within s [start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1
on failure.

The subsequence to search for may be any byzes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.rindex (sub[, start[, end]])
bytearray.rindex (sub[, start[, end]])
Like rfind () butraises ValueError when the subsequence sub is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

50 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.rpartition (sep)

bytearray.rpartition (sep)
Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator, and the part after the separator. If the separator is not found, return a 3-tuple containing a
copy of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.startswith (preﬁx[, start[, end]])

bytearray.startswith (preﬁx[, start[, end]])
Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also be
a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The prefix(es) to search for may be any bytes-like object.

bytes.translate (table[, delete])

bytearray.translate (table[, delete])
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a
bytes object of length 256.

You can use the bytes.maketrans () method to create a translation table.

Set the table argument to None for translations that only delete characters:

>>> b'read this short text'.translate (None, b'aeiou')
b'rd ths shrt txt'

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII
compatible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note
that all of the bytearray methods in this section do not operate in place, and instead produce new objects.

bytes.center (width[,ﬁllbyte])

bytearray.center (width[,ﬁllbyte])
Return a copy of the object centered in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if width is less
than or equal to len (s).

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

bytes.ljust (width[,ﬁllbyte])

bytearray.ljust (width[,ﬁllbyte])
Return a copy of the object left justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if widrh is less
than or equal to len (s).

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

bytes.lstrip([chars])

bytearray.lstrip ([chars])
Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary se-
quence specifying the set of byte values to be removed - the name refers to the fact this method is usually
used with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whites-
pace. The chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> b' spacious ".lstrip()
b'spacious !

4.8. Binary Sequence Types — bytes, bytearray, memoryview 51

The Python Library Reference, Release 3.5.0

>>> b'www.example.com'.lstrip(b'cmowz.")
b'example.com'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

bytes.rjust (width[,ﬁllbyte])
bytearray.rjust (width[,ﬁllbyte])

Return a copy of the object right justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if width is less
than or equal to len (s).

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

bytes.rsplit (sep=None, maxsplit=-1)
bytearray.rsplit (sep=None, maxsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is
given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or None, any subsequence
consisting solely of ASCII whitespace is a separator. Except for splitting from the right, rsplit () behaves
like split () which is described in detail below.

bytes.rstrip ([chars])
bytearray.rstrip ([chars])

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary se-
quence specifying the set of byte values to be removed - the name refers to the fact this method is usually
used with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whites-
pace. The chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> b spacious !
b' spacious'

>>> b'mississippi'.rstrip(b'ipz'")
b'mississ'

.rstrip()

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

bytes.split (sep=None, maxsplit=-1)
bytearray.split (sep=None, maxsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit
is given and non-negative, at most maxsplit splits are done (thus, the list will have at most maxsplit+1
elements). If maxsplit is not specified or is —1, then there is no limit on the number of splits (all possible
splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty
subsequences (for example, b’ 1,2’ .split (b’ ,’) returns [b’1’, b’’, b’2’]). The sep ar-
gument may consist of a multibyte sequence (for example, b’ 1<>2<>3’ .split (b’ <>’) returns
[b’1", b’2", b’3771). Splitting an empty sequence with a specified separator returns [b’’] or
[bytearray (b’ ")] depending on the type of object being split. The sep argument may be any byzes-like
object.

For example:

>>> b'l,2,3".split(b', ")
(b'1', b'2', b'3"]

52

Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

>>> b'l,2,3".split(b', "', maxsplit=1)
[b'1', b'2,3"]

>>> b'l,2,,3,".split (b", ")

[bll‘, b'2', bl', bl3', b‘l}

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII
whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end
if the sequence has leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence
consisting solely of ASCII whitespace without a specified separator returns [].

For example:

>>> b'l 2 3'".split ()

[b'1', b'2', b'3"]

>>> b'l 2 3'.split (maxsplit=1)
[b'1', b'2 3']

>>> b' 1 2 3 '.split ()
[b'1', b'2'", b'3"]

bytes.strip ([chars])

bytearray.strip([chars])
Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a
binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is
usually used with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> D! spacious '.strip()
b'spacious'

>>> b'www.example.com'.strip(b'cmowz.")
b'example'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and
should not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate
in place, and instead produce new objects.

bytes.capitalize ()

bytearray.capitalize ()
Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized
and the rest lowercased. Non-ASCII byte values are passed through unchanged.

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

bytes.expandtabs (tabsize=8)

bytearray.expandtabs (fabsize=38)
Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces,
depending on the current column and the given tab size. Tab positions occur every tabsize bytes (default is
8, giving tab positions at columns 0, 8, 16 and so on). To expand the sequence, the current column is set
to zero and the sequence is examined byte by byte. If the byte is an ASCII tab character (b’ \t’), one or
more space characters are inserted in the result until the current column is equal to the next tab position.
(The tab character itself is not copied.) If the current byte is an ASCII newline (b’ \n’) or carriage return
(b" \r"),itis copied and the current column is reset to zero. Any other byte value is copied unchanged and
the current column is incremented by one regardless of how the byte value is represented when printed:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 53

The Python Library Reference, Release 3.5.0

>>> b'0I\t012\t0123\t01234"' .expandtabs ()

b'01 012 0123 01234"
>>> b'01\t012\t0123\t01234" .expandtabs (4)
b'0l 012 0123 01234"

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

bytes.isalnum()
bytearray.isalnum()

Return true if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and
the sequence is not empty, false otherwise. Alphabetic ASCII characters are those byte values in the se-
quence b’ abcdefghi jklmnopgrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ’ . ASCII decimal
digits are those byte values in the sequence b’ 0123456789 .

For example

>>> b'ABCabcl'.isalnum{()
True
>>> b'ABC abcl'.isalnum()
False

bytes.isalpha ()
bytearray.isalpha ()

Return true if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, false otherwise. Alphabetic ASCII characters are those byte values in the sequence
b’ abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' .

For example:

>>> b'ABCabc'.isalpha()
True
>>> pb'ABCabcl'.isalpha()
False

bytes.isdigit ()
bytearray.isdigit ()

Return true if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, false
otherwise. ASCII decimal digits are those byte values in the sequence b’ 0123456789".

For example:

>>> pb'1234" . isdigit ()
True
>>> pb'1.23"'.isdigit ()
False

bytes.islower ()
bytearray.islower ()

Return true if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII
characters, false otherwise.

For example:

>>> b'hello world'.islower ()
True
>>> b'Hello world'.islower ()
False

54

Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

Lowercase ASCII characters are those byte values in the sequence
b’ abcdefghijklmnopgrstuvwxyz’. Uppercase ASCII characters are those byte values in the
sequence b’ ABCDEFGHIJKLMNOPQRSTUVWXYZ"' .

bytes.isspace ()

bytearray.isspace ()
Return true if all bytes in the sequence are ASCII whitespace and the sequence is not empty, false otherwise.
ASCII whitespace characters are those byte values in the sequence b’ tnrxObf” (space, tab, newline, carriage
return, vertical tab, form feed).

bytes.istitle()

bytearray.istitle ()
Return true if the sequence is ASCII titlecase and the sequence is not empty, false otherwise. See
bytes.title () for more details on the definition of “titlecase”.

For example:

>>> b'Hello World'.istitle()
True
>>> b'Hello world'.istitle()
False

bytes.isupper ()

bytearray.isupper ()
Return true if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase
ASCII characters, false otherwise.

For example:

>>> b'HELLO WORLD'.isupper ()

True

>>> b'Hello world'.isupper ()

False

Lowercase ASCII characters are those byte values in the sequence

b’ abcdefghijklmnopgrstuvwxyz’. Uppercase ASCII characters are those byte values in the
sequence b’ ABCDEFGHIJKLMNOPQRSTUVWXYZ"' .

bytes.lower ()

bytearray.lower ()
Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding
lowercase counterpart.

For example:

>>> b'Hello World'.lower ()
b'hello world'

Lowercase ASCII characters are those byte values in the sequence
b’ abcdefghijklmnopgrstuvwxyz’. Uppercase ASCII characters are those byte values in the
sequence b’ ABCDEFGHIJKLMNOPQRSTUVWXYZ' .

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

bytes.splitlines (keepends=False)

bytearray.splitlines (keepends=False)
Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses
the universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless
keepends is given and true.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 55

The Python Library Reference, Release 3.5.0

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines/()

[b'ab c¢', b''", b'de fg', b'kl"']

>>> pb'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty
string, and a terminal line break does not result in an extra line:

>>> b"" . split(b'\n'), b"Two lines\n".split(b'\n")
(['"'], [b'Two lines', b''])

>>> b"" . splitlines (), b"One line\n".splitlines ()
([1, [O'One line'])

bytes.swapcase ()
bytearray.swapcase ()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding
uppercase counterpart and vice-versa.

For example:

>>> b'Hello World'.swapcase ()
b'hELLO wORLD'

Lowercase ASCII characters are those byte values in the sequence
b’ abcdefghijklmnopgrstuvwxyz’. Uppercase ASCII characters are those byte values in the
sequence b’ ABCDEFGHIJKLMNOPQRSTUVWXYZ' .

Unlike str.swapcase (), it is always the case that bin.swapcase () .swapcase () == bin for
the binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for
arbitrary Unicode code points.

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

bytes.title()
bytearray.title()

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and
the remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()
b'Hello World'

Lowercase ASCII characters are those byte values in the sequence
b’ abcdefghijklmnopgrstuvwxyz’. Uppercase ASCII characters are those byte values in the
sequence b’ ABCDEFGHIJKLMNOPQRSTUVWXYZ’ . All other byte values are uncased.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters.
The definition works in many contexts but it means that apostrophes in contractions and possessives form
word boundaries, which may not be the desired result:

>>> b"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

56

Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

>>> import re
>>> def titlecase(s):
return re.sub(rb"[A-Za-z]+ (' [A-Za—-z]+)
lambda mo: mo.group(0) [0
mo.group (0) [1

?H,
1] .upper() +
].lower (),

s)

>>> titlecase(b"they're bill's friends.")
b"They're Bill's Friends."

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

bytes.upper ()

bytearray.upper ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding
uppercase counterpart.

For example:

>>> pb'Hello World'.upper/()
b'"HELLO WORLD'

Lowercase ASCII characters are those byte values in the sequence
b’ abcdefghijklmnopgrstuvwxyz’. Uppercase ASCII characters are those byte values in the
sequence b’ ABCDEFGHIJKLMNOPQRSTUVWXYZ"' .

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

bytes.z£ill (width)

bytearray.z£ill (width)
Return a copy of the sequence left filled with ASCII b’ 0/ digits to make a sequence of length width. A
leading sign prefix (b’ +’/ b’ -’ is handled by inserting the padding affer the sign character rather than
before. For bytes objects, the original sequence is returned if width is less than or equal to 1len (seq) .

For example:

>>> p"42" . z£fi11 (5)
b'0o0042"
>>> p"-42" . z£fi11(5)
b'-0042"

Note: The bytearray version of this method does not operate in place - it always produces a new object,
even if no changes were made.

4.8.4 printf-style Bytes Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common
errors (such as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or

dictionary, wrap it in a tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also
known as the bytes formatting or interpolation operator. Given format % values (where format is a bytes
object), % conversion specifications in format are replaced with zero or more elements of values. The effect is
similar to using the sprintf () in the C language.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 57

The Python Library Reference, Release 3.5.0

If format requires a single argument, values may be a single non-tuple object. 3 Otherwise, values must be a tuple
with exactly the number of items specified by the format bytes object, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

1. The * %’ character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ’ =’ (asterisk), the actual width is read from the next
element of the tuple in values, and the object to convert comes after the minimum field width and optional
precision.

5. Precision (optional), given as a * .’ (dot) followed by the precision. If specified as ’ «’ (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after
the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include
a parenthesised mapping key into that dictionary inserted immediately after the ’ $’ character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print (b'%$ (language)s has % (number)03d quote types.' %
ce . {b'language': b"Python", b"number": 2})
b'Python has 002 quote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

" The value conversion will use the “alternate form” (where defined below).

"0’ The conversion will be zero padded for numeric values.

" —7 | The converted value is left adjusted (overrides the * 0’ conversion if both are given).

s (a space) A blank should be left before a positive number (or empty string) produced by a signed
conversion.

"4 A sign character (“ +’ or ’ -) will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is
identical to $d.

The conversion types are:

58 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

Conver- | Meaning Notes

sion

rd’ Signed integer decimal.

rir Signed integer decimal.

"o’ Signed octal value. 1)

ru’ Obsolete type — it is identical to * d’ . ®)

rx’ Signed hexadecimal (lowercase). 2)

rxX’ Signed hexadecimal (uppercase). 2)

re’ Floating point exponential format (lowercase). 3)

"E’ Floating point exponential format (uppercase). 3)

i Floating point decimal format. 3)

"E’ Floating point decimal format. 3)

rg’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

"G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

el Single byte (accepts integer or single byte objects).

"o’ Bytes (any object that follows the buffer protocol or has __bytes__ ()).)

"s’ " s’ is an alias for ' b’ and should only be used for Python2/3 code bases. (6)

ra’ Bytes (converts any Python object using 4)
repr (obj) .encode ("ascii’, ’backslashreplace)).

"¢’ "r’ is an alias for * a’ and should only be used for Python2/3 code bases. @)

T No argument is converted, results in a * $’ character in the result.

Notes
1. The alternate form causes a leading zero (* 0) to be inserted between left-hand padding and the formatting

5
6.
7
8

of the number if the leading character of the result is not already a zero.

The alternate form causes a leading ’ Ox’ or ' 0X’ (depending on whether the ’ x’ or ’ X’ format was
used) to be inserted between left-hand padding and the formatting of the number if the leading character of
the result is not already a zero.

The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed
as they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to
6.

. If precision is N, the output is truncated to N characters.

b’ %s’ is deprecated, but will not be removed during the 3.x series.

. b’ %r’ is deprecated, but will not be removed during the 3.x series.

. See PEP 237.

Note:

The bytearray version of this method does not operate in place - it always produces a new object, even if

no changes were made.

See also:

PEP 461.

New in version 3.5.

4.8.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 59

http://www.python.org/dev/peps/pep-0237
http://www.python.org/dev/peps/pep-0461

The Python Library Reference, Release 3.5.0

class memoryview (0bj)

Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that
support the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object obj. For many simple types such as bytes and bytearray, an element is a single byte, but other
types such as array.array may have bigger elements.

len (view) isequal to the length of tolist. If view.ndim = 0, the lengthis 1. If view.ndim =
1, the length is equal to the number of elements in the view. For higher dimensions, the length is equal to
the length of the nested list representation of the view. The itemsize attribute will give you the number
of bytes in a single element.

A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in a
subview:

>>> v = memoryview (b'abcefg')
>>> v[1l]

98

>>> v[-1]

103

>>> v[l:4]

<memory at 0x7f£3ddc9f4350>
>>> bytes(v[1:4])

b'bce'

If format is one of the native format specifiers from the st ruct module, indexing with an integer or
a tuple of integers is also supported and returns a single element with the correct type. One-dimensional
memoryviews can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can
be indexed with tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional
memoryviews can be indexed with the empty tuple.

Here is an example with a non-byte format:

>>> import array

>>> a = array.array('l', [-11111111, 22222222, -33333333, 444444447])
>>> m = memoryview(a)

>>> m[0]

-11111111

>>> m[—-1]

44444444

>>> mf[::2].tolist ()

[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing
is not allowed:

>>> data = bytearray (b'abcefg')

>>> v = memoryview (data)

>>> v.readonly

False

>>> v[0] = ord(b'z")

>>> data

bytearray (b'zbcefg')

>>> v[1:4] = b'123"

>>> data

bytearray(b'z123fg")

>>> v[2:3] = b'spam'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

60

Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

ValueError: memoryview assignment: lvalue and rvalue have different structures
>>> v[2:6] = b'spam'

>>> data

bytearray(b'zlspam')

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable.

The hash is defined as hash (m) == hash (m.tobytes()):
>>> v = memoryview (b'abcefg')

>>> hash(v) == hash(b'abcefg')

True

>>> hash(v[2:4]) == hash(b'ce'")

True

>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memoryviews
with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3.4: memoryview is now registered automatically = with
collections.abc.Sequence

Changed in version 3.5: memoryviews can now be indexed with tuple of integers.

memoryview has several methods:

__eq__ (exporter)
A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corre-
sponding values are equal when the operands’ respective format codes are interpreted using st ruct
syntax.

For the subset of st ruct format strings currently supported by tolist (), v and w are equal if
v.tolist () == w.tolist ():

>>> import array

>>> a = array.array('T', [1, 2, 3, 4, 51)

>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.01)
>>> ¢ = array.array('b', [5, 3, 11])

>>> x = memoryview(a)

>>> y = memoryview (b)

>>> x == a == y ==

True

>>> x.tolist () == a.tolist () == y.tolist () == b.tolist ()
True

>>> z = y[::-2]

>>> 7 == C

True

>>> z.tolist () == c.tolist ()

True

If either format string is not supported by the st ruct module, then the objects will always compare
as unequal (even if the format strings and buffer contents are identical):

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint (BigEndianStructure) :

fields = [("x", c_long), ("y", c_long)]

>>> point = BEPoint (100, 200)

>>> a = memoryview (point)
>>> b = memoryview (point)
>>> a == point

4.8. Binary Sequence Types — bytes, bytearray, memoryview 61

http://www.python.org/dev/peps/pep-3118

The Python Library Reference, Release 3.5.0

False
>>> g ==
False

Note that, as with floating point numbers, v is w does nof imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format
and the logical array structure.

tobytes ()

Return the data in the buffer as a bytestring. This is equivalent to calling the bytes constructor on
the memoryview.

>>> m = memoryview (b"abc")
>>> m.tobytes ()

b'abc'

>>> bytes (m)

b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements con-
verted to bytes. tobytes () supports all format strings, including those that are not in struct
module syntax.

hex ()

Return a string object containing two hexadecimal digits for each byte in the buffer.
>>> m = memoryview (b"abc")
>>> m.hex ()

'616263"

New in version 3.5.

tolist ()

Return the data in the buffer as a list of elements.

>>> memoryview(b'abc') .tolist ()

[97, 98, 99]

>>> import array

>>> a = array.array('d', [1.1, 2.2, 3.31)

>>> m = memoryview (a)
>>> m.tolist ()
(1.1, 2.2, 3.3]

Changed in version 3.3: tolist () now supports all single character native formats in struct
module syntax as well as multi-dimensional representations.

release ()

Release the underlying buffer exposed by the memoryview object. Many objects take special actions
when a view is held on them (for example, a bytearray would temporarily forbid resizing); there-
fore, calling release() is handy to remove these restrictions (and free any dangling resources) as soon
as possible.

After this method has been called, any further operation on the view raises a ValueError (except
release () itself which can be called multiple times):

>>> m = memoryview (b'abc')
>>> m.release ()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

62

Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview(b'abc') as m:
m([0]

97

>>> m[0]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.

cast Ubnnad;shape])
Cast a memoryview to a new format or shape. shape defaults to
[byte_length//new_itemsize], which means that the result view will be one-dimensional.
The return value is a new memoryview, but the buffer itself is not copied. Supported casts are 1D ->
C-contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in st ruct syntax. One of the
formats must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the
original length.

Cast 1D/long to 1D/unsigned bytes:

>>> import array

>>> a = array.array('l', [1,2,3])
>>> x = memoryview (a)

>>> x.format

lll

>>> x.itemsize

8

>>> len (X)

>>> x.nbytes
24

>>> y = x.cast('B")
>>> y.format
IBI

>>> y.itemsize
1

>>> len(y)

24

>>> y.nbytes
24

Cast 1D/unsigned bytes to 1D/char:

>>> b = bytearray(b'zyz')
>>> x = memoryview (b)
>>> x[0] = b'a'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview: invalid value for format "B"

>>> y = x.cast('c')
>>> y[0] = b'a'
>>> Db

bytearray(b'ayz"')

Cast 1D/bytes to 3D/ints to 1D/signed char:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.5.0

>>> import struct

>>> pbuf = struct.pack ("i"x12, =*list(range(12)))
>>> x = memoryview (buf)

>>> y = x.cast('1', shape=[2,2,3])

>>> y.tolist ()

(rro, 1, 21, I3, 4, 511, I[le, 7, 81, [9, 10, 11111
>>> y.format

>>> y.itemsize
>>> len(y)

>>> y.nbytes

v
v
v
N

= y.cast('b")
.format

v
v
v
N

>>> z.ltemsize

>>> len(z)
48

>>> z.nbytes
48

Cast 1D/unsigned char to 2D/unsigned long:

>>> buf = struct.pack("L"x6, =list(range(6)))
>>> x = memoryview (buf)

>>> vy = x.cast('L', shape=[2,3])

>>> len(y)

2

>>> y.nbytes

48

>>> y.tolist ()

(o, 1, 21, 3, 4, 51]

New in version 3.3.

Changed in version 3.5: The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available:

obj

The underlying object of the memoryview:

>>> b = bytearray(b'xyz"')
>>> m = memoryview (b)

>>> m.obj is b

True

New in version 3.3.

nbytes

nbytes == product (shape) * itemsize == len (m.tobytes()). This is the
amount of space in bytes that the array would use in a contiguous representation. It is not neces-
sarily equal to len(m):

>>> import array
>>> a = array.array('i', [1,2,3,4,5])
>>> m = memoryview(a)

64

Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

>>> len (m)

5

>>> m.nbytes

20

>>> y = m[::2]

>>> len(y)

3

>>> y.nbytes

12

>>> len (y.tobytes())
12

Multi-dimensional arrays:

>>> import struct

>>> buf = struct.pack("d"x12, *[1l.5xx for x in range(12)])

>>> x = memoryview (buf)

>>> y = x.cast('d', shape=[3,4])

>>> y.tolist ()

(ro.0, 1.5, 3.0, 4.5, [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]1]
>>> len(y)

3

>>> y.nbytes

96

New in version 3.3.

readonly
A bool indicating whether the memory is read only.

format
A string containing the format (in st ruct module style) for each element in the view. A memoryview
can be created from exporters with arbitrary format strings, but some methods (e.g. tolist ()) are
restricted to native single element formats.

Changed in version 3.3: format ’ B’ is now handled according to the struct module syntax. This means
that memoryview (b’ abc’) [0] == b’abc’ [0] == 97.

itemsize
The size in bytes of each element of the memoryview:

>>> import array, struct

>>> m = memoryview(array.array ('H', [32000, 32001, 320021))
>>> m.itemsize

2

>>> m[0]

32000

>>> struct.calcsize('H') == m.itemsize

True

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimen-
sion of the array.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 65

The Python Library Reference, Release 3.5.0

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets
Used internally for PIL-style arrays. The value is informational only.

c_contiguous
A bool indicating whether the memory is C-contiguous.

New in version 3.3.

f_contiguous
A bool indicating whether the memory is Fortran contiguous.

New in version 3.3.

contiguous
A bool indicating whether the memory is contiguous.

New in version 3.3.

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, differ-
ence, and symmetric difference. (For other containers see the built-in dict, 1ist, and tuple classes, and the
collections module.)

Like other collections, sets support x in set, len(set),and for x in set. Being an unordered collec-
tion, sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing,
or other sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can
be changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be
used as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable
— its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of
another set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {’ jack’, ’sJjoerd’},in addition to the set constructor.

The constructors for both classes work the same:

class set ([iterable])

class frozenset ([iterable])
Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified,
a new empty set is returned.

Instances of set and frozenset provide the following operations:

len (s)

Return the cardinality of set s.
x in s

Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

issubset (other)

66 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a proper superset of other, thatis, set >= other and set != other.

union (other, ...)
set | other |
Return a new set with elements from the set and all others.

intersection (other,...)
set & other &
Return a new set with elements common to the set and all others.

difference (other,...)
set - other -
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set * other
Return a new set with elements in either the set or other but not both.

copy ()
Return a new set with a shallow copy of s.

Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any it-
erable as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set ("abc’) & ’cbs’ in favor of the more readable
set ("abc’) .intersection (' cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and only
if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another
set if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For ex-
ample, set (’abc’) == frozenset (’abc’) returns True and so does set (‘abc’) in
set ([frozenset ("abc’)]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any two
nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return False:
a<b, a==b, or a>b.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with f rozenset return the type of the first operand. For exam-
ple: frozenset (“ab’) | set (’bc’) returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of
frozenset:

update (other, ...)
set |= other |
Update the set, adding elements from all others.

intersection_update (other,...)

4.9. Set Types — set, frozenset 67

The Python Library Reference, Release 3.5.0

set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (other,...)
set —-= other |
Update the set, removing elements found in others.

symmetric_difference_update (other)
set ~= other
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update(), intersection_update (),
difference_update (), and symmetric_difference_update () methods will accept
any iterable as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a
set. To support searching for an equivalent frozenset, the elem set is temporarily mutated during the search
and then restored. During the search, the elem set should not be read or mutated since it does not have a
meaningful value.

4.10 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, the dictionary. (For other containers see the built-in 1ist, set, and tuple
classes, and the col lections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists,
dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used as
keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(such as 1 and 1.0) then they can be used interchangeably to index the same dictionary entry. (Note however,
that since computers store floating-point numbers as approximations it is usually unwise to use them as dictionary
keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for ex-
ample: {’ jack’: 4098, ’'sjoerd’: 4127}or {4098: 'Jack’, 4127: ’sjoerd’},orby
the dict constructor.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of key-
word arguments.

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is
a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise,
the positional argument must be an iterable object. Each item in the iterable must itself be an iterable with
exactly two objects. The first object of each item becomes a key in the new dictionary, and the second

68 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

object the corresponding value. If a key occurs more than once, the last value for that key becomes the
corresponding value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created
from the positional argument. If a key being added is already present, the value from the keyword argument
replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2,
"three": 3}:

>>> a = dict (one=1, two=2, three=3)

>>> b = {'one': 1, 'two': 2, 'three': 3}

>>> ¢ = dict(zip(['one', 'two', 'three']l, [1, 2, 31))

>>> d = dict([('two', 2), ('one', 1), ('three', 3)1)

>>> e = dict({'three': 3, 'one': 1, 'two': 2})

>>> g == b == ¢c == d == e

True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers.
Otherwise, any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method ___missing__ () and key is not present, the d [key] operation
calls that method with the key key as argument. The d [key] operation then returns or raises whatever
is returned or raised by the _ _missing__ (key) call. No other operations or methods invoke
__missing__ (). If __missing__ () is not defined, KeyError israised. _ missing__ ()
must be a method; it cannot be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):
.. return 0
>>> ¢ = Counter ()

>>> c['red']

0

>>> c['red'] += 1
>>> c['red']

1

The example above shows part of the implementation of collections.Counter. A different
__missing__ methodisused by collections.defaultdict.

d[key] = value
Set d [key] to value.

del d[key]

Remove d [key] from d. Raises a KeyError if key is not in the map.
key in d

Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

4.10. Mapping Types —dict 69

The Python Library Reference, Release 3.5.0

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (seq[, value])
Create a new dictionary with keys from seq and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None.

get (key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to
None, so that this method never raises a KeyError.

items ()
Return a new view of the dictionary’s items ((key, value) pairs). See the documentation of view
objects.

keys ()
Return a new view of the dictionary’s keys. See the documentation of view objects.

pop (key [, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and
key is not in the dictionary, a KeyError is raised.

popitem ()
Remove and return an arbitrary (key, wvalue) pair from the dictionary.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See the documentation of view objects.

Dictionaries compare equal if and only if they have the same (key, value) pairs. Order comparisons
(‘< ‘<=", *>=", >’)raise TypeError.

See also:

types.MappingProxyType can be used to create a read-only view of a dict.

4.10.1 Dictionary view objects

The objects returned by dict .keys (), dict.values () and dict.items () are view objects. They pro-
vide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects
these changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len(dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, wvalue)) in the dictio-
nary.

70 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

Keys and values are iterated over in an arbitrary order which is non-random, varies across Python im-
plementations, and depends on the dictionary’s history of insertions and deletions. If keys, values and
items views are iterated over with no intervening modifications to the dictionary, the order of items
will directly correspond. This allows the creation of (value, key) pairs using zip (): pairs =
zip(d.values (), d.keys()). Another way to create the same list is pairs = [(v, k) for
(k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a RuntimeError or fail to
iterate over all entries.

X in dictview

Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a
(key, value) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key,
value) pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as
set-like since the entries are generally not unique.) For set-like views, all of the operations defined for the abstract
base class collections.abc. Set are available (for example, ==, <, or *).

An example of dictionary view usage:

>>>
>>>
>>>

>>>
>>>
>>>

>>>
504

>>>
>>>

dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
keys = dishes.keys()
values = dishes.values|()

iteration

n =20

for val in values:
n += val

print (n)

keys and values are iterated over in the same order
list (keys)

['eggs', 'bacon', 'sausage', 'spam']

>>>
(2,

>>>
>>>
>>>
>>>

list (values)
1, 1, 500]

view objects are dynamic and reflect dict changes
del dishes|['eggs']

del dishes|['sausage']

list (keys)

["spam', 'bacon']

>>>
>>>

set operations
keys & {'eggs', 'bacon', 'salad'}

{'bacon'}

>>>

A

keys {'sausage', 'Juice'}

{'"juice', 'sausage', 'bacon', 'spam'}

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is imple-
mented using a pair of methods that allow user-defined classes to define a runtime context that is entered before
the statement body is executed and exited when the statement ends:

contextmanager.__enter__ ()

Enter the runtime context and return either this object or another object related to the runtime context. The

4.11.

Context Manager Types 71

The Python Library Reference, Release 3.5.0

value returned by this method is bound to the identifier in the as clause of with statements using this
context manager.

An example of a context manager that returns itself is a file object. File objects return themselves from
__enter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by
decimal.localcontext (). These managers set the active decimal context to a copy of the origi-
nal decimal context and then return the copy. This allows changes to be made to the current decimal context
in the body of the with statement without affecting code outside the with statement.

contextmanager.__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be
suppressed. If an exception occurred while executing the body of the with statement, the arguments
contain the exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and
continue execution with the statement immediately following the with statement. Otherwise the exception
continues propagating after this method has finished executing. Exceptions that occur during execution of
this method will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value
to indicate that the method completed successfully and does not want to suppress the raised exception. This
allows context management code to easily detect whether or not an __exit__ () method has actually
failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated
specially beyond their implementation of the context management protocol. See the context1ib module for
some examples.

Python’s generators and the contextlib.contextmanager decorator provide a convenient way to imple-
ment these protocols. If a generator function is decorated with the context1lib.contextmanager decorator,
it will return a context manager implementing the necessary __enter__ () and __exit__ () methods, rather
than the iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C
API. Extension types wanting to define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is
negligible.

4.12 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.12.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a
name defined in m‘s symbol table. Module attributes can be assigned to. (Note that the import statement is not,
strictly speaking, an operation on a module object; import foo does not require a module object named foo to
exist, rather it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is ___dict__ . This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignmenttothe ___dict___
attribute is not possible (you can writem.__dict__["a’] = 1,whichdefinesm.a tobe 1, butyou can’twrite
m.__dict__ = {}). Modifying __dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. Ifloaded from a file,
they are written as <module ’os’ from ’/usr/local/lib/pythonX.Y/os.pyc’>.

72 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

4.12.2 Classes and Class Instances

See objects and class for these.

4.12.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-1list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the
same operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.12.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object:
a bound method (also called instance method) object. When called, it will add the self argument to the ar-
gument list. Bound methods have two special read-only attributes: m.___self__ is the object on which the
method operates, and m.___func___is the function implementing the method. Calling m (arg-1, arg-2,

., arg-n) is completely equivalent to callingm.__ func__ (m.__self , arg-1l, arg-2, ...,
arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes
are actually stored on the underlying function object (meth.__ func__), setting method attributes on bound
methods is disallowed. Attempting to set an attribute on a method results in an Att ributeError being raised.
In order to set a method attribute, you need to explicitly set it on the underlying function object:

>>> class C:
def method(self) :
pass
>>> c = C{()
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'method' object has no attribute 'whoami'
>>> c.method.___func__ .whoami = 'my name is method’
>>> c.method.whoami
'my name is method'

See types for more information.

4.12.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the built-in compi le () function and can be extracted from function
objects through their ___code___ attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval ()
built-in functions.

See types for more information.

4.12. Other Built-in Types 73

The Python Library Reference, Release 3.5.0

4.12.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function type ().
There are no special operations on types. The standard module types defines names for all standard built-in

types.

Types are written like this: <class ’int’>.

4.12.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name). type (None) () produces the same singleton.

It is written as None.

4.12.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one
ellipsis object, named E111ipsis (abuilt-in name). type (E11lipsis) () producesthe E11ipsis singleton.

Itis writtenas Ellipsisor....

4.12.9 The Notimplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types they
don’t support. See comparisons for more information. There is exactly one NotImplemented object.
type (NotImplemented) () produces the singleton instance.

It is written as Not Implemented.

4.12.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument
to an arithmetic operator), they behave like the integers O and 1, respectively. The built-in function bool () can
be used to convert any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value
Testing above).

They are written as False and True, respectively.

4.12.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.13 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some
of these are not reported by the dir () built-in function.

object.__dict_
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class___
The class to which a class instance belongs.

74 Chapter 4. Built-in Types

The Python Library Reference, Release 3.5.0

class.__bases_
The tuple of base classes of a class object.

class._ name

The name of the class or type.

class.__qualname_
The qualified name of the class or type.

New in version 3.3.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolu-
tion.

class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It
is called at class instantiation, and its result is stored in ___mro_ .

class.__subclasses_ ()
Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. Example:

>>> int.__ subclasses__ ()
[<class 'bool'>]

4.13. Special Attributes 75

The Python Library Reference, Release 3.5.0

76 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement
with an except clause that mentions a particular class, that clause also handles any exception classes derived
from that class (but not exception classes from which it is derived). Two exception classes that are not related via
subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where men-
tioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of
several items of information (e.g., an error code and a string explaining the code). The associated value is usually
passed as arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to
prevent user code from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to derive
new exceptions from the Exception class or one of its subclasses, and not from BaseException. More
information on defining exceptions is available in the Python Tutorial under tut-userexceptions.

When raising (or re-raising) an exception in an except or finally clause __context__ is automatically
set to the last exception caught; if the new exception is not handled the traceback that is eventually displayed will
include the originating exception(s) and the final exception.

When raising a new exception (rather than using a bare raise to re-raise the exception currently being handled),
the implicit exception context can be supplemented with an explicit cause by using from with raise:

raise new_exc from original_exc

The expression following f rom must be an exception or None. It will be setas ___cause___on the raised excep-
tion. Setting ___cause___ also implicitly sets the ___suppress_context___ attribute to True, so that using
raise new_exc from None effectively replaces the old exception with the new one for display purposes
(e.g. converting KeyError to AttributeError, while leaving the old exception availablein ___context___
for introspection when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the exception
itself. An explicitly chained exception in __cause___ is always shown when present. An implicitly chained
exception in __context___isshownonlyif _ _cause__is None and __suppress_context___is false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the
traceback always shows the last exception that was raised.

5.1 Base classes

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that, use Exception). If st () is called on an instance of this class, the representation of the argument(s)
to the instance are returned, or the empty string when there were no arguments.

77

The Python Library Reference, Release 3.5.0

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like OSError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

with_traceback (1h)
This method sets b as the new traceback for the exception and returns the exception object. It is
usually used in exception handling code like this:

try:

except SomeException:
tb = sys.exc_info() [2]
raise OtherException(...).with_traceback (tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should
also be derived from this class.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError,FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is
invalid: ITndexError, KeyError. This can be raised directly by codecs . lookup ().

5.2 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when the input () function hits an end-of-file condition (EOF) without reading any data. (N.B.:
the io.I0Base.read () and io.IOBase.readline () methods return an empty string when they
hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised
when Python is configured with the ——with-fpectl option, or the WANT_SIGFPE_HANDLER symbol
is defined in the pyconfig.h file.

exception GeneratorExit
Raised when a generator or coroutine 1is closed,; see generator.close() and
coroutine.close (). It directly inherits from BaseException instead of Exception since
it is technically not an error.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import
fails to find a name that is to be imported.

78 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.5.0

The name and path attributes can be set using keyword-only arguments to the constructor. When set they
represent the name of the module that was attempted to be imported and the path to any file which triggered
the exception, respectively.

Changed in version 3.3: Added the name and path attributes.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check
for interrupts is made regularly. The exception inherits from BaseExcept ion so as to not be accidentally
caught by code that catches Except ion and thus prevent the interpreter from exiting.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some ob-
jects). The associated value is a string indicating what kind of (internal) operation ran out of memory. Note
that because of the underlying memory management architecture (C’s malloc () function), the interpreter
may not always be able to completely recover from this situation; it nevertheless raises an exception so that
a stack traceback can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exception Not ImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method.

exception OSError
This exception is raised when a system function returns a system-related error, including I/O failures such
as “file not found” or “disk full” (not for illegal argument types or other incidental errors). Often a subclass
of OSError will actually be raised as described in OS exceptions below. The er rno attribute is a numeric
error code from the C variable errno.

Under Windows, the winerror attribute gives you the native Windows error code. The errno attribute
is then an approximate translation, in POSIX terms, of that native error code.

Under all platforms, the st rerror attribute is the corresponding error message as provided by the oper-
ating system (as formatted by the C functions perror () under POSIX, and FormatMessage () Win-
dows).

For exceptions that involve a file system path (such as open () or os.unlink ()), the exception instance
will contain an additional attribute, £i1ename, which is the file name passed to the function. For functions
that involve two file system paths (such as os . rename ()), the exception instance will contain a second
filename?2 attribute corresponding to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, IOError, WindowsError, VMSError,
socket.error, select.error and mmap.error have been merged into OSError.

Changed in version 3.4: The filename attribute is now the original file name passed to the function,
instead of the name encoded to or decoded from the filesystem encoding. Also, the filename?2 attribute
was added.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for inte-
gers (which would rather raise MemoryError than give up). However, for historical reasons, OverflowEr-
ror is sometimes raised for integers that are outside a required range. Because of the lack of standardization
of floating point exception handling in C, most floating point operations are not checked.

5.2. Concrete exceptions 79

The Python Library Reference, Release 3.5.0

exception RecursionError
This exception is derived from Runt imeError. Itis raised when the interpreter detects that the maximum
recursion depth (see sys.getrecursionlimit ())is exceeded.

New in version 3.5: Previously, a plain Runt imeError was raised.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref .proxy () function, is
used to access an attribute of the referent after it has been garbage collected. For more information on weak
references, see the weakref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong.

exception StopIteration
Raised by built-in function next () and an iferator‘s __next__ () method to signal that there are no
further items produced by the iterator.

The exception object has a single attribute value, which is given as an argument when constructing the
exception, and defaults to None.

When a generator or coroutine function returns, a new StopIteration instance is raised, and the value
returned by the function is used as the value parameter to the constructor of the exception.

If a generator function defined in the presence of a from __ future__ import generator_stop
directive raises StopIteration, it will be converted into a RuntimeError (retaining the
StopIteration asthe new exception’s cause).

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to return a
value.

Changed in version 3.5: Introduced the RuntimeError transformation.

exception StopAsyncIteration
Must be raised by ___anext__ () method of an asynchronous iterator object to stop the iteration.

New in version 3.5.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call
to the built-in functions exec () or eval (), or when reading the initial script or standard input (also
interactively).

Instances of this class have attributes £ilename, l1ineno, offset and text for easier access to the
details. str () of the exception instance returns only the message.

exception IndentationError
Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError
Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of
IndentationError.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreter (sys.version; it is also printed at the start of an interactive Python session),
the exact error message (the exception’s associated value) and if possible the source of the program that
triggered the error.

exception SystemExit
This exception is raised by the sys.exit () function. It inherits from BaseException instead of
Exception so that it is not accidentally caught by code that catches Exception. This allows the ex-
ception to properly propagate up and cause the interpreter to exit. When it is not handled, the Python

80 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.5.0

interpreter exits; no stack traceback is printed. The constructor accepts the same optional argument passed
to sys.exit (). If the value is an integer, it specifies the system exit status (passed to C’s exit () func-
tion); if it is None, the exit status is zero; if it has another type (such as a string), the object’s value is printed
and the exit status is one.

Acallto sys.exit () istranslated into an exception so that clean-up handlers (finally clausesof try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately
(for example, in the child process after a call to os . fork ()).

code
The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is
a string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclass of NameError.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

UnicodeError has attributes that describe the encoding or decoding error. For example,
err.object[err.start:err.end] gives the particular invalid input that the codec failed on.

encoding
The name of the encoding that raised the error.

reason
A string describing the specific codec error.

object
The object the codec was attempting to encode or decode.

start
The first index of invalid data in ob ject.

end
The index after the last invalid data in ob ject.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such as IndexError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they are
aliases of OSError.

exception EnvironmentError
exception IOError

exception WindowsError
Only available on Windows.

5.2. Concrete exceptions 81

The Python Library Reference, Release 3.5.0

5.2.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation. Corre-
sponds to errno EAGAIN, EALREADY, EWOULDBLOCK and EINPROGRESS.

In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This attribute
is available when using the buffered I/O classes from the i o module.

exception ChildProcessError
Raised when an operation on a child process failed. Corresponds to errno ECHILD.

exception ConnectionError
A base class for connection-related issues.

Subclasses are BrokenPipeError, ConnectionAbortedError, ConnectionRefusedError
and ConnectionResetError.

exception BrokenPipeError
A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been
closed, or trying to write on a socket which has been shutdown for writing. Corresponds to errno EPIPE
and ESHUTDOWN.

exception ConnectionAbortedError
A subclass of ConnectionError, raised when a connection attempt is aborted by the peer. Corresponds
to errno ECONNABORTED.

exception ConnectionRefusedError
A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds
to errno ECONNREFUSED.

exception ConnectionResetError
A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno
ECONNRESET.

exception FileExistsError
Raised when trying to create a file or directory which already exists. Corresponds to errno EEXIST.

exception FileNotFoundError
Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

exception InterruptedError
Raised when a system call is interrupted by an incoming signal. Corresponds to errno EINTR.

Changed in version 3.5: Python now retries system calls when a syscall is interrupted by a signal,
except if the signal handler raises an exception (see PEP 475 for the rationale), instead of raising
InterruptedError.

exception IsADirectoryError
Raised when a file operation (such as os . remove ()) is requested on a directory. Corresponds to errno
EISDIR.

exception NotADirectoryError
Raised when a directory operation (such as os.1listdir ()) is requested on something which is not a
directory. Corresponds to errno ENOTDIR.

exception PermissionError
Raised when trying to run an operation without the adequate access rights - for example filesystem permis-
sions. Corresponds to errno EACCES and EPERM.

exception ProcessLookupError
Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

82 Chapter 5. Built-in Exceptions

http://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.5.0

exception TimeoutError
Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.

New in version 3.3: All the above OSError subclasses were added.
See also:

PEP 3151 - Reworking the OS and IO exception hierarchy

5.3 Warnings

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax

exception Runt imeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports.

exception UnicodeWarning
Base class for warnings related to Unicode.

exception BytesWarning
Base class for warnings related to bytes and bytearray.

exception ResourceWarning
Base class for warnings related to resource usage.

New in version 3.2.

5.4 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException

+-—— SystemExit

+—— KeyboardInterrupt

+-— GeneratorExit

+-— Exception
+-— StopIlteration
+-— StopAsyncIteration
+—— ArithmeticError
| +-— FloatingPointError
| +-— OverflowError
| +-— ZeroDivisionError

5.3. Warnings

83

http://www.python.org/dev/peps/pep-3151

The Python Library Reference, Release 3.5.0

AssertionError
AttributeError
BufferError
EOFError

ImportError
LookupError

+—— IndexError

+-— KeyError
MemoryError
NameError

+—— UnboundLocalError
OSError

+-— BlockingIOError

+-— ChildProcessError

+-— ConnectionError

\ +-— BrokenPipeError

\ +—— ConnectionAbortedError
\ +-— ConnectionRefusedError
\ +-— ConnectionResetError

+-— FileExistsError
+—— FileNotFoundError

+-— InterruptedError
+-— IsADirectoryError
+-— NotADirectoryError
+-— PermissionError
+—— ProcessLookupError
+—— TimeoutError
ReferenceError
RuntimeError
+-— NotImplementedError
+-— RecursionError
SyntaxError
+-— IndentationError
+—— TabError
SystemError
TypeError
ValueError
+-— UnicodeError

+—-— UnicodeDecodeError
+—-— UnicodeEncodeError
+—— UnicodeTranslateError

Warning
+—— DeprecationWarning
+—-— PendingDeprecationWarning
+-— RuntimeWarning

+-— SyntaxWarning
+-— UserWarning

+-— FutureWarning
+—— ImportWarning
+-— UnicodeWarning
+-— BytesWarning
+—-— ResourceWarning

84

Chapter 5.

Built-in Exceptions

CHAPTER
SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text
processing services.

The codecs module described under Binary Data Services is also highly relevant to text processing. In addition,
see the documentation for Python’s built-in string type in Text Sequence Type — str.

6.1 string — Common string operations

Source code: Lib/string.py

See also:
Text Sequence Type — str

String Methods

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

string.ascii_lowercase
The lowercase letters ' abcdefghijklmnopgrstuvwxyz’. This value is not locale-dependent and
will not change.

string.ascii_uppercase
The uppercase letters * ABCDEFGHIJKLMNOPQRSTUVWXYZ' . This value is not locale-dependent and will
not change.

string.digits
The string 7 0123456789".

string.hexdigits
The string 0123456789%abcde fABCDEF' .

string.octdigits
The string 01234567

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale.

string.printable
String of ASCII characters which are considered printable. This is a combination of digits,
ascii_letters, punctuation, and whitespace.

85

https://hg.python.org/cpython/file/3.5/Lib/string.py

The Python Library Reference, Release 3.5.0

string.whitespace

A string containing all ASCII characters that are considered whitespace. This includes the characters space,
tab, linefeed, return, formfeed, and vertical tab.

6.1.2 String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the
format () method described in PEP 3101. The Formatter class in the st ring module allows you to create
and customize your own string formatting behaviors using the same implementation as the built-in format ()

method.

class string.Formatter

The Formatter class has the following public methods:

format (format_string, *args, **kwargs)

format () is the primary API method. It takes a format string and an arbitrary set of positional and
keyword arguments. format () is just a wrapper that calls vformat ().

Deprecated since version 3.5: Passing a format string as keyword argument format_string has been
deprecated.

vformat (format_string, args, kwargs)

This function does the actual work of formatting. It is exposed as a separate function for cases where
you want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the
dictionary as individual arguments using the rargs and *+kwargs syntax. vformat () does the
work of breaking up the format string into character data and replacement fields. It calls the various
methods described below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)

Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec,
conversion). This is used by vformat () to break the string into either literal text, or replacement
fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement
field. If there is no literal text (which can happen if two replacement fields occur consecutively), then
literal_text will be a zero-length string. If there is no replacement field, then the values of field_name,
format_spec and conversion will be None.

get_field (field_name, args, kwargs)

Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such
as “O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The return value
used_key has the same meaning as the key parameter to get_value ().

get_value (key, args, kwargs)

Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer,
it represents the index of the positional argument in args; if it is a string, then it represents a named
argument in kwargs.

The args parameter is set to the list of positional arguments to vformat (), and the kwargs parameter
is set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value () to be called with a key
argument of 0. The name attribute will be looked up after get _value () returns by calling the
built-in getattr () function.

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError
should be raised.

86

Chapter 6. Text Processing Services

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 3.5.0

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The
set of unused args can be calculated from these parameters. check_unused_args () is assumed
to raise an exception if the check fails.

format_field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that
subclasses can override it.

convert_ field (value, conversion)
Converts the value (returned by get_£field ()) given a conversion type (as in the tuple returned by
the parse () method). The default version understands ‘s’ (str), ‘t’ (repr) and ‘a’ (ascii) conversion

types.

6.1.3 Format String Syntax
The str.format () method and the Formatter class share the same syntax for format strings (although in
the case of Formatter, subclasses can define their own format string syntax).

Format strings contain “replacement fields” surrounded by curly braces {}. Anything that is not contained in
braces is considered literal text, which is copied unchanged to the output. If you need to include a brace character
in the literal text, it can be escaped by doubling: { { and } }.

The grammar for a replacement field is as follows:

replacement_field “{"” [field_name] [”!” conversion] [”:” format_spec] “}”

field_name = arg_name (”.” attribute_name | “[” element_index “]”)x
arg_name = [identifier | integer]

attribute_name = identifier

element_index = integer | index_string

index_string = <any source character except “]"”> +

conversion = “r” | W“s” | “a”

format_spec = <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to
be formatted and inserted into the output instead of the replacement field. The field_name is optionally followed
by a conversion field, which is preceded by an exclamation point ’ !/, and a format_spec, which is preceded by a
colon ’ : ’. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to
a positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names
in a format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers O, 1, 2,

. will be automatically inserted in that order. Because arg_name is not quote-delimited, it is not possible to
specify arbitrary dictionary keys (e.g., the strings / 10’ or ’ : —] ') within a format string. The arg_name can
be followed by any number of index or attribute expressions. An expression of the form ’ .name’ selects the
named attribute using getattr (), while an expression of the form ’ [index]’ does an index lookup using
__getitem__ ().

Changed in version 3.1: The positional argument specifiers can be omitted, so ’ {} {}’ is equivalentto ’ {0}
{1}".

Some simple format string examples:

"First, thou shalt count to {0}" # References first positional argument

"Bring me a {}" # Implicitly references the first positional argument
"From {} to {}" # Same as "From {0} to {1}"
"My quest is {name}" # References keyword argument 'name'

6.1. string — Common string operations 87

The Python Library Reference, Release 3.5.0

"Weight in tons {0.weight}" # 'weight' attribute of first positional arg
"Units destroyed: {players[0]}" # First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done
by the _ _format__ () method of the value itself. However, in some cases it is desirable to force a type to be
formatted as a string, overriding its own definition of formatting. By converting the value to a string before calling
__format__ (), the normal formatting logic is bypassed.

Three conversion flags are currently supported: ’ !s’ which calls str () on the value, ’ ! r’ which calls
repr () and ' 'a’ whichcalls ascii ().

Some examples:

"Harold's a clever {0O!s}" # Calls str() on the argument first
"Bring out the holy {name!r}" # Calls repr() on the argument first
"More {'a}" # Calls ascii () on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as
field width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting
mini-language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields can
contain only a field name; conversion flags and format specifications are not allowed. The replacement fields
within the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of
a value to be dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individ-
ual values are presented (see Format String Syntax). They can also be passed directly to the built-in format ()
function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting
options are only supported by the numeric types.

A general convention is that an empty format string (" ") produces the same result as if you had called str () on
the value. A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

format_spec [[filllalign] [sign] [#][0] [width][,][.precision] [type]

fill = <any character>

align = \\<H | “>II ‘ nN_r7 | N\AIT

Sign = “+” | A\ /4 ‘ ” A\Y

width = integer

precision = integer

type ::= \\bl’ | “C" ‘ \\dll | \\ell | \\EII | \\fII | \\FII I \\gll | \\GII ‘ \\nll | \\OII

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults to a
space if omitted. Note that it is not possible to use { and } as fill char while using the st r. format () method;
this limitation however doesn’t affect the format () function.

The meaning of the various alignment options is as follows:

88 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

Op- | Meaning

tion

7 <’ | Forces the field to be left-aligned within the available space (this is the default for most
objects).

">’ | Forces the field to be right-aligned within the available space (this is the default for
numbers).

"=’ | Forces the padding to be placed after the sign (if any) but before the digits. This is used
for printing fields in the form ‘+000000120’. This alignment option is only valid for
numeric types.

r ~7 | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill
it, so that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning

tion
T4 indicates that a sign should be used for both positive as well as negative numbers.
r—r indicates that a sign should be used only for negative numbers (this is the default

behavior).
space | indicates that a leading space should be used on positive numbers, and a minus sign on
negative numbers.

The ’ #’ option causes the “alternate form” to be used for the conversion. The alternate form is defined differently
for different types. This option is only valid for integer, float, complex and Decimal types. For integers, when
binary, octal, or hexadecimal output is used, this option adds the prefix respective ’ Ob’, ' 0o’, or ' O0x’ to the
output value. For floats, complex and Decimal the alternate form causes the result of the conversion to always
contain a decimal-point character, even if no digits follow it. Normally, a decimal-point character appears in the
result of these conversions only if a digit follows it. In addition, for * g’ and ’ G’ conversions, trailing zeros are
not removed from the result.

The ’ , * option signals the use of a comma for a thousands separator. For a locale aware separator, use the ' n’
integer presentation type instead.

Changed in version 3.1: Added the ’ , option (see also PEP 378).

width is a decimal integer defining the minimum field width. If not specified, then the field width will be deter-
mined by the content.

Preceding the width field by a zero (’ 0’) character enables sign-aware zero-padding for numeric types. This is
equivalent to a fill character of 7 0’ with an alignment type of ' =" .

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a
floating point value formatted with * £/ and ’ F’, or before and after the decimal point for a floating point value
formatted with / g’ or ’ G’ . For non-number types the field indicates the maximum field size - in other words,
how many characters will be used from the field content. The precision is not allowed for integer values.

Finally, the rype determines how the data should be presented.

The available string presentation types are:

Type | Meaning
rs’ String format. This is the default type for strings and may be omitted.
None | Thesameas’s’.

The available integer presentation types are:

6.1. string — Common string operations 89

http://www.python.org/dev/peps/pep-0378

The Python Library Reference, Release 3.5.0

Type| Meaning

"b’ | Binary format. Outputs the number in base 2.

"¢’ | Character. Converts the integer to the corresponding unicode character before printing.
"d’ | Decimal Integer. Outputs the number in base 10.

"o’ | Octal format. Outputs the number in base 8.

" x’ | Hex format. Outputs the number in base 16, using lower- case letters for the digits above
9.

"X’ | Hex format. Outputs the number in base 16, using upper- case letters for the digits above
9.

n’ | Number. This is the same as ’ d’, except that it uses the current locale setting to insert the
appropriate number separator characters.

None| The same as ’ d’.

In addition to the above presentation types, integers can be formatted with the floating point presentation types
listed below (except ’ n’ and None). When doing so, f1oat () is used to convert the integer to a floating point
number before formatting.

The available presentation types for floating point and decimal values are:

Type Meaning

" e’ | Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate
the exponent. The default precision is 6.

"E’ | Exponent notation. Same as ’ e’ except it uses an upper case ‘E’ as the separator character.
" £/ | Fixed point. Displays the number as a fixed-point number. The default precision is 6.

"F’| Fixed point. Same as ’ £, but converts nan to NAN and inf to INF.

" g’ | General format. For a given precision p >= 1, this rounds the number to p significant
digits and then formats the result in either fixed-point format or in scientific notation,
depending on its magnitude.

The precise rules are as follows: suppose that the result formatted with presentation type
"e’ and precision p—1 would have exponent exp. Then if -4 <= exp < p,the
number is formatted with presentation type ’ £/ and precision p—1-exp. Otherwise, the
number is formatted with presentation type ’ e’ and precision p—1. In both cases
insignificant trailing zeros are removed from the significand, and the decimal point is also
removed if there are no remaining digits following it.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf,
—-inf, 0, -0 and nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1. The default precision is 6.
"G’ | General format. Same as ’ g’ except switches to / E’ if the number gets too large. The
representations of infinity and NaN are uppercased, too.

"n’ | Number. This is the same as ' g’ , except that it uses the current locale setting to insert the
appropriate number separator characters.

%’ | Percentage. Multiplies the number by 100 and displays in fixed (* £/) format, followed by
a percent sign.

Similar to * g’ , except that fixed-point notation, when used, has at least one digit past the
decimal point. The default precision is as high as needed to represent the particular value.
The overall effect is to match the output of st r () as altered by the other format modifiers.

Z
)
1=

Format examples

This section contains examples of the new format syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old %-formatting, with the addition of the {} and with : used
instead of %. For example, * $03.2f’ can be translatedto ’ { : 03.2f}".

The new format syntax also supports new and different options, shown in the follow examples.
Accessing arguments by position:

>>> '{0}, {1}, {2}'.format('a', 'b', 'c")
'a, b, c'
>>> '"{}, {}, {}'.format('a', 'b', 'c'") # 3.1+ only

920 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

'a, b, c'

>>> '"{2}, {1}, {0}'.format('a', 'b', 'c")

'c, b, a'

>>> '"{2}, {1}, {0}'".format («'abc') # unpacking argument sequence

'c, b, a'

>>> '"{0}{1}{0}'".format ('abra', 'cad'") # arguments' indices can be repeated
'abracadabra'

Accessing arguments by name:

>>> 'Coordinates: {latitude}, {longitude}'.format (latitude='37.24N", longitude='-115.81T
'Coordinates: 37.24N, —-115.81W'

>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'"}

>>> 'Coordinates: {latitude}, {longitude}'.format (x+xcoord)

'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> ('The complex number {0} is formed from the real part {O.real} '
'and the imaginary part {0.imag}.').format (c)

'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0.
>>> class Point:
def _ init_ (self, x, y):
self.x, self.y = x, y
def = str_ (self):
return 'Point ({self.x}, {self.y})'.format (self=self)

>>> str (Point (4, 2))
'Point (4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: {0[0]}; Y: {O[1]}'".format (coord)
'X: 3; Y: 5!

Replacing %s and %$r:

>>> "repr () shows quotes: {!r}; str() doesn't: {!s}".format('testl', 'test2')
"repr () shows quotes: 'testl'; str() doesn't: test2"

Aligning the text and specifying a width:

>>> '"{:<30}'.format ('left aligned')

'"left aligned !

>>> "{:>30}'.format ('right aligned')

! right aligned’

>>> '"{:730}'".format ('centered")

! centered !

>>> '"{:%x"30}".format ('centered") # use '#' as a fill char
"sxdhhrrkkrrrCcenteredrrccxrxkkkxx '

Replacing $+£, $—f,and $ f and specifying a sign:

>>> '"{:+f}; {:4+f}'.format(3.14, -3.14) # show it always
'+3.140000; —-3.140000"

>>> '"{: f}; {: f£}'.format (3.14, -3.14) # show a space for positive numbers
' 3.140000; —-3.140000"
>>> '"{:-f}; {:-f}'.format (3.14, -3.14) # show only the minus ——- same as '{:f}; {:f}'

'3.140000; -3.140000"

Replacing $x and %o and converting the value to different bases:

6.1. string — Common string operations 91

The Python Library Reference, Release 3.5.0

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:0}; Dbin:

'int: 42; hex: 2a; oct: 52; bin: 101010'
>>> # with 0x, 0o, or 0Ob as prefix:
>>> "int: {0:d}; hex: {0:#x}; oct: {0:#0};

Using the comma as a thousands separator:

>>> '"{:,}'".format (1234567890)
'1,234,567,890"

Expressing a percentage:

>>> points = 19
>>> total = 22

>>> 'Correct answers: {:.2%}'.format (points/total)

'Correct answers: 86.36%'
Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15,
>>> ' {:5Y-%m—-%d TH:%SM:%S}'.format (d)
'2010-07-04 12:15:58"

Nesting arguments and more complex examples:

>>> for align, text in zip('<">', ['left', 'center',
"{0:{fill}{align}l6}"'.format (text, fill=align,

'left<<<<<<!

'ANAANcenter AN

T>>>>>>>>>>>right !

>>>

>>> octets = [192, 168, 0, 1]

>>> ' { 02X} {:02X}{:02X}{:02X}"'.format (xoctets)

'COAB80001"

>>> int (_, 16)

3232235521

>>>

>>> width = 5

>>> for num in range(5,12):
for base in 'dXob':

print ('{0:{width} {base}}'.format (num,

print ()
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

6.1.4 Template strings

int: 42; hex: 0x2a; oct: 0052; Dbin: 0b101010"

{O:b}".format (42)

{O:4#b}".format (42)

base=base,

'right']):
align=align)

width=width),

end="

Templates provide simpler string substitutions as described in PEP 292. Instead of the normal %-based substitu-

tions, Templates support $-based substitutions, using the following rules:

* $$ is an escape; it is replaced with a single $.

92

Chapter 6. Text Processing Services

")

http://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 3.5.0

* Sidentifier names a substitution placeholder matching a mapping key of "identifier". By de-
fault, "identifier" is restricted to any case-insensitive ASCII alphanumeric string (including under-
scores) that starts with an underscore or ASCII letter. The first non-identifier character after the $ character
terminates this placeholder specification.

e ${identifier} isequivalent to $identifier. Itis required when valid identifier characters follow
the placeholder but are not part of the placeholder, such as "${noun}ification™".

Any other appearance of $ in the string will result in a ValueError being raised.
The st ring module provides a Temp late class that implements these rules. The methods of Template are:

class string.Template (template)
The constructor takes a single argument which is the template string.

substitute (mapping, **kwds)
Performs the template substitution, returning a new string. mapping is any dictionary-like object with
keys that match the placeholders in the template. Alternatively, you can provide keyword arguments,
where the keywords are the placeholders. When both mapping and kwds are given and there are
duplicates, the placeholders from kwds take precedence.

safe_substitute (mapping, **kwds)
Like substitute (), except that if placeholders are missing from mapping and kwds, instead of
raising a KeyError exception, the original placeholder will appear in the resulting string intact.
Also, unlike with substitute (), any other appearances of the $ will simply return $ instead of
raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always tries
to return a usable string instead of raising an exception. In another sense, safe_substitute ()
may be anything other than safe, since it will silently ignore malformed templates containing dangling
delimiters, unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructor’s femplate argument. In general, you shouldn’t change it,
but read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template('$who likes Swhat')

>>> s.substitute (who='tim', what="'kung pao')
'tim likes kung pao'

>>> d = dict (who='tim")

>>> Template ('Give $who $100') .substitute (d)
Traceback (most recent call last):

ValueError: Invalid placeholder in string: line 1, col 11
>>> Template ('Swho likes S$what') .substitute (d)
Traceback (most recent call last):

KeyError: 'what'
>>> Template ('Swho likes S$what') .safe_substitute (d)
'tim likes S$what'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter char-
acter, or the entire regular expression used to parse template strings. To do this, you can override these class
attributes:

* delimiter — This is the literal string describing a placeholder introducing delimiter. The default value is $.
Note that this should not be a regular expression, as the implementation will call re.escape () on this
string as needed.

6.1. string — Common string operations 93

The Python Library Reference, Release 3.5.0

* idpattern — This is the regular expression describing the pattern for non-braced placeholders (the braces will
be added automatically as appropriate). The default value is the regular expression [_a—-z] [_a-z0-9] *.

* flags — The regular expression flags that will be applied when compiling the regular expression used for
recognizing substitutions. The default value is re . IGNORECASE. Note that re . VERBOSE will always be
added to the flags, so custom idpatterns must follow conventions for verbose regular expressions.

New in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you
do this, the value must be a regular expression object with four named capturing groups. The capturing groups
correspond to the rules given above, along with the invalid placeholder rule:

* escaped — This group matches the escape sequence, e.g. $$, in the default pattern.

* named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

* braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter
or braces in the capturing group.

* invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear
last in the regular expression.

6.1.5 Helper functions

string.capwords (s, sep=None)
Split the argument into words using str.split (), capitalize each word using str.capitalize (),
and join the capitalized words using str.join (). If the optional second argument sep is absent or
None, runs of whitespace characters are replaced by a single space and leading and trailing whitespace are
removed, otherwise sep is used to split and join the words.

6.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings as well as 8-bit strings. However, Unicode strings
and 8-bit strings cannot be mixed: that is, you cannot match an Unicode string with a byte pattern or vice-versa;
similarly, when asking for a substitution, the replacement string must be of the same type as both the pattern and
the search string.

Regular expressions use the backslash character (* \ ") to indicate special forms or to allow special characters to
be used without invoking their special meaning. This collides with Python’s usage of the same character for the
same purpose in string literals; for example, to match a literal backslash, one might have to write * \\\\’ as the
pattern string, because the regular expression must be \ \, and each backslash must be expressed as \ \ inside a
regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled
in any special way in a string literal prefixed with r’. So r"\n" is a two-character string containing ' \’ and
"n’, while "\n" is a one-character string containing a newline. Usually patterns will be expressed in Python
code using this raw string notation.

It is important to note that most regular expression operations are available as module-level functions and methods
on compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first,
but miss some fine-tuning parameters.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,

94 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string g matches B, the string pg
will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and B;
or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions,
consult the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like "2, " a’,
or ' 0', are the simplest regular expressions; they simply match themselves. You can concatenate ordinary char-
acters, so last matches the string ' 1ast’. (In the rest of this section, we’ll write RE’s in this special
style, usually without quotes, and strings to be matched ’ in single quotes’.)

Some characters, like ’ | 7 or ’ (', are special. Special characters either stand for classes of ordinary characters,
or affect how the regular expressions around them are interpreted. Regular expression pattern strings may not
contain null bytes, but can specify the null byte using a \numbe r notation such as * \x00" .

The special characters are:

" .7 (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been
specified, this matches any character including a newline.

! A7 (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each
newline.

”$’ Matches the end of the string or just before the newline at the end of the string, and in MULTILINE
mode also matches before a newline. foo matches both ‘foo’ and ‘foobar’, while the regular expression
foo$ matches only ‘foo’. More interestingly, searching for foo.$ in’ fool\nfoo2\n’ matches ‘foo2’
normally, but ‘fool’ in MULTILINE mode; searching for a single $ in ’ foo\n’ will find two (empty)
matches: one just before the newline, and one at the end of the string.

"%’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible. ab* will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

"+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed
by any non-zero number of ‘b’s; it will not match just ‘a’.

' 2’ Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

*?,+?,?2? The ' ', "+’ ,and ’ 2’ qualifiers are all greedy; they match as much text as possible. Sometimes
this behaviour isn’t desired; if the RE <. x> is matched against ' <H1>title</H1>', it will match the
entire string, and not just * <H1>’. Adding ’ ?’ after the qualifier makes it perform the match in non-
greedy or minimal fashion; as few characters as possible will be matched. Using .+? in the previous
expression will match only ’ <H1>’.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE
not to match. For example, a { 6} will match exactly six ” a’ characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For example, a {3, 5} will match from 3 to 5 * a’ characters. Omitting m
specifies a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4, }b
will match aaaab or a thousand ’ a’ characters followed by a b, but not aaab. The comma may not be
omitted or the modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as
few repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character string ' aaaaaa’, a{3,5} will match 5 ” a’ characters, while a{3, 5} ? will only match 3
characters.

"\’ Either escapes special characters (permitting you to match characters like ’ x’, 2’ , and so forth), or signals
a special sequence; special sequences are discussed below.

6.2. re — Regular expression operations 95

The Python Library Reference, Release 3.5.0

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand, so
it’s highly recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. In a set:

¢ Characters can be listed individually, e.g. [amk] will match "a’, "m’,or " k’.

* Ranges of characters can be indicated by giving two characters and separating them by a * -’ , for
example [a-z] will match any lowercase ASCII letter, [0—-5] [0-9] will match all the two-digits
numbers from 00 to 59, and [0-9A-Fa-£] will match any hexadecimal digit. If — is escaped (e.g.
[a\—z]) orifit’s placed as the first or last character (e.g. [a—]), it will match a literal * —".

* Special characters lose their special meaning inside sets. For example, [(+*)] will match any of the
literal characters ” (,’+’,’x",or"’")".

 Character classes such as \w or \ S (defined below) are also accepted inside a set, although the char-
acters they match depends on whether ASCTI T or LOCALE mode is in force.

* Characters that are not within a range can be matched by complementing the set. If the first character
of the set is ~7, all the characters that are not in the set will be matched. For example, [~5] will
match any character except / 5/, and [~”] will match any character except / /. ~ has no special
meaning if it’s not the first character in the set.

* To match a literal 7]’ inside a set, precede it with a backslash, or place it at the beginning of the set.
For example, both [() [\]{}] and [] () [{}] will both match a parenthesis.

"|” A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An

(2.

arbitrary number of REs can be separated by the ’ |’ in this way. This can be used inside groups (see
below) as well. As the target string is scanned, REs separated by ’ |’ are tried from left to right. When one
pattern completely matches, that branch is accepted. This means that once A matches, B will not be tested
further, even if it would produce a longer overall match. In other words, the ” |’ operator is never greedy.
To match a literal * | 7, use \ |, or enclose it inside a character class, asin [|].

.) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;

the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the \number special sequence, described below. To match the literals * (* or ’) ", use \ (or
\), or enclose them inside a character class: [(] [)].

..) This is an extension notation (a ’ ?’ following a ’ (' is not meaningful otherwise). The first character

after the * 2’/ determines what the meaning and further syntax of the construct is. Extensions usually do
not create a new group; (?P<name>...) is the only exception to this rule. Following are the currently
supported extensions.

(?ailmsux) (One or more letters from the set "a’, "i’, "L’, 'm’, ’s’, "u’, " x".) The group matches
group

the empty string; the letters set the corresponding flags: re . A (ASCII-only matching), re . I (ignore case),
re.L (locale dependent), re .M (multi-line), re . S (dot matches all), and re . X (verbose), for the entire
regular expression. (The flags are described in Module Contents.) This is useful if you wish to include the
flags as part of the regular expression, instead of passing a flag argument to the re . compile () function.

Note that the (?x) flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

:...) A non-capturing version of regular parentheses. Matches whatever regular expression is inside the

parentheses, but the substring matched by the group cannot be retrieved after performing a match or refer-
enced later in the pattern.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible via the

symbolic group name name. Group names must be valid Python identifiers, and each group name must be
defined only once within a regular expression. A symbolic group is also a numbered group, just as if the
group were not named.

96

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

Named groups can be referenced in three contexts. If the pattern is
(?P<quote>[’"]) .*? (?P=quote) (i.e. matching a string quoted with either single or double
quotes):

Context of reference to group “quote” Ways to reference it

in the same pattern itself
e (?P=quote) (as shown)

0\1

when processing match object m
* m.group (" quote’)

e m.end (' quote’) (etc.)

in a string passed to the repl argument of

re.sub () * \g<quote>

e \g<1>
° \l

(?P=name) A backreference to a named group; it matches whatever text was matched by the earlier group
named name.

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches if ... matches next, but doesn’t consume any of the string. This is called a lookahead
assertion. For example, Isaac (?=Asimov) willmatch’ Isaac ' onlyifit’s followed by ' Asimov’ .

(?!...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac
(?!'Asimov) will match ' Isaac ’ only if it’s not followed by ’ Asimov’ .

(?<=...) Matches if the current position in the string is preceded by a match for . . . that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc)def will find a match in abcdef,
since the lookbehind will back up 3 characters and check if the contained pattern matches. The contained
pattern must only match strings of some fixed length, meaning that abc or a |b are allowed, but ax and
a{3, 4} are not. Note that patterns which start with positive lookbehind assertions will not match at the
beginning of the string being searched; you will most likely want to use the search () function rather than
the match () function:

>>> import re

>>> m = re.search (' (?<=abc)def', 'abcdef')
>>> m.group (0)
'def'

This example looks for a word following a hyphen:

>>> m = re.search (' (?<=-)\w+', 'spam-egg')
>>> m.group (0)
|l egg)
(?<!...) Matches if the current position in the string is not preceded by a match for This is called a

negative lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only
match strings of some fixed length. Patterns which start with negative lookbehind assertions may match at
the beginning of the string being searched.

(? (id/name) yes—pattern|no-pattern) Will try to match with yes-pattern if the group with
given id or name exists, and with no-pattern if it doesn’t. no-pattern is optional and can be
omitted. For example, (<) ? (\w+@\w+ (?:\.\w+)+) (?2(1)>]$) is a poor email matching pat-
tern, which will match with ' <user@host.com>’ as well as 'user@host.com’, but not with
"<user@host.com’ nor ' user@host.com>".

The special sequences consist of / \’ and a character from the list below. If the ordinary character is not on the
list, then the resulting RE will match the second character. For example, \ $ matches the character * $” .

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example, (.+) \1 matches 'the the’ or 55 55’, but not ' thethe’ (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit of

6.2. re — Regular expression operations 97

The Python Library Reference, Release 3.5.0

number is 0, or number is 3 octal digits long, it will not be interpreted as a group match, but as the character
with octal value number. Inside the ’ [’ and ’]’ of a character class, all numeric escapes are treated as
characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence
of Unicode alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a
non-alphanumeric, non-underscore Unicode character. Note that formally, \b is defined as the boundary
between a \w and a \W character (or vice versa), or between \w and the beginning/end of the string. This
means that v’ \bfoo\b’ matches ' foo’, " foo.’,’ (foo)’, "bar foo baz’ butnot’ foobar’
or’ foo3’.

By default Unicode alphanumerics are the ones used, but this can be changed by using the ASCTIT flag.
Inside a character range, \b represents the backspace character, for compatibility with Python’s string
literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This means that r’ py \B’
matches ' python’, 'py3’, 'py2’,butnot ' py’, "py.’,or ' py!’. \Bis just the opposite of \b, so
word characters are Unicode alphanumerics or the underscore, although this can be changed by using the
ASCIT flag.

\d

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode charac-
ter category [Nd]). This includes [0—-9], and also many other digit characters. If the ASCTT flag is
used only [0-9] is matched (but the flag affects the entire regular expression, so in such cases using
an explicit [0—9] may be a better choice).

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a Unicode decimal digit. This is the opposite of \d. If the ASCTIT flag is
used this becomes the equivalent of [~0-9] (but the flag affects the entire regular expression, so in such
cases using an explicit [~0-9] may be a better choice).

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [\t\n\r\f\v],
and also many other characters, for example the non-breaking spaces mandated by typography rules in
many languages). If the ASCTIT flagis used, only [\t\n\r\£f\v] is matched (but the flag affects
the entire regular expression, so in such cases using an explicit [\t\n\r\£f\v] may be a better
choice).

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this is
equivalentto [\t\n\r\f\v].

\S Matches any character which is not a Unicode whitespace character. This is the opposite of \s. If the
ASCIT flag is used this becomes the equivalent of [~ \t\n\r\f\v] (but the flag affects the entire
regular expression, so in such cases using an explicit [~ \t\n\r\f\v] may be a better choice).

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes most characters that can be
part of a word in any language, as well as numbers and the underscore. If the ASCI T flag is used, only
[a—zA-Z0-9_] is matched (but the flag affects the entire regular expression, so in such cases using
an explicit [a—zA-Z0-9_] may be a better choice).

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set; this is
equivalentto [a—-zA-Z0-9_].

\W Matches any character which is not a Unicode word character. This is the opposite of \w. If the ASCIT flag
is used this becomes the equivalent of [~a—-zA-Z0-9_] (but the flag affects the entire regular expression,
so in such cases using an explicit [*a-zA-Z0-9_] may be a better choice).

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

98 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

\a \b \f \n
\r \t \u \U
\v \x N\

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)

"\u’ and ' \U’ escape sequences are only recognized in Unicode patterns. In bytes patterns they are not treated
specially.

Octal escapes are included in a limited form. If the first digit is a 0, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three
digits in length.

Changed in version 3.3: The \u’ and " \U’ escape sequences have been added.

Deprecated since version 3.5, will be removed in version 3.6: Unknown escapes consist of / \’ and ASCII letter
now raise a deprecation warning and will be forbidden in Python 3.6.

See also:

Mastering Regular Expressions Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The
second edition of the book no longer covers Python at all, but the first edition covered writing good regular
expression patterns in great detail.

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

re.compile (pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which can be used for matching using
itsmatch () and search () methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

is equivalent to
result = re.match(pattern, string)

but using re.compile () and saving the resulting regular expression object for reuse is more efficient
when the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re . compile () and the module-level
matching functions are cached, so programs that use only a few regular expressions at a time needn’t worry

about compiling regular expressions.

re.A

re.ASCII
Make \w, \W, \b, \B, \d, \D, \'s and \ S perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode patterns, and is ignored for byte patterns.

Note that for backward compatibility, the re . U flag still exists (as well as its synonym re . UNICODE and
its embedded counterpart (?u)), but these are redundant in Python 3 since matches are Unicode by default
for strings (and Unicode matching isn’t allowed for bytes).

6.2. re — Regular expression operations 99

The Python Library Reference, Release 3.5.0

re

re.
re.

re.

re

re
re

re.
re.

re.

re

re

re

re

.DEBUG
Display debug information about compiled expression.

I

IGNORECASE
Perform case-insensitive matching; expressions like [A-Z] will match lowercase letters, too. This is not
affected by the current locale and works for Unicode characters as expected.

L

.LOCALE

Make \w, \W, \b, \B, \'s and \ S dependent on the current locale. The use of this flag is discouraged as
the locale mechanism is very unreliable, and it only handles one “culture” at a time anyway; you should
use Unicode matching instead, which is the default in Python 3 for Unicode (str) patterns. This flag makes
sense only with bytes patterns.

Deprecated since version 3.5, will be removed in version 3.6: Deprecated the use of re . LOCALE with
string patterns or re . ASCIT.

.M

.MULTILINE
When specified, the pattern character ~/ matches at the beginning of the string and at the beginning of
each line (immediately following each newline); and the pattern character * $’ matches at the end of the
string and at the end of each line (immediately preceding each newline). By default, / ~’ matches only at
the beginning of the string, and ’ $’ only at the end of the string and immediately before the newline (if
any) at the end of the string.

S

DOTALL
Make the ’ .’ special character match any character at all, including a newline; without this flag, * .’ will
match anything except a newline.

X

.VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line contains a ’ #’
neither in a character class or preceded by an unescaped backslash, all characters from the leftmost such
" 4’ through the end of the line are ignored.

That means that the two following regular expression objects that match a decimal number are functionally
equal:

a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d » # some fractional digits""", re.X)

b = re.compile (r"\d+\.\d+")

. search (pattern, string, flags=0)
Scan through string looking for the first location where the regular expression pattern produces a match,
and return a corresponding match object. Return None if no position in the string matches the pattern; note
that this is different from finding a zero-length match at some point in the string.

.match (pattern, string, flags=0)
If zero or more characters at the beginning of string match the regular expression pattern, return a corre-
sponding match object. Return None if the string does not match the pattern; note that this is different from
a zero-length match.

Note that even in MULTILINE mode, re .match () will only match at the beginning of the string and not
at the beginning of each line.

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

. fullmatch (pattern, string, flags=0)

If the whole string matches the regular expression pattern, return a corresponding match object. Return
None if the string does not match the pattern; note that this is different from a zero-length match.

100 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

New in version 3.4.

re.split (pattern, string, maxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all
groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit
splits occur, and the remainder of the string is returned as the final element of the list.

>>> re.split ("\W+', 'Words, words, words.')
["Words', 'words', 'words', '']

>>> re.split (' (\W+)', 'Words, words, words.')
['"Words', ', ', 'words', ', ', 'words', '.', '']

>>> re.split ('"\W+', 'Words, words, words.', 1)
['"Words', 'words, words.']

>>> re.split('[a-f]+"', '0a3B9', flags=re.IGNORECASE)
['o, '3', '9']

If there are capturing groups in the separator and it matches at the start of the string, the result will start with
an empty string. The same holds for the end of the string:

>>> re.split (' (\W+) ', '...words, words..."')
v, '...", 'words', ', ', 'words', '...' ']

That way, separator components are always found at the same relative indices within the result list.

Note: split () doesn’t currently split a string on an empty pattern match. For example:

>>> re.split ('xx', 'axbc')
[va|, lbcv]

Even though ’ x« " also matches 0 ‘x’ before ‘a’, between ‘b’ and ‘c’, and after ‘c’, currently these matches
are ignored. The correct behavior (i.e. splitting on empty matches too and returning [’ , 'a’, ’'b’,
"c’, *’1) will be implemented in future versions of Python, but since this is a backward incompatible
change, a FutureWarning will be raised in the meanwhile.

Patterns that can only match empty strings currently never split the string. Since this doesn’t match the

expected behavior, a ValueError will be raised starting from Python 3.5:

>>> re.split (""$", "foo\n\nbar\n", flags=re.M)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: split () requires a non-empty pattern match.

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Splitting on a pattern that could match an empty string now raises a warning.
Patterns that can only match empty strings are now rejected.

re.findall (pattern, string, flags=0)
Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-to-
right, and matches are returned in the order found. If one or more groups are present in the pattern, return a
list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included
in the result unless they touch the beginning of another match.

re.finditer (pattern, string, flags=0)
Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string. The
string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in
the result unless they touch the beginning of another match.

6.2. re — Regular expression operations 101

The Python Library Reference, Release 3.5.0

re.sub (pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by
the replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a
function; if it is a string, any backslash escapes in it are processed. That is, \n is converted to a single
newline character, \ r is converted to a carriage return, and so forth. Unknown escapes such as \ & are left
alone. Backreferences, such as \ 6, are replaced with the substring matched by group 6 in the pattern. For
example:

>>> re.sub(r'def\s+([a-zA-7Z_][a—-2zA-7Z_0-9]*)\sx\ (\s*\):"',
r'static PyObject*\npy_\1(void)\n{',

S 'def myfunc():")

"static PyObject+\npy_myfunc (void) \n{"

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobij) :

if matchobj.group(0) == '-': return ' '
. else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro-———-gram-files')

'pro-—gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

The pattern may be a string or an RE object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must
be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the
pattern are replaced only when not adjacent to a previous match, so sub (' x+’, ’'—=', ’abc’) returns
—a-b-c-'.

In string-type repl arguments, in addition to the character escapes and backreferences described above,
\g<name> will use the substring matched by the group named name, as defined by the (?P<name>. . .)
syntax. \g<number> uses the corresponding group number; \ g<2 > is therefore equivalent to \ 2, but isn’t
ambiguous in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20, not
a reference to group 2 followed by the literal character ” 0’ . The backreference \ g<0> substitutes in the
entire substring matched by the RE.

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

Deprecated since version 3.5, will be removed in version 3.6: Unknown escapes consist of * \’ and ASCII
letter now raise a deprecation warning and will be forbidden in Python 3.6.

re.subn (pattern, repl, string, count=0, flags=0)
Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

re.escape (string)
Escape all the characters in pattern except ASCII letters, numbers and ’ _’. This is useful if you want to
match an arbitrary literal string that may have regular expression metacharacters in it.

Changed in version 3.3: The / _’ character is no longer escaped.

re.purge ()
Clear the regular expression cache.

exception re . error (msg, pattern=None, pos=None)
Exception raised when a string passed to one of the functions here is not a valid regular expression (for
example, it might contain unmatched parentheses) or when some other error occurs during compilation or

102 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

matching. It is never an error if a string contains no match for a pattern. The error instance has the following
additional attributes:

msg
The unformatted error message.

pattern
The regular expression pattern.

pos
The index of pattern where compilation failed.

lineno
The line corresponding to pos.

colno
The column corresponding to pos.

Changed in version 3.5: Added additional attributes.

6.2.3 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

regex.search (string[, pas[, endpos]])
Scan through string looking for a location where this regular expression produces a match, and return a
corresponding match object. Return None if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to
0. This is not completely equivalent to slicing the string; the ’ ~ pattern character matches at the real
beginning of the string and at positions just after a newline, but not necessarily at the index where the search
is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is
endpos characters long, so only the characters from pos to endpos - 1 will be searched for a match. If
endpos is less than pos, no match will be found; otherwise, if rx is a compiled regular expression object,
rx.search(string, 0, 50) isequivalentto rx.search(string[:50], 0).

>>> pattern = re.compile("d")

>>> pattern.search ("dog") # Match at index 0

<_sre.SRE_Match object; span=(0, 1), match='d'>

>>> pattern.search("dog", 1) # No match; search doesn't include the "d"

regex.match (string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding
match object. Return None if the string does not match the pattern; note that this is different from a zero-
length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o")
>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".

<_sre.SRE_Match object; span=(1, 2), match='o'>

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

regex.fullmatch (string[, pos[, endpos]])
If the whole string matches this regular expression, return a corresponding match object. Return None if
the string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

6.2. re — Regular expression operations 103

The Python Library Reference, Release 3.5.0

>>> pattern = re.compile("o[gh]")

>>> pattern.fullmatch ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.fullmatch ("ogre") # No match as not the full string matches.

>>> pattern.fullmatch ("doggie", 1, 3) # Matches within given limits.

<_sre.SRE_Match object; span=(1, 3), match='og'>

New in version 3.4.

regex.split (string, maxsplit=0)
Identical to the split () function, using the compiled pattern.

regex.findall (string[, pos[, endpos]])
Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match ().

regex.finditer (string[,pos[, endes]])
Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match ().

regex . sub (repl, string, count=0)
Identical to the sub () function, using the compiled pattern.

regex.subn (repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

regex.flags
The regex matching flags. This is a combination of the flags given to compile (), any (?...) inline
flags in the pattern, and implicit flags such as UNICODE if the pattern is a Unicode string.

regex.groups
The number of capturing groups in the pattern.

regex.groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary
is empty if no symbolic groups were used in the pattern.

regex.pattern
The pattern string from which the RE object was compiled.

6.2.4 Match Objects

Match objects always have a boolean value of True. Since match () and search () return None when there
is no match, you can test whether there was a match with a simple i f statement:

match = re.search(pattern, string)
if match:
process (match)

Match objects support the following methods and attributes:

match.expand (femplate)
Return the string obtained by doing backslash substitution on the template string femplate, as done by the
sub () method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences
(\1, \2) and named backreferences (\ g<1>, \g<name>) are replaced by the contents of the corresponding
group.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

match.group ([group],])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, groupl
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the

104 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

pattern, an IndexError exception is raised. If a group is contained in a part of the pattern that did not
match, the corresponding result is None. If a group is contained in a part of the pattern that matched
multiple times, the last match is returned.

>>> m = re.match(r" (\w+) (\w+)", "Isaac Newton, physicist™")
>>> m.group (0) # The entire match

'Isaac Newton'

>>> m.group (1) # The first parenthesized subgroup.
'Isaac'

>>> m.group (2) # The second parenthesized subgroup.
'Newton'

>>> m.group (l, 2) # Multiple arguments give us a tuple.

('Isaac', 'Newton')

If the regular expression uses the (?P<name>...) syntax, the groupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

A moderately complicated example:

>>> m = re.match(r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group ('first_name')

'Malcolm'

>>> m.group ('last_name')

'Reynolds'

Named groups can also be referred to by their index:

>>> m.group (1)
'Malcolm'
>>> m.group (2)
'Reynolds'

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
IC3|

match.groups (default=None)
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the
pattern. The default argument is used for groups that did not participate in the match; it defaults to None.

For example:
>>> m = re.match(r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()

('24', '1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match (r" (\d+)\.?2 (\d+)2", "24")

>>> m.groups () # Second group defaults to None.

('24', None)

>>> m.groups ('0") # Now, the second group defaults to '0'.
(l24|, IO')

6.2. re — Regular expression operations 105

The Python Library Reference, Release 3.5.0

match.groupdict (default=None)
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The
default argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match(r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{"first_name': 'Malcolm', 'last_name': 'Reynolds'}

match.start ([group])

match.end([group])
Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning
the whole matched substring). Return -1 if group exists but did not contribute to the match. For a match
object m, and a group g that did contribute to the match, the substring matched by group g (equivalent to
m.group (g))is

m.string[m.start (g) :m.end(qg)]

Note that m. start (group) will equal m.end (group) if group matched a null string. For example,
afterm = re.search('b(c?)’, ’'cba’),m.start(0) isl,m.end(0) is2, m.start (1) and
m.end (1) are both 2, and m.start (2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search ("remove_this", email)
>>> email[:m.start ()] + email[m.end() :]

'tony@tiger.net'

match.span ([group])
For a match m, return the 2-tuple (m.start (group), m.end(group)). Note thatif group did not
contribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

match.pos
The value of pos which was passed to the search () or match () method of a regex object. This is the
index into the string at which the RE engine started looking for a match.

match.endpos
The value of endpos which was passed to the search () or match () method of a regex object. This is
the index into the string beyond which the RE engine will not go.

match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example,
the expressions (a)b, ((a) (b)), and ((ab)) will have lastindex == 1 if applied to the string
"ab’, while the expression (a) (b) will have lastindex == 2, if applied to the same string.

match.lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

match.re
The regular expression object whose match () or search () method produced this match instance.

match.string
The string passed to match () or search ().

6.2.5 Regular Expression Examples
Checking for a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

106 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

def displaymatch (match) :

if match is None:
return None
return '<Match: %r, groups=%r>' %

(match.group(),

match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each

6 99

character representing a card, “a” for ace, “k” for king, “q

representing the card with that value.

for queen, “j

31

for jack, “t” for 10, and “2” through “9”

To see if a given string is a valid hand, one could do the following:

>>> valid re.compile (
>>> displaymatch (valid.match ("aktb5g"))
"<Match: 'aktbqg', groups=()>"

>>> displaymatch(valid.match ("akt5e"))
>>> displaymatch(valid.match ("akt"))
>>> displaymatch(valid.match ("727ak"))
"<Match: '727ak', groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards.

expression, one could use backreferences as such:

>>> pair re.compile (r" .+ (.).+\1")
>>> displaymatch (pair.match ("717ak"))

"<Match: '717', groups=('7"',)>"

>>> displaymatch (pair.match("718ak"))
>>> displaymatch (pair.match("354aa"))
"<Match: '354aa', groups=('a',)>"

r"~[a2-9tjgk] {5}5")

Valid.
Invalid.

Invalid.
Valid.

To match this with a regular

Pair of 7s.

No pairs.
Pair of aces.

To find out what card the pair consists of, one could use the group () method of the match object in the following

manner:

>>> pair.match("717ak")
'7'

.group (1)

Error because re.match() returns None,
>>> pair.match("718ak") .group (1)
Traceback (most recent call last):
File "<pyshell#23>", line 1,
re.match(r".x(.).*\1", "718ak")
AttributeError: 'NoneType'

>>> pair.match("354aa")
lal

.group (1)

Simulating scanf()

Python does not currently have an equivalent to scanf ().

which doesn't have a group() method:

in <module>
.group (1)
object has no attribute

'group'

Regular expressions are generally more powerful,

though also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent
mappings between scanf () format tokens and regular expressions.

scanf () Token | Regular Expression

%c .

%$5¢ . {5}

5d [—+]2\d+

%e, $E, $f, g [+12 (\d+ (\.\d*) 2|\.\d+) ([eE] [-+]2\d+) ?
51 [—+1?(0[xX] [\dA-Fa-£f]+|0[0-7]*|\d+)

%0 [-+]2[0-7]+

%s \S+

$u \d+

$x, $X [-+12(0[xX])?2[\dA-Fa-f]+

6.2. re — Regular expression operations

107

The Python Library Reference, Release 3.5.0

To extract the filename and numbers from a string like
/usr/sbin/sendmail - 0 errors, 4 warnings
you would use a scanf () format like

%$s - %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers two different primitive operations based on regular expressions: re.match () checks for a match
only at the beginning of the string, while re . search () checks for a match anywhere in the string (this is what
Perl does by default).

For example:

>>> re.match("c", "abcdef") # No match
>>> re.search("c", "abcdef") # Match
<_sre.SRE_Match object; span=(2, 3), match='c'>

Regular expressions beginning with 7~/ can be used with search () to restrict the match at the beginning of
the string:

>>> re.match ("c", "abcdef™) # No match
>>> re.search (""c", "abcdef") # No match
>>> re.search(""a", "abcdef") # Match

<_sre.SRE_Match object; span=(0, 1), match='a'>

Note however that in MULTILINE mode match () only matches at the beginning of the string, whereas using
search () with a regular expression beginning with * ~’ will match at the beginning of each line.

>>> re.match ('X', 'A\nB\nX', re.MULTILINE) # No match
>>> re.search('"X', 'A\nB\nX', re.MULTILINE) # Match
<_sre.SRE_Match object; span=(4, 5), match='X'"'>

Making a Phonebook

split () splits astring into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example
that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split("\n+", text)

>>> entries

["Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

108 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the
maxsplit parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
['"Heather', 'Albrecht', '548.326.4584'", '919 Park Place']]

The : ? pattern matches the colon after the last name, so that it does not occur in the result list. With amaxsplit
of 4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[['Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['Frank', 'Burger', '925.541.7625', '662"', 'South Dogwood Way'],
["Heather', 'Albrecht', '548.326.4584"', '919', 'Park Place']]

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
using sub () with a function to “munge” text, or randomize the order of all the characters in each word of a
sentence except for the first and last characters:

>>> def repl (m):

inner_word = list (m.group(2))
random.shuffle (inner_word)
return m.group(l) + "".join(inner_word) + m.group(3)
>>> text = "Professor Abdolmalek, please report your absences promptly."

>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub(r" (\w) (\w+) (\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if one
was a writer and wanted to find all of the adverbs in some text, he or she might use findall () in the following
manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\w+ly", text)
['carefully', 'quickly']

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as it
provides match objects instead of strings. Continuing with the previous example, if one was a writer who wanted
to find all of the adverbs and their positions in some text, he or she would use finditer () in the following
manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\w+ly", text):

e print ('%$02d-%02d: %s' % (m.start(), m.end(), m.group(0)))
07-16: carefully

40-47: quickly

6.2. re — Regular expression operations 109

The Python Library Reference, Release 3.5.0

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash (* \’) in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code
are functionally identical:

>>> re.match (r"\W(.)\1\w", " ££f ")

<_sre.SRE_Match object; span=(0, 4), match=' ff '>
>>> re.match ("\\W(.)\\1\\w", " ££ ")
<_sre.SRE_Match object; span=(0, 4), match=' ff '>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string
notation, this means r"\\". Without raw string notation, one must use "\ \\\ ", making the following lines of
code functionally identical:

>>> re.match (r"\\", r"\\")

<_sre.SRE_Match object; span=(0, 1), match="\\'>
>>> re.match ("\\\\", r="\\")

<_sre.SRE_Match object; span=(0, 1), match="\\'>

Writing a Tokenizer
A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a
compiler or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single master
regular expression and to loop over successive matches:

import collections
import re

Token = collections.namedtuple ('Token', ['typ', 'value', 'line', 'column'])

def tokenize (code):
keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
token_specification = [

('"NUMBER', r'\d+(\.\d*)?'"), # Integer or decimal number
('"ASSIGN', r':="), # Assignment operator
('END', r';"), # Statement terminator
('ID", r'[A-Za-z]+"), # Identifiers
('op', r'[+\-x/1"), # Arithmetic operators
("NEWLINE', r'\n'"), # Line endings
('SKIP', r'[\t]l+"), # Skip over spaces and tabs
("MISMATCH',r'."), # Any other character

]

tok_regex = '"|'.join (' (?P<%s>%s)' % palir for pair in token_specification)

line_num = 1

line_start = 0

for mo in re.finditer (tok_regex, code):
kind = mo.lastgroup
value = mo.group (kind)
if kind == 'NEWLINE':
line_start = mo.end()
line_num += 1

elif kind == 'SKIP':

pass
elif kind == 'MISMATCH':

raise RuntimeError ('%r unexpected on line %d' % (value, line_num))
else:

if kind == 'ID' and value in keywords:

110 Chapter 6. Text Processing Services

http://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.5.0

column

statements = "''"'

IF quantity THEN
total :=

ENDIF;

for token in tokenize (statements):

print (token)

The tokenizer produces the following output:

Token (typ="1IF",
Token (typ='ID",

Token (typ='THEN',
value="total'

Token (typ='ID",

Token (typ='ASSIGN',
value='"'total',

Token (typ="'ID",
Token (typ='0P",
Token (typ='ID',
Token (typ='0P",

mo.start ()
yield Token (kind,

value='"IF",
value='quantity',
value="THEN',

value='"+",
value='price',
value="'x",

— line_start
line_num, column)

total + price * quantity;
tax := price * 0.05;

column=4)
line=2, column=7)

column=16)
column=8)

column=14)
column=17)

column=23)

column=25)

column=31)

Token (typ='END', value=';', line=3, column=41)
Token (typ='ID', value='tax', line=4, column=8)
Token (typ='ASSIGN', value=':='"', line=4, column=12)

Token (typ='ID', value='price', line=4, column=15)
Token (typ='0P', value='x', line=4, column=21)

(
(
(
(
(
(
(
(
(
Token (typ='ID', value='quantity', line=3, column=33)
(
(
(
(
(
Token (typ='NUMBER', value='0.05", line=4, column=23)
(
(
(

Token (typ='END', value=';', line=4, column=27)
Token (typ='ENDIF', wvalue='ENDIF', line=5, column=4)
Token (typ='END', wvalue=';', line=5, column=9)

6.3 difflib — Helpers for computing deltas

Source code: Lib/difflib.py

This module provides classes and functions for comparing sequences. It can be used for example, for comparing
files, and can produce difference information in various formats, including HTML and context and unified diffs.

For comparing directories and files, see also, the £i1ecmp module.

class diffl1ib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s
by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the
longest contiguous matching subsequence that contains no “junk” elements; these “junk” elements are ones
that are uninteresting in some sense, such as blank lines or whitespace. (Handling junk is an extension to the
Ratcliff and Obershelp algorithm.) The same idea is then applied recursively to the pieces of the sequences
to the left and to the right of the matching subsequence. This does not yield minimal edit sequences, but
does tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is

linear.

6.3. difflib — Helpers for computing deltas

111

https://hg.python.org/cpython/file/3.5/Lib/difflib.py

The Python Library Reference, Release 3.5.0

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain
sequence items as junk. The heuristic counts how many times each individual item appears in the sequence.
If an item’s duplicates (after the first one) account for more than 1% of the sequence and the sequence is
at least 200 items long, this item is marked as “popular” and is treated as junk for the purpose of sequence
matching. This heuristic can be turned off by setting the aut o junk argument to False when creating the
SequenceMatcher.

New in version 3.2: The autojunk parameter.

class difflib.Differ
This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of
characters within similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

Code Meaning

r— line unique to sequence 1
4+ line unique to sequence 2
r line common to both sequences

72 7 | line not present in either input sequence

Lines beginning with ‘?° attempt to guide the eye to intraline differences, and were not present in either
input sequence. These lines can be confusing if the sequences contain tab characters.

class difflib.HtmlDiff
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can
be generated in either full or contextual difference mode.

The constructor for this class is:

__init__ (tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Initializes instance of Htm1Diff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff () (used by Htm1Diff
to generate the side by side HTML differences). See ndiff () documentation for argument default
values and descriptions.

The following methods are public:

¢

make_file (fromlines, tolines, fromdesc="‘, todesc=’‘, context=False, numlines=5, *,
charset="utf-8’)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

Jfromdesc and todesc are optional keyword arguments to specify from/to file column header strings
(both default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual
differences are to be shown, else the default is False to show the full files. numlines defaults to 5.
When context is True numlines controls the number of context lines which surround the difference
highlights. When context is False numlines controls the number of lines which are shown before a
difference highlight when using the “next” hyperlinks (setting to zero would cause the “next” hyper-
links to place the next difference highlight at the top of the browser without any leading context).

Changed in version 3.5: charset keyword-only argument was added. The default charset of HTML
document changed from ' ISO-8859-1" to " ut£-8".

make_table (fromlines, tolines, fromdesc="", todesc="", context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

112 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

The arguments for this method are the same as those for the make_file () method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of
its use.

difflib.context_diff (a, b, fromfile="", tofile="", fromfiledate="‘, ftofiledate="*, n=3,

lineterm="\n")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff
format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with %+ or ———) are created with a trailing newline. This is
helpful so that inputs created from io.IOBase.readlines () result in diffs that are suitable for use
with io.I0Base.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the /ineterm argument to "" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are
normally expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> sl = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']
>>> 52 ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> for line in context_diff(sl, s2, fromfile='before.py', tofile='after.py'):

sys.stdout.write (line)

**xx before.py
-—— after.py
* ok ok ok ok ok ok ok kkkk ok k ok
kxk 1,4 *kxk
! bacon
! eggs
! ham

guido
-— 1,4 ———
! python
! eggy
! hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches (word, possibilities, n=3, cutoff=0.6)

Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be greater than
0.

Optional argument cutoff (default 0. 6) is a float in the range [0, 1]. Possibilities that don’t score at least
that similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches ('appel', ['ape', 'apple', 'peach', 'puppy'])
['apple', 'ape']

>>> import keyword

>>> get_close_matches ('wheel', keyword.kwlist)

['while']

6.3. difflib — Helpers for computing deltas 113

The Python Library Reference, Release 3.5.0

>>> get_close_matches ('apple',

[]

>>> get_close_matches ('accept',
["except']

keyword.kwlist)

keyword.kwlist)

difflib.ndiff (a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Compare a and b (lists of strings); return a D1 f fer-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are filtering functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false
if not. The default is None. There is also a module-level function IS_LINE_JUNK (), which filters out
lines without visible characters, except for at most one pound character (’ #’) — however the underlying
SequenceMatcher class does a dynamic analysis of which lines are so frequent as to constitute noise,
and this usually works better than using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level function IS_CHARACTER_JUNK (), which filters out whitespace
characters (a blank or tab; it’s a bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff

?
+
2

?
+
+

one

A

ore
A
two
three
tree
emu

ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
L. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> print (''.join(diff), end=""

difflib.restore (sequence, which)
Return one of the two sequences that generated a delta.

)

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1
or 2 (parameter which), stripping off line prefixes.

Example:

>>> diff

>>> diff

>>>

one
two

three
>>> print (''.join(restore(diff,
ore

tree

emu

ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),

'ore\ntree\nemu\n'.splitlines (keepends=True))
list(diff) # materialize the generated delta into a 1list
1)), end="")

print ("'.Jjoin (restore(diff,

difflib.unified_diff (a, b, fromfile="",

lineterm="\n")

2)), end="")

tofile="",

fromfiledate="", tofiledate="*, n=3,

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff
format.

114

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is
set by n which defaults to three.

By default, the diff control lines (those with ———, +++, or @@) are created with a trailing newline. This is
helpful so that inputs created from io.I0OBase.readlines () result in diffs that are suitable for use
with io.I0OBase.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are
normally expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> sl = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> 352 ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
>>> for line in unified_diff(sl, s2, fromfile='before.py', tofile='after.py'):
.. sys.stdout.write (line)

—-—— before.py

+++ after.py

@@ -1,4 +1,4 Q@a

—-bacon

-eggs

—ham

+python

+eggy

+hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.diff bytes (dfunc, a, b, fromfile=b’", tofile=b’‘, fromfiledate=b’‘, tofiledate=b’", n=3,
lineterm=b"\n")
Compare a and b (lists of bytes objects) using dfunc; yield a sequence of delta lines (also bytes) in the format
returned by dfunc. dfunc must be a callable, typically either unified_diff () or context_diff ().

Allows you to compare data with unknown or inconsistent encoding. All inputs except n must be bytes
objects, not str. Works by losslessly converting all inputs (except n) to str, and calling dfunc (a, b,
fromfile, tofile, fromfiledate, tofiledate, n, lineterm). The output of dfunc
is then converted back to bytes, so the delta lines that you receive have the same unknown/inconsistent
encodings as a and b.

New in version 3.5.

difflib.IS_LINE_JUNK (l/ine)
Return true for ignorable lines. The line /ine is ignorable if /ine is blank or contains a single ’ #’, otherwise
it is not ignorable. Used as a default for parameter linejunk in ndiff () in older versions.

difflib.IS_CHARACTER_JUNK (ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published in Dr. Dobb’s Journal in July, 1988.

6.3.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

6.3. difflib — Helpers for computing deltas 115

http://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
http://www.drdobbs.com/

The Python Library Reference, Release 3.5.0

class difflib.SequenceMatcher (isjunk=None, a="‘, b="*, autojunk=True)

Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence
element and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk
is equivalent to passing lambda x: 0;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements
of both sequences must be hashable.

The optional argument autojunk can be used to disable the automatic junk heuristic.
New in version 3.2: The autojunk parameter.

SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for which isjunk is
True; bpopular is the set of non-junk elements considered popular by the heuristic (if it is not disabled);
b2j is a dict mapping the remaining elements of b to a list of positions where they occur. All three are reset
whenever b is reset with set__seqgs () or set_seqg2 ().

New in version 3.2: The bjunk and bpopular attributes.
SequenceMatcher objects have the following methods:

set_seqgs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want
to compare one sequence against many sequences, use set_seqg2 () to set the commonly used sequence
once and call set_seql () repeatedly, once for each of the other sequences.

set_seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo, ahi, blo, bhi)
Find longest matching block in a [alo:ahi] andb [blo:bhi].

If isjunk was omitted or None, find_ longest_match () returns (i, j, k) such that
ali:i+k] is equal to b[J:Jj+k], where alo <= i <= i+k <= ahi and blo <= j <=
j+k <= bhi. Forall (i, j’, k’) meeting those conditions, the additional conditions k >=
k’,1i <= i’,andif i == 1i’, j <= j’ are also met. In other words, of all maximal matching
blocks, return one that starts earliest in a, and of all those maximal matching blocks that start earliest
in a, return the one that starts earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents * abcd’ from
matching the / abcd’ at the tail end of the second sequence directly. Instead only the abcd’ can
match, and matches the leftmost * abcd’ in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=1, b=0, size=4)

116

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

If no blocks match, this returns (alo, blo, 0).
This method returns a named tuple Match (a, b, size).

get_matching blocks ()
Return list of triples describing matching subsequences. Each triple is of the form (i, j, n),and
means thata[i:1i+n] == b[j:j+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). Itis the only triple with
n == 0.If (1, j, n)and (i, Jj’, n’) are adjacent triples in the list, and the second is not
the last triple in the list, then i+n != i’ or j+n != j’; in other words, adjacent triples always
describe non-adjacent equal blocks.

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()
Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, il, 1i2,
31, Jj2). The first tuple has i1 == j1 == 0, and remaining tuples have i/ equal to the i2 from
the preceding tuple, and, likewise, jI equal to the previous j2.

The tag values are strings, with these meanings:

Value Meaning
"replace’ a[i1:12] should be replacedby b[jl:7j2].
"delete’ al[il:12] should be deleted. Note that j1 == 72 in this case.
"insert’ b[j1:32] shouldbeinsertedata[il:11]. Notethat i1l == 12 in this case.
"equal’ alil:12] == b[jl:3j2] (the sub-sequences are equal).
For example:
>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, b)

>>> for tag, 11, i2, jl, J2 in s.get_opcodes():
print ("{:7} al{}t:{}] ——> bl{}:{}] {!'r:>8} ——> {!r}'.format (
tag, 11, 12, 3j1, j2, alil:i2], bIljl:321))

delete a[0:1] —> b[0:0] ‘q” —> ** equal a[1:3] —> b[0:2] ‘ab’ —> ‘ab’ replace a[3:4] — b[2:3]
‘x> —> ‘y’ equal a[4:6] —> b[3:5] ‘cd’ —> ‘cd’ insert a[6:6] —> b[5:6] ©* —> ‘f’
get_grouped_opcodes (n=3)
Return a generator of groups with up to n lines of context.

Starting with the groups returned by get_opcodes (), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes ().

ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this
is 2.0*M / T. Note that this is 1.0 if the sequences are identical, and 0.0 if they have nothing in
common.

This is expensive to compute if get_matching_blocks () or get_opcodes () hasn’t already
been called, in which case you may want to try quick_ratio () or real _quick_ratio () first
to get an upper bound.

quick_ratio()
Return an upper bound on ratio () relatively quickly.

real_quick_ratio()
Return an upper bound on ratio () very quickly.

6.3. difflib — Helpers for computing deltas 117

The Python Library Reference, Release 3.5.0

The three methods that return the ratio of matching to total characters can give different results due to differing
levels of approximation, although quick_ratio () and real_quick_ratio () are always at least as large
asratio():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio ()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

6.3.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio ()
value over 0.6 means the sequences are close matches:

>>> print (round(s.ratio (), 3))
0.866

If you’re only interested in where the sequences match, get_matching_blocks () is handy:

>>> for block in s.get_matching_blocks () :
.. print ("a[%d] and b[%d] match for %d elements" % block)
al[0] and b[0] match for 8 elements
al[8] and b[l7] match for 21 elements
al29] and b[38] match for 0 elements

Note that the last tuple returned by get_matching_blocks () is always a dummy, (len(a), len(b),
0), and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes () :

>>> for opcode in s.get_opcodes() :

ce print ("$6s al[%d:%d] b[%d:%d]" % opcode)
equal af[0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:29] b[17:38]

See also:

e The get_close_matches () function in this module which shows how simple code building on
SequenceMatcher can be used to do useful work.

» Simple version control recipe for a small application built with SequenceMatcher.

6.3.3 Differ Objects

Note that D1 f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Re-
stricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing
a longer diff.

The Di f fer class has this constructor:

class difflib.Differ (linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

118 Chapter 6. Text Processing Services

http://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.5.0

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default
is None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

These junk-filtering functions speed up matching to find differences and do not cause any differing lines
or characters to be ignored. Read the description of the find_longest_match () method’s isjunk
parameter for an explanation.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines () method of file-like objects. The delta generated also consists
of newline-terminated strings, ready to be printed as-is via the writelines () method of a file-like
object.

6.3.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines () method of file-like objects):

>>>

>>>
4
>>>
l\nl
>>>

textl = '"'" 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
''"'".splitlines (keepends=True)
len(textl)
textl1l[0] [-1]
text2 = '"'"'" 1. Beautiful is better than ugly.

3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

""" . splitlines (keepends=True)

Next we instantiate a Differ object:

>>>

d = Differ ()

Note that when instantiating a Di f fer object we may pass functions to filter out line and character “junk.” See
the Differ () constructor for details.

Finally, we compare the two:

>>>

result = list (d.compare (textl, text2))

result is alist of strings, so let’s pretty-print it:

>>>
>>>

from pprint import pprint
pprint (result)

1. Beautiful is better than ugly.\n',

2. Explicit is better than implicit.\n',
3. Simple is better than complex.\n',
3

Simple is better than complex.\n',
++\n',
4. Complex is better than complicated.\n',
A _ A\nv,

4. Complicated is better than complex.\n',

6.3. difflib — Helpers for computing deltas 119

The Python Library Reference, Release 3.5.0

12 NIRRT “\n',
'+ 5. Flat is better than nested.\n']

As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines (result)
1. Beautiful is better than ugly.
2. Explicit is better than implicit.
- 3. Simple is better than complex.
3

+ Simple is better than complex.

? ++

- 4. Complex is better than complicated.
Pl A A
+ 4. Complicated is better than complex.
? +++4+ ~ A
+ 5. Flat is better than nested.

6.3.5 A command-line interface to difflib
This example shows how to use difflib to create a dif f-like utility. It is also contained in the Python source
distribution, as Tools/scripts/diff.py.

#!/usr/bin/env python3
""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

mmn

import sys, os, time, difflib, argparse
from datetime import datetime, timezone

def file_mtime (path):

t = datetime.fromtimestamp (os.stat (path) .st_mtime,
timezone.utc)
return t.astimezone () .isoformat ()

def main() :

parser = argparse.ArgumentParser ()

parser.add_argument ('-c', action='store_true', default=False,
help='Produce a context format diff (default)')
parser.add_argument ('-u', action='store_true', default=False,

help='Produce a unified format diff')
parser.add_argument ('-m', action='store_true', default=False,
help='Produce HTML side by side diff '
'(can use -c and -1 in conjunction) ')

parser.add_argument ('-n', action='store_true', default=False,
help='Produce a ndiff format diff'")
parser.add_argument ('-1', '--lines', type=int, default=3,

help='Set number of context lines (default 3)"'")
parser.add_argument ('fromfile')
parser.add_argument ('tofile’)
options = parser.parse_args ()

120 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

n = options.lines
fromfile = options.fromfile
tofile = options.tofile

fromdate = file mtime (fromfile)
todate = file_mtime(tofile)
with open(fromfile) as ff:
fromlines = ff.readlines|()
with open(tofile) as tf:
tolines = tf.readlines()

if options.u:

diff = difflib.unified_diff (fromlines, tolines, fromfile, tofile, fromdate, tod:
elif options.n:

diff = difflib.ndiff (fromlines, tolines)
elif options.m:

diff = difflib.HtmlDiff () .make_file(fromlines,tolines, fromfile,tofile,context=o0¢
else:

diff = difflib.context_diff (fromlines, tolines, fromfile, tofile, fromdate, tod:

sys.stdout.writelines (diff)

if name == '_ main__ ':
main ()

6.4 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The textwrap module provides some convenience functions, as well as TextWrapper, the class that does
all the work. If you’re just wrapping or filling one or two text strings, the convenience functions should be good
enough; otherwise, you should use an instance of TextWrapper for efficiency.

textwrap.wrap (fext, width=70, **kwargs)
Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
width defaults to 70.

See the TextWrapper.wrap () method for additional details on how wrap () behaves.

textwrap.£ill (text, width=70, **kwargs)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. £i11 ()
is shorthand for

"\n".Jjoin (wrap (text, ...))

In particular, £111 () accepts exactly the same keyword arguments as wrap () .

textwrap.shorten (fext, width, **kwargs)
Collapse and truncate the given text to fit in the given width.

First the whitespace in text is collapsed (all whitespace is replaced by single spaces). If the result fits in the
width, it is returned. Otherwise, enough words are dropped from the end so that the remaining words plus
the placeholder fit within width:

6.4. textwrap — Text wrapping and filling 121

https://hg.python.org/cpython/file/3.5/Lib/textwrap.py

The Python Library Reference, Release 3.5.0

>>> textwrap.shorten("Hello world!", width=12)

'Hello world!'

>>> textwrap.shorten("Hello world!", width=11)

'Hello [...]"

>>> textwrap.shorten("Hello world", width=10, placeholder="...")
'Hello...'

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
Note that the whitespace is collapsed before the text is passed to the TextWrapper £111 () function, so
changing the value of tabsize, expand_tabs, drop_whitespace, and replace_whitespace
will have no effect.

New in version 3.4.

textwrap.dedent (fext)

Remove any common leading whitespace from every line in fext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello" are considered to have no common leading whitespace.

For example:

def test () :
end first line with \ to avoid the empty line!
s = vvv\
hello
world
LI B
print (repr(s)) # prints ' hello\n world\n !
print (repr (dedent (s))) # prints 'hello\n world\n'

textwrap.indent (text, prefix, predicate=None)

Add prefix to the beginning of selected lines in fext.

Lines are separated by calling text .splitlines (True).

By default, prefix is added to all lines that do not consist solely of whitespace (including any line endings).
For example:

>>> s = 'hello\n\n \nworld'

>>> indent (s, ' ")
' hello\n\n \n world'

The optional predicate argument can be used to control which lines are indented. For example, it is easy to
add prefix to even empty and whitespace-only lines:

>>> print (indent (s, '+ ', lambda line: True))
+ hello

+
+
+ world

New in version 3.3.

wrap (), £111 () and shorten () work by creating a TextWrapper instance and calling a single method on
it. That instance is not reused, so for applications that process many text strings using wrap () and/or £111 (),
it may be more efficient to create your own TextWrapper object.

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long
words be broken if necessary, unless TextWrapper.break_long_words is set to false.

class textwrap.TextWrapper (**kwargs)
The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argument
corresponds to an instance attribute, so for example

wrapper = TextWrapper (initial_indent="x ")
is the same as

wrapper = TextWrapper ()
wrapper.initial_indent = "x "

You can re-use the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in
the input text longer than width, TextWrapper guarantees that no output line will be longer than
width characters.

expand_tabs
(default: True) If true, then all tab characters in fext will be expanded to spaces using the
expandtabs () method of text.

tabsize
(default: 8) If expand_tabs is true, then all tab characters in fext will be expanded to zero or more
spaces, depending on the current column and the given tab size.

New in version 3.3.

replace_whitespace
(default: True) If true, after tab expansion but before wrapping, the wrap () method will replace
each whitespace character with a single space. The whitespace characters replaced are as follows: tab,
newline, vertical tab, formfeed, and carriage return (\t\n\v\f\r’).

Note: If expand_tabs is false and replace_whitespace is true, each tab character will be
replaced by a single space, which is not the same as tab expansion.

Note: If replace_whitespace is false, newlines may appear in the middle of a line and cause
strange output. For this reason, text should be split into paragraphs (using str.splitlines () or

similar) which are wrapped separately.

drop_whitespace
(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but
before indenting) is dropped. Whitespace at the beginning of the paragraph, however, is not dropped
if non-whitespace follows it. If whitespace being dropped takes up an entire line, the whole line is
dropped.

initial_indent
(default: ’ 7) String that will be prepended to the first line of wrapped output. Counts towards the
length of the first line. The empty string is not indented.

subsequent_indent
(default: ”) String that will be prepended to all lines of wrapped output except the first. Counts
towards the length of each line except the first.

6.4. textwrap — Text wrapping and filling 123

The Python Library Reference, Release 3.5.0

fix sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sen-
tences are always separated by exactly two spaces. This is generally desired for text in a monospaced
font. However, the sentence detection algorithm is imperfect: it assumes that a sentence ending con-
sists of a lowercase letter followed by one of ¥ .7, * !’/ or ' ?’, possibly followed by one of "’
or "’ ", followed by a space. One problem with this is algorithm is that it is unable to detect the
difference between “Dr.” in

[...] Dr. Frankenstein's monster [...]
and “Spot.” in
[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lower-
case letter,” and a convention of using two spaces after a period to separate sentences on the same line,
it is specific to English-language texts.

break_long words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer
than width. (Long words will be put on a line by themselves, in order to minimize the amount by
which width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in
compound words, as it is customary in English. If false, only whitespaces will be considered as
potentially good places for line breaks, but you need to set break_long_words to false if you
want truly insecable words. Default behaviour in previous versions was to always allow breaking
hyphenated words.

max_lines
(default: None) If not None, then the output will contain at most max_lines lines, with placeholder
appearing at the end of the output.

New in version 3.4.

placeholder
(default: ©* [...]') String that will appear at the end of the output text if it has been truncated.

New in version 3.4.

TextWrapper also provides some public methods, analogous to the module-level convenience functions:

wrap (fext)
Wraps the single paragraph in fext (a string) so every line is at most width characters long. All
wrapping options are taken from instance attributes of the TextWrapper instance. Returns a list of
output lines, without final newlines. If the wrapped output has no content, the returned list is empty.

£ill (text)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

6.5 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all
Unicode characters. The data contained in this database is compiled from the UCD version 8.0.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character
Database”. It defines the following functions:

124 Chapter 6. Text Processing Services

http://www.unicode.org/Public/8.0.0/ucd
http://www.unicode.org/reports/tr44/tr44-6.html
http://www.unicode.org/reports/tr44/tr44-6.html

The Python Library Reference, Release 3.5.0

unicodedata.lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding character.
If not found, KeyError is raised.

Changed in version 3.3: Support for name aliases ' and named sequences ” has been added.

unicodedata.name (chr[, default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if
not given, ValueError is raised.

unicodedata.decimal (chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.digit (chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.numeric (chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.category (chr)
Returns the general category assigned to the character chr as string.

unicodedata.bidirectional (chr)
Returns the bidirectional class assigned to the character chr as string. If no such value is defined, an empty
string is returned.

unicodedata.combining (chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no combining
class is defined.

unicodedata.east_asian_width (chr)
Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored (chr)
Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been
identified as a “mirrored” character in bidirectional text, 0 otherwise.

unicodedata.decomposition (chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string is
returned in case no such mapping is defined.

unicodedata.normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition
of canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed
in various way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)
can also be expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING
CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD)
is also known as canonical decomposition, and translates each character into its decomposed form. Normal
form C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence.
In Unicode, certain characters are supported which normally would be unified with other characters. For
example, U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL
LETTER I). However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

! http://www.unicode.org/Public/8.0.0/ucd/NameAliases.txt
2 http://www.unicode.org/Public/8.0.0/ucd/NamedSequences. txt

6.5. unicodedata — Unicode Database 125

http://www.unicode.org/Public/8.0.0/ucd/NameAliases.txt
http://www.unicode.org/Public/8.0.0/ucd/NamedSequences.txt

The Python Library Reference, Release 3.5.0

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility
characters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposi-
tion, followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining
characters and the other doesn’t, they may not compare equal.

In addition, the module exposes the following constant:

unicodedata.unidata_version
The version of the Unicode database used in this module.

unicodedata.ued 3 2 0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>> import unicodedata

>>> unicodedata.lookup ('LEFT CURLY BRACKET')

l{l

>>> unicodedata.name('/")

'SOLIDUS'

>>> unicodedata.decimal ('9")

9

>>> unicodedata.decimal ('a')

Traceback (most recent call last):
File "<stdin>", line 1, in ?

ValueError: not a decimal

>>> unicodedata.category ('A") # 'L'etter, 'u'ppercase

lLul

>>> unicodedata.bidirectional ('\u0660') # 'A'rabic, 'N'umber
'AN'

6.6 stringprep — Internet String Preparation

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications
for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it
should be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only
identifications consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto
the wire, they are processed with the preparation procedure, after which they have a certain normalized form. The
RFC defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and
what other optional parts of the st ringprep procedure are part of the profile. One example of a stringprep
profile is nameprep, which is used for internationalized domain names.

The module stringprep only exposes the tables from RFC 3454. As these tables would be very large to
represent them as dictionaries or lists, the module uses the Unicode character database internally. The module
source code itself was generated using the mkstringprep . py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns true
if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.

stringprep.in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

126 Chapter 6. Text Processing Services

http://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 3.5.0

stringprep.map_table_ b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_ b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normaliza-
tion).

stringprep.in_table_cl1 (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table_cl2 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_cll_cl2 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

stringprep.in_table_c21 (code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_c22 (code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3 (code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4 (code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_c5 (code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6 (code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8 (code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9 (code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1l (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.7 readline — GNU readline interface

The readline module defines a number of functions to facilitate completion and reading/writing of history files
from the Python interpreter. This module can be used directly or via the r1completer module. Settings made
using this module affect the behaviour of both the interpreter’s interactive prompt and the prompts offered by the
built-in input () function.

Note: On MacOS X the readline module can be implemented using the 1ibedit library instead of GNU
readline.

The configuration file for 1ibedit is different from that of GNU readline. If you programmatically load con-
figuration strings you can check for the text “libedit” in readline.__doc___ to differentiate between GNU
readline and libedit.

6.7. readline — GNU readline interface 127

The Python Library Reference, Release 3.5.0

The readline module defines the following functions:

readline.parse_and_bind (string)
Parse and execute single line of a readline init file.

readline.get_line_buffer ()
Return the current contents of the line buffer.

readline.insert_text (string)
Insert text into the command line.

readline.read _init_ file([ﬁlename])
Parse a readline initialization file. The default filename is the last filename used.

readline.read_history file([ﬁlename])
Load a readline history file. The default filename is ~/ .history.

readline.write_history_ file([ﬁlename])
Save a readline history file. The default filename is ~/ . history.

readline.append_history file (nelements[,ﬁlename])
Append the last nelements of history to a file. The default filename is ~/ . history. The file must already
exist.

New in version 3.5.

readline.clear_ history ()
Clear the current history. (Note: this function is not available if the installed version of GNU readline
doesn’t support it.)

readline.get_history_length ()
Return the desired length of the history file. Negative values imply unlimited history file size.

readline.set_history length (length)
Set the number of lines to save in the history file. write_history_file () uses this value to truncate
the history file when saving. Negative values imply unlimited history file size.

readline.get_current_history length()
Return the number of lines currently in the history. (This is different from get_history_length (),
which returns the maximum number of lines that will be written to a history file.)

readline.get_history_ item (index)
Return the current contents of history item at index.

readline.remove_history_item (pos)
Remove history item specified by its position from the history.

readline.replace_history_ item (pos, line)
Replace history item specified by its position with the given line.

readline.redisplay ()
Change what’s displayed on the screen to reflect the current contents of the line buffer.

readline.set_startup_hook ([function])
Set or remove the startup_hook function. If function is specified, it will be used as the new startup_hook
function; if omitted or None, any hook function already installed is removed. The startup_hook function is
called with no arguments just before readline prints the first prompt.

readline.set_pre_ input_hook ([function])
Set or remove the pre_input_hook function. If function is specified, it will be used as the new
pre_input_hook function; if omitted or None, any hook function already installed is removed. The
pre_input_hook function is called with no arguments after the first prompt has been printed and just be-
fore readline starts reading input characters.

readline.set_completer ([function])
Set or remove the completer function. If function is specified, it will be used as the new completer function;

128 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.5.0

if omitted or None, any completer function already installed is removed. The completer function is called
as function (text, state),forstatein 0, 1, 2, ..., until it returns a non-string value. It should return
the next possible completion starting with text.

readline.get_completer ()
Get the completer function, or None if no completer function has been set.

readline.get_completion_type ()
Get the type of completion being attempted.

readline.get_begidx ()
Get the beginning index of the readline tab-completion scope.

readline.get_endidx ()
Get the ending index of the readline tab-completion scope.

readline.set_completer_delims (string)
Set the readline word delimiters for tab-completion.

readline.get_completer_delims ()
Get the readline word delimiters for tab-completion.

readline.set_completion_display matches_hook ([ﬁmction])
Set or remove the completion display function. If function is specified, it will be used as the new com-
pletion display function; if omitted or None, any completion display function already installed is re-
moved. The completion display function is called as function (substitution, [matches],
longest_match_length) once each time matches need to be displayed.

readline.add_history (line)
Append a line to the history buffer, as if it was the last line typed.

See also:

Module rlcompleter Completion of Python identifiers at the interactive prompt.

6.7.1 Example

The following example demonstrates how to use the readline module’s history reading and writing functions to
automatically load and save a history file named .python_history from the user’s home directory. The code
below would normally be executed automatically during interactive sessions from the user’s PYTHONSTARTUP
file.

import atexit
import os
import readline

histfile = os.path.join(os.path.expanduser("~"), ".python_history")
try:

readline.read_history_file(histfile)
except FileNotFoundError:

pass

atexit.register (readline.write_history_file, histfile)

This code is actually automatically run when Python is run in interactive mode (see Readline configuration).

The following example achieves the same goal but supports concurrent interactive sessions, by only appending
the new history.

import atexit

import os

import realine

histfile = os.path.join(os.path.expanduser ("~"), ".python_history")

6.7. readline — GNU readline interface 129

The Python Library Reference, Release 3.5.0

try:
readline.read_history_file(histfile)
h_len = readline.get_history_length ()
except FileNotFoundError:
open (histfile, 'wb').close()
h_len = 0

def save (prev_h_len, histfile):

new_h_len = readline.get_history_length ()

readline.append _history_file(new_h_len - prev_h len, histfile)
atexit.register (save, h_len, histfile)

The following example extends the code . InteractiveConsole class to support history save/restore

import atexit
import code
import os
import readline

class HistoryConsole (code.InteractiveConsole) :

def _ init__ (self, locals=None, filename="<console>",
histfile=os.path.expanduser ("~/.console-history")):
code.InteractiveConsole._ _init_ (self, locals, filename)

self.init_history (histfile)

def init_history(self, histfile):
readline.parse_and_bind("tab: complete™)
if hasattr(readline, "read_history_file"):
try:
readline.read_history_file(histfile)
except FileNotFoundError:
pass
atexit.register(self.save_history, histfile)

def save_history(self, histfile):
readline.write_history_file(histfile)

6.8 rlcompleter — Completion function for GNU readline

Source code: Lib/rlcompleter.py

The rlcompleter module defines a completion function suitable for the readl ine module by completing
valid Python identifiers and keywords.

When this module is imported on a Unix platform with the readline module available, an instance of the
Completer class is automatically created and its complete () method is set as the readline completer.

Example:

>>> import rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete™)
>>> readline. <TAB PRESSED>

readline._ _doc_ readline.get_line_buffer(readline.read_init_file(
readline._ file readline.insert_text (readline.set_completer (
readline._ _name_ readline.parse_and_bind (

>>> readline.

130 Chapter 6. Text Processing Services

https://hg.python.org/cpython/file/3.5/Lib/rlcompleter.py

The Python Library Reference, Release 3.5.0

The r1completer module is designed for use with Python’s interactive mode. Unless Python is run with the
—S option, the module is automatically imported and configured (see Readline configuration).

On platforms without readline, the Completer class defined by this module can still be used for custom
purposes.

6.8.1 Completer Objects

Completer objects have the following method:

Completer.complete (fext, state)
Return the stateth completion for fext.

If called for fext that doesn’t include a period character (* . ’), it will complete from names currently defined
in__main__,builtins and keywords (as defined by the keyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will not
be evaluated, but it can generate callsto ___getattr__ ()) up to the last part, and find matches for the rest
via the dir () function. Any exception raised during the evaluation of the expression is caught, silenced
and None is returned.

6.8. rlcompleter — Completion function for GNU readline 131

The Python Library Reference, Release 3.5.0

132 Chapter 6. Text Processing Services

CHAPTER
SEVEN

BINARY DATA SERVICES

The modules described in this chapter provide some basic services operations for manipulation of binary data.
Other operations on binary data, specifically in relation to file formats and network protocols, are described in the
relevant sections.

Some libraries described under Text Processing Services also work with either ASCII-compatible binary formats
(for example, re) or all binary data (for example, di f£11ib).

In addition, see the documentation for Python’s built-in binary data types in Binary Sequence Types — bytes,
bytearray, memoryview.

7.1 struct — Interpret bytes as packed binary data

This module performs conversions between Python values and C structs represented as Python bytes objects.
This can be used in handling binary data stored in files or from network connections, among other sources. It uses
Format Strings as compact descriptions of the layout of the C structs and the intended conversion to/from Python
values.

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper alignment
for the C types involved; similarly, alignment is taken into account when unpacking. This behavior is chosen so

that the bytes of a packed struct correspond exactly to the layout in memory of the corresponding C struct. To
handle platform-independent data formats or omit implicit pad bytes, use standard size and alignment instead
of native size and alignment: see Byte Order, Size, and Alignment for details.

Several st ruct functions (and methods of St ruct) take a buffer argument. This refers to objects that implement
the bufferobjects and provide either a readable or read-writable buffer. The most common types used for that
purpose are bytes and bytearray, but many other types that can be viewed as an array of bytes implement
the buffer protocol, so that they can be read/filled without additional copying from a bytes object.

7.1.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct .error
Exception raised on various occasions; argument is a string describing what is wrong.

struct.pack (fmt, vi, v2,...)
Return a bytes object containing the values vi, v2, ... packed according to the format string fmz. The
arguments must match the values required by the format exactly.

struct .pack_into (fmt, buffer, offset, vi, v2, ...)
Pack the values v/, v2, ... according to the format string fimt and write the packed bytes into the writable
buffer buffer starting at position offset. Note that offset is a required argument.

struct .unpack (fint, buffer)
Unpack from the buffer buffer (presumably packed by pack (fmt, ...)) according to the format string

133

The Python Library Reference, Release 3.5.0

fmt. The result is a tuple even if it contains exactly one item. The buffer must contain exactly the amount of
data required by the format (1en (bytes) mustequal calcsize (fmt)).

struct .unpack_from (fint, buffer, offset=0)
Unpack from buffer starting at position offset, according to the format string finr. The result is a tuple
even if it contains exactly one item. buffer must contain at least the amount of data required by the format
(len (buffer[offset:]) mustbe atleast calcsize (fmt)).

struct.iter_unpack (fint, buffer)
Iteratively unpack from the buffer buffer according to the format string fmz. This function returns an iterator
which will read equally-sized chunks from the buffer until all its contents have been consumed. The buffer’s
size in bytes must be a multiple of the amount of data required by the format, as reflected by calcsize ().

Each iteration yields a tuple as specified by the format string.
New in version 3.4.

struct.calcsize (fint)
Return the size of the struct (and hence of the bytes object produced by pack (fmt, ...)) corresponding
to the format string fmt.

7.1.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data. They
are built up from Format Characters, which specify the type of data being packed/unpacked. In addition, there are
special characters for controlling the Byte Order, Size, and Alignment.

Byte Order, Size, and Alignment
By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of
the packed data, according to the following table:

Character | Byte order Size Alignment
@ native native native

= native standard | none

< little-endian standard | none

> big-endian standard | none

! network (= big-endian) | standard | none

If the first character is not one of these, * @ is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and AMD64
(x86-64) are little-endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium feature
switchable endianness (bi-endian). Use sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined
with native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between / @’ and ' =’ : both use native byte order, but the size and alignment of the latter is
standardized.

The form ’ ! 7 1is available for those poor souls who claim they can’t remember whether network byte order is
big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of ’ <’ or
4 >I .

Notes:

134 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.0

. Padding is only automatically added between successive structure members. No padding is added at the

beginning or the end of the encoded struct.

s G

No padding is added when using non-native size and alignment, e.g. with ‘<’, *>’, ‘=", and ‘!’.

To align the end of a structure to the alignment requirement of a particular type, end the format with the
code for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious
given their types. The ‘Standard size’ column refers to the size of the packed value in bytes when using standard
size; that is, when the format string starts with one of 7 <’,” >’ 7 ¥ or ’ =’ . When using native size, the size of
the packed value is platform-dependent.

Format | C Type Python type Standard size | Notes
x pad byte no value

c char bytes of length 1 | 1

b signed char integer 1 ,3)
B unsigned char integer 1 3)

? _Bool bool 1 @))

h short integer 2 3)

H unsigned short integer 2 3)

i int integer 4 3)

I unsigned int integer 4 3)

1 long integer 4 3)

L unsigned long integer 4 3)

q long long integer 8 2),(3)
Q unsigned long long | integer 8 2),(3)
n ssize_t integer 4)

N size_t integer @

f float float 4 (®))

d double float 8 ®))

s char|[] bytes

P char[] bytes

P void * integer (6)

Changed in version 3.3: Added support for the ' n’ and ’ N’ formats.

Notes:

1.

The ’ 2’ conversion code corresponds to the _Bool type defined by C99. If this type is not available, it is
simulated using a char. In standard mode, it is always represented by one byte.

. The " g’ and ' Q’ conversion codes are available in native mode only if the platform C compiler supports

C long long, or, on Windows, ___int 64. They are always available in standard modes.

. When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer has a

__index__ () method then that method is called to convert the argument to an integer before packing.

Changed in version 3.2: Use of the ___index___ () method for non-integers is new in 3.2.

. The "n’ and ' N’ conversion codes are only available for the native size (selected as the default or with

the ’ @’ byte order character). For the standard size, you can use whichever of the other integer formats fits
your application.

. Forthe £’ and " d’ conversion codes, the packed representation uses the IEEE 754 binary32 (for ’ £/) or

binary64 (for ’ d’) format, regardless of the floating-point format used by the platform.

. The " P’ format character is only available for the native byte ordering (selected as the default or with the

" @’ byte order character). The byte order character ” =’ chooses to use little- or big-endian ordering based
on the host system. The struct module does not interpret this as native ordering, so the * P’ format is not
available.

71.

struct — Interpret bytes as packed binary data 135

The Python Library Reference, Release 3.5.0

A format character may be preceded by an integral repeat count. For example, the format string ’ 4h’ means
exactly the same as * hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ’ s’ format character, the count is interpreted as the length of the bytes, not a repeat count like for the
other format characters; for example, ’ 10s’ means a single 10-byte string, while * 10c’ means 10 characters. If
a count is not given, it defaults to 1. For packing, the string is truncated or padded with null bytes as appropriate
to make it fit. For unpacking, the resulting bytes object always has exactly the specified number of bytes. As a
special case, * 0s’ means a single, empty string (while ’ Oc’ means 0 characters).

When packing a value x using one of the integer formats (‘b’, *B’, "h’, 'H’, "1/, /1", "1, 'L','q’,
" Q"), if x is outside the valid range for that format then st ruct .error is raised.

Changed in version 3.1: In 3.0, some of the integer formats wrapped out-of-range values and raised
DeprecationWarning instead of st ruct.error.

The ’"p’ format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed
number of bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is smaller.
The bytes of the string follow. If the string passed in to pack () is too long (longer than the count minus 1), only
the leading count—1 bytes of the string are stored. If the string is shorter than count -1, it is padded with null
bytes so that exactly count bytes in all are used. Note that for unpack (), the ’ p’ format character consumes
count bytes, but that the string returned can never contain more than 255 bytes.

For the ’ 2’ format character, the return value is either True or False. When packing, the truth value of
the argument object is used. Either O or 1 in the native or standard bool representation will be packed, and any
non-zero value will be True when unpacking.

Examples

Note: All examples assume a native byte order, size, and alignment with a big-endian machine.

A basic example of packing/unpacking three integers:

>>> from struct import =«

>>> pack ('hhl', 1, 2, 3)
b'\x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack ('hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03"')
(1, 2, 3)

>>> calcsize('hhl")

8

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = b'raymond \x32\x12\x08\x01\x08"'
>>> name, serialnum, school, gradelevel = unpack('<10sHHb', record)

>>> from collections import namedtuple

>>> Student = namedtuple('Student', 'name serialnum school gradelevel')
>>> Student._make (unpack ('<10sHHb', record))
Student (name=b'raymond ', serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size since the padding needed to satisfy alignment
requirements is different:

>>> pack('ci', b'x", 0x12131415)
b'*\x00\x00\x00\x12\x13\x14\x15"
>>> pack('ic', 0x12131415, b'x")
b'\x12\x13\x14\x15%"

>>> calcsize('ci'")

8

136 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.0

>>>
5

calcsize('ic")

The following format 11h01’ specifies two pad bytes at the end, assuming longs are aligned on 4-byte bound-

aries:

>>> pack('l1lhO1"', 1, 2, 3)
b'"\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00"

This only works when native size and alignment are in effect; standard size and alignment does not enforce any
alignment.

See also:

Module array Packed binary storage of homogeneous data.

Module xdrlib Packing and unpacking of XDR data.

7.1.3 Classes

The st ruct module also defines the following type:

class struct .Struct (format)

7.2

Return a new Struct object which writes and reads binary data according to the format string format. Cre-
ating a Struct object once and calling its methods is more efficient than calling the st ruct functions with
the same format since the format string only needs to be compiled once.

Compiled Struct objects support the following methods and attributes:

pack (vi,v2,...)
Identical to the pack () function, using the compiled format. (len (result) will equal
self.sizel)

pack_into (buffer, offset, vi, v2,...)
Identical to the pack_into () function, using the compiled format.

unpack (buffer)
Identical to the unpack () function, using the compiled format. (len (buffer) must equal
self.size).

unpack_from (buffer, offset=0)
Identical to the unpack_from() function, using the compiled format.
(len (buffer[offset:]) mustbe atleast self.size).

iter unpack (buffer)
Identical to the iter_unpack () function, using the compiled format. (len (buffer) must be a
multiple of self.size).

New in version 3.4.

format
The format string used to construct this Struct object.

size
The calculated size of the struct (and hence of the bytes object produced by the pack () method)
corresponding to format.

codecs — Codec registry and base classes

Source code: Lib/codecs.py

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry, which manages the codec and error handling lookup process. Most standard codecs
are text encodings, which encode text to bytes, but there are also codecs provided that encode text to text, and bytes

7.2. codecs — Codec registry and base classes 137

https://hg.python.org/cpython/file/3.5/Lib/codecs.py

The Python Library Reference, Release 3.5.0

to bytes. Custom codecs may encode and decode between arbitrary types, but some module features are restricted
to use specifically with rext encodings, or with codecs that encode to bytes.

The module defines the following functions for encoding and decoding with any codec:

codecs .encode (0bj, encoding="utf-8’, errors="strict’)
Encodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handler is
"strict’ meaning that encoding errors raise ValueError (or a more codec specific subclass, such
as UnicodeEncodeError). Refer to Codec Base Classes for more information on codec error handling.

codecs .decode (0bj, encoding="utf-8’, errors="strict’)
Decodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handler is
"strict’ meaning that decoding errors raise ValueError (or a more codec specific subclass, such
as UnicodeDecodeError). Refer to Codec Base Classes for more information on codec error handling.

The full details for each codec can also be looked up directly:

codecs . lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined below.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions
is scanned. If no CodecInfo object is found, a LookupError is raised. Otherwise, the CodecInfo
object is stored in the cache and returned to the caller.

class codecs.CodecInfo (encode, decode, streamreader=None, streamwriter=None, incrementalen-

coder=None, incrementaldecoder=None, name=None)
Codec details when looking up the codec registry. The constructor arguments are stored in attributes of the

same name:

name
The name of the encoding.

encode

decode
The stateless encoding and decoding functions. These must be functions or methods which have the
same interface as the encode () and decode () methods of Codec instances (see Codec Interface).
The functions or methods are expected to work in a stateless mode.

incrementalencoder

incrementaldecoder
Incremental encoder and decoder classes or factory functions. These have to provide the interface
defined by the base classes IncrementalEncoder and IncrementalDecoder, respectively.
Incremental codecs can maintain state.

streamwriter

streamreader
Stream writer and reader classes or factory functions. These have to provide the interface defined by
the base classes StreamiWriter and St reamReader, respectively. Stream codecs can maintain
state.

To simplify access to the various codec components, the module provides these additional functions which use
lookup () for the codec lookup:

codecs.getencoder (encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getdecoder (encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

138 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.0

codecs.getincrementalencoder (encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder.

codecs.getincrementaldecoder (encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder.

codecs.getreader (encoding)
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.getwriter (encoding)
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.
Custom codecs are made available by registering a suitable codec search function:

codecs.register (search_function)
Register a codec search function. Search functions are expected to take one argument, being the encoding
name in all lower case letters, and return a CodecInfo object. In case a search function cannot find a
given encoding, it should return None.

Note: Search function registration is not currently reversible, which may cause problems in some cases,
such as unit testing or module reloading.

While the builtin open () and the associated i o module are the recommended approach for working with encoded
text files, this module provides additional utility functions and classes that allow the use of a wider range of codecs
when working with binary files:

codecs . open (filename, mode='r’, encoding=None, errors="strict’, buffering=1)
Open an encoded file using the given mode and return an instance of St reamReaderWriter, providing
transparent encoding/decoding. The default file mode is ’ r’, meaning to open the file in read mode.

Note: Underlying encoded files are always opened in binary mode. No automatic conversion of ’ \n’
is done on reading and writing. The mode argument may be any binary mode acceptable to the built-in

open () function; the ' b’ is automatically added.

encoding specifies the encoding which is to be used for the file. Any encoding that encodes to and decodes
from bytes is allowed, and the data types supported by the file methods depend on the codec used.

errors may be given to define the error handling. It defaults to ’ strict’ which causes a ValueError
to be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to line buffered.

codecs .EncodedFile (file, data_encoding, file_encoding=None, errors=’strict’)
Return a St reamRecoder instance, a wrapped version of file which provides transparent transcoding.
The original file is closed when the wrapped version is closed.

Data written to the wrapped file is decoded according to the given data_encoding and then written to
the original file as bytes using file_encoding. Bytes read from the original file are decoded according to
file_encoding, and the result is encoded using data_encoding.

If file_encoding is not given, it defaults to data_encoding.

errors may be given to define the error handling. It defaults to ’ strict’, which causes ValueError to
be raised in case an encoding error occurs.

7.2. codecs — Codec registry and base classes 139

The Python Library Reference, Release 3.5.0

codecs.iterencode (iterator, encoding, errors=’strict’, **kwargs)
Uses an incremental encoder to iteratively encode the input provided by iferator. This function is a gener-
ator. The errors argument (as well as any other keyword argument) is passed through to the incremental
encoder.

codecs.iterdecode (iterator, encoding, errors=’strict’, **kwargs)
Uses an incremental decoder to iteratively decode the input provided by iterator. This function is a gener-
ator. The errors argument (as well as any other keyword argument) is passed through to the incremental
decoder.

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

codecs .BOM

codecs .BOM_BE

codecs.BOM_LE

codecs.BOM_UTF8

codecs.BOM_UTF16

codecs.BOM_UTF1l6_BE

codecs.BOM_UTF16_LE

codecs .BOM_UTF32

codecs .BOM_UTF32_BE

codecs.BOM_UTF32_ LE
These constants define various byte sequences, being Unicode byte order marks (BOMs) for several encod-
ings. They are used in UTF-16 and UTF-32 data streams to indicate the byte order used, and in UTF-8
as a Unicode signature. BOM_UTF 16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the
platform’s native byte order, BOM is an alias for BOM_UTF 16, BOM_LE for BOM_UTF16_LE and BOM_BE
for BOM_UTF16_BE. The others represent the BOM in UTF-8 and UTF-32 encodings.

7.2.1 Codec Base Classes

The codecs module defines a set of base classes which define the interfaces for working with codec objects, and
can also be used as the basis for custom codec implementations.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols. Codec authors also need to define how the codec will handle encoding and decoding
errors.

Error Handlers

To simplify and standardize error handling, codecs may implement different error handling schemes by accepting
the errors string argument. The following string values are defined and implemented by all standard Python
codecs:

Value Meaning

"strict’ | Raise UnicodeError (or a subclass); this is the default. Implemented in
strict_errors ().

"ignore’ | Ignore the malformed data and continue without further notice. Implemented in
ignore_errors ().

The following error handlers are only applicable to fext encodings:

140 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.0

Value Meaning

"replace’ Replace with a suitable replacement marker; Python will use the official U+FFFD
REPLACEMENT CHARACTER for the built-in codecs on decoding, and ‘?” on encoding.
Implemented in replace_errors ().

" xmlcharrefr&Replace With the appropriate XML character reference (only for encoding). Implemented
in xmlcharrefreplace_errors ().

"backslashre®eptaeé with backslashed escape sequences. Implemented in
backslashreplace_errors ().

"namereplaceReplace with \N{ . . . } escape sequences (only for encoding). Implemented in
namereplace_errors().

" surrogatees&mpdecoding, replace byte with individual surrogate code ranging from U+DC80 to
U+DCFF. This code will then be turned back into the same byte when the
"surrogateescape’ error handler is used when encoding the data. (See PEP 383 for
more.)

In addition, the following error handler is specific to the given codecs:

Value Codecs Meaning
" surrogatjewtf8sutf-16, utf-32, utf-16-be, | Allow encoding and decoding of surrogate codes. These
utf-16-le, utf-32-be, utf-32-le codecs normally treat the presence of surrogates as an error.

New in version 3.1: The ' surrogateescape’ and ' surrogatepass’ error handlers.

Changed in version 3.4: The ' surrogatepass’ error handlers now works with utf-16* and utf-32* codecs.
New in version 3.5: The ' namereplace’ error handler.

Changed in version 3.5: The ' backslashreplace’ error handlers now works with decoding and translating.
The set of allowed values can be extended by registering a new named error handler:

codecs.register_error (name, error_handler)
Register the error handling function error_handler under the name name. The error_handler argument will
be called during encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding, error_handler will be called with a UnicodeEncodeError instance, which contains in-
formation about the location of the error. The error handler must either raise this or a different exception, or
return a tuple with a replacement for the unencodable part of the input and a position where encoding should
continue. The replacement may be either st r or bytes. If the replacement is bytes, the encoder will sim-
ply copy them into the output buffer. If the replacement is a string, the encoder will encode the replacement.
Encoding continues on original input at the specified position. Negative position values will be treated as
being relative to the end of the input string. If the resulting position is out of bound an IndexError will
be raised.

Decoding and translating works similarly, except UnicodeDecodeError or
UnicodeTranslateError will be passed to the handler and that the replacement from the error
handler will be put into the output directly.

Previously registered error handlers (including the standard error handlers) can be looked up by name:

codecs.lookup_error (name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.
The following standard error handlers are also made available as module level functions:

codecs.strict_errors (exception)
Implements the * strict’ error handling: each encoding or decoding error raises a UnicodeError.

codecs.replace_errors (exception)
Implements the ' replace’ error handling (for fext encodings only): substitutes ’ ?’ for encoding errors
(to be encoded by the codec), and \uf££d’ (the Unicode replacement character) for decoding errors.

codecs.ignore_errors (exception)
Implements the ’ ignore’ error handling: malformed data is ignored and encoding or decoding is contin-
ued without further notice.

7.2. codecs — Codec registry and base classes 141

http://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.5.0

codecs.xmlcharrefreplace_errors (exception)
Implements the ' xmlcharrefreplace’ error handling (for encoding with text encodings only): the
unencodable character is replaced by an appropriate XML character reference.

codecs.backslashreplace_errors (exception)
Implements the ' backslashreplace’ error handling (for fext encodings only): malformed data is
replaced by a backslashed escape sequence.

codecs.namereplace_errors (exception)
Implements the ' namereplace’ error handling (for encoding with fext encodings only): the unencodable
character is replaced by a \N{ . . . } escape sequence.

New in version 3.5.

Stateless Encoding and Decoding

The base Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

Codec.encode (input[, errors])
Encodes the object input and returns a tuple (output object, length consumed). For instance, fext encod-
ing converts a string object to a bytes object using a particular character set encoding (e.g., cp1252 or
is0-8859-1).

The errors argument defines the error handling to apply. It defaults to ’ strict’ handling.

The method may not store state in the Codec instance. Use St reamWriter for codecs which have to
keep state in order to make encoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

Codec.decode (input[, errors])
Decodes the object input and returns a tuple (output object, length consumed). For instance, for a text
encoding, decoding converts a bytes object encoded using a particular character set encoding to a string
object.

For text encodings and bytes-to-bytes codecs, input must be a bytes object or one which provides the read-
only buffer interface — for example, buffer objects and memory mapped files.

The errors argument defines the error handling to apply. It defaults to / st rict’ handling.

The method may not store state in the Codec instance. Use St reamReader for codecs which have to
keep state in order to make decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

Incremental Encoding and Decoding

The ITncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental
encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder
function, but with multiple calls to the encode () /decode () method of the incremental encoder/decoder. The
incremental encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode () /decode () method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following
methods which every incremental encoder must define in order to be compatible with the Python codec registry.

142 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.0

class codecs.IncrementalEncoder (errors=’strict’)
Constructor for an IncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors
keyword argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalEncoder object.

encode (object[,ﬁnal])
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode () final must be true (the default is false).

reset ()
Reset the encoder to the initial state. The output is discarded: call .encode (object,
final=True), passing an empty byte or text string if necessary, to reset the encoder and to get
the output.

IncrementalEncoder.getstate ()
Return the current state of the encoder which must be an integer. The implementation should make sure
that 0 is the most common state. (States that are more complicated than integers can be converted into an
integer by marshaling/pickling the state and encoding the bytes of the resulting string into an integer).

IncrementalEncoder.setstate (state)
Set the state of the encoder to state. state must be an encoder state returned by getstate ().

IncrementalDecoder Objects

The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following
methods which every incremental decoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalDecoder (errors=strict’)
Constructor for an IncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The ITncrementalDecoder may implement different error handling schemes by providing the errors
keyword argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalDecoder object.

decode (object[,ﬁnal])
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode () final must be true (the default is false). If final is true
the decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g.
because of incomplete byte sequences at the end of the input) it must initiate error handling just like
in the stateless case (which might raise an exception).

reset ()
Reset the decoder to the initial state.

getstate()
Return the current state of the decoder. This must be a tuple with two items, the first must be the
buffer containing the still undecoded input. The second must be an integer and can be additional state
info. (The implementation should make sure that O is the most common additional state info.) If this
additional state info is O it must be possible to set the decoder to the state which has no input buffered
and 0 as the additional state info, so that feeding the previously buffered input to the decoder returns

7.2. codecs — Codec registry and base classes 143

The Python Library Reference, Release 3.5.0

it to the previous state without producing any output. (Additional state info that is more complicated
than integers can be converted into an integer by marshaling/pickling the info and encoding the bytes
of the resulting string into an integer.)

setstate (state)
Set the state of the encoder to state. state must be a decoder state returned by get state ().

Stream Encoding and Decoding

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to
implement new encoding submodules very easily. See encodings.utf_8 for an example of how this is done.

StreamWriter Objects

The St reamWriter class is a subclass of Codec and defines the following methods which every stream writer
must define in order to be compatible with the Python codec registry.

class codecs.StreamWriter (stream, errors="strict’)
Constructor for a St reamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for writing text or binary data, as appropriate for the
specific codec.

The St reamWriter may implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamWriter
object.

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing the write () method). The
standard bytes-to-bytes codecs do not support this method.

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows
appending of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the St reamWriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects

The St reamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class codecs.StreamReader (stream, errors="strict’)
Constructor for a St reamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for reading text or binary data, as appropriate for the
specific codec.

144 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.0

The St reamReader may implement different error handling schemes by providing the errors keyword
argument. See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamReader
object.

The set of allowed values for the errors argument can be extended with register_error ().

read ([size[, chars[,ﬁrstline]]])
Decodes data from the stream and returns the resulting object.

The chars argument indicates the number of decoded code points or bytes to return. The read ()
method will never return more data than requested, but it might return less, if there is not enough
available.

The size argument indicates the approximate maximum number of encoded bytes or code points to
read for decoding. The decoder can modify this setting as appropriate. The default value -1 indicates
to read and decode as much as possible. This parameter is intended to prevent having to decode huge
files in one step.

The firstline flag indicates that it would be sufficient to only return the first line, if there are decoding
errors on later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed
within the definition of the encoding and the given size, e.g. if optional encoding endings or state
markers are available on the stream, these should be read too.

readline ([size[, keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s read () method.
If keepends is false line-endings will be stripped from the lines returned.

readlines ([sizehint[, keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries if
keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to
recover from decoding errors.

In addition to the above methods, the St reamReader must also inherit all other methods and attributes from the
underlying stream.

StreamReaderWriter Objects

The St reamReaderWriter is a convenience class that allows wrapping streams which work in both read and
write modes.

The design is such that one can use the factory functions returned by the 1ookup () function to construct the
instance.

class codecs.StreamReaderWriter (stream, Reader, Writer, errors)
Creates a St reamReaderWriter instance. stream must be a file-like object. Reader and Writer must
be factory functions or classes providing the St reamReader and St reamWriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of St reamReader and StreamiWriter
classes. They inherit all other methods and attributes from the underlying stream.

7.2. codecs — Codec registry and base classes 145

The Python Library Reference, Release 3.5.0

StreamRecoder Objects

The St reamRecoder translates data from one encoding to another, which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned by the 1ookup () function to construct the
instance.

class codecs.StreamRecoder (stream, encode, decode, Reader, Writer, errors)
Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work
on the frontend — the data visible to code calling read () and write (), while Reader and Writer work
on the backend — the data in stream.

You can use these objects to do transparent transcodings from e.g. Latin-1 to UTF-8 and back.
The stream argument must be a file-like object.

The encode and decode arguments must adhere to the Codec interface. Reader and Writer must be factory
functions or classes providing objects of the St reamReader and St reamWriter interface respectively.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of St reamReader and St reamWriter classes.
They inherit all other methods and attributes from the underlying stream.

7.2.2 Encodings and Unicode

Strings are stored internally as sequences of code points in range 0x0-0x10FFFF. (See PEP 393 for more details
about the implementation.) Once a string object is used outside of CPU and memory, endianness and how these
arrays are stored as bytes become an issue. As with other codecs, serialising a string into a sequence of bytes is
known as encoding, and recreating the string from the sequence of bytes is known as decoding. There are a variety
of different text serialisation codecs, which are collectivity referred to as text encodings.

The simplest text encoding (called * latin-1’ or ' iso—-8859-1") maps the code points 0-255 to the bytes
0x0-0xff, which means that a string object that contains code points above U+00FF can’t be encoded with
this codec. Doing so will raise a UnicodeEncodeError that looks like the following (although the de-
tails of the error message may differ): UnicodeEncodeError: 'latin-1’ codec can’t encode
character ’\ul234’ in position 3: ordinal not in range (256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all Unicode
code points and how these code points are mapped to the bytes 0x0-0x£f. To see how this is done simply open
e.g. encodings/cpl252.py (which is an encoding that is used primarily on Windows). There’s a string
constant with 256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 1114112 code points defined in Unicode. A simple and
straightforward way that can store each Unicode code point, is to store each code point as four consecutive bytes.
There are two possibilities: store the bytes in big endian or in little endian order. These two encodings are called
UTF-32-BE and UTF-32-LE respectively. Their disadvantage is that if e.g. you use UTF-32-BE on a little
endian machine you will always have to swap bytes on encoding and decoding. UTF-32 avoids this problem:
bytes will always be in natural endianness. When these bytes are read by a CPU with a different endianness, then
bytes have to be swapped though. To be able to detect the endianness of a UTF-16 or UTF—-32 byte sequence,
there’s the so called BOM (“Byte Order Mark™). This is the Unicode character U+FEFF. This character can be
prepended to every UTF-16 or UTF—-32 byte sequence. The byte swapped version of this character (0xFFFE)
is an illegal character that may not appear in a Unicode text. So when the first character in an UTF-16 or
UTF-32 byte sequence appears to be a U+FFFE the bytes have to be swapped on decoding. Unfortunately the
character U+FEFF had a second purpose as a ZERO WIDTH NO-BREAK SPACE: a character that has no width
and doesn’t allow a word to be split. It can e.g. be used to give hints to a ligature algorithm. With Unicode 4.0
using U+FEFF as a ZERO WIDTH NO-BREAK SPACE has been deprecated (with U+2060 (WORD JOINER)
assuming this role). Nevertheless Unicode software still must be able to handle U+FEFF in both roles: as a BOM
it’s a device to determine the storage layout of the encoded bytes, and vanishes once the byte sequence has been
decoded into a string; as a ZERO WIDTH NO-BREAK SPACE it’s a normal character that will be decoded like
any other.

146 Chapter 7. Binary Data Services

http://www.python.org/dev/peps/pep-0393

The Python Library Reference, Release 3.5.0

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists
of two parts: marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to
four 1 bits followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when
concatenated give the Unicode character):

Range Encoding
U-00000000...U-0000007F | OXXXXXXX
U-00000080...U-000007FF | 110xxxxx 10XxXXXXX

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxx 10XXXXXX
U-00010000 ... U-0010FFFF | 11110xxx 10xxxxxx 10xxxxxx 10XXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even if it’s
the first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a string.
Each charmap encoding can decode any random byte sequence. However that’s not possible with UTF-8, as UTF-
8 byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the reliability with which
a UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python 2.5 calls "ut £-8-sig")
for its Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 encoded BOM
(which looks like this as a byte sequence: Oxef, Oxbb, 0xbf) is written. As it’s rather improbable that any
charmap encoded file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in i50-8859-1), this increases the probability that a ut f-8-sig encoding can be correctly guessed from the
byte sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte
sequence, but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write Oxef,
Oxbb, O0xbf as the first three bytes to the file. On decoding ut £-8-sig will skip those three bytes if they appear
as the first three bytes in the file. In UTF-8, the use of the BOM is discouraged and should generally be avoided.

7.2.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for
which the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive.
Notice that spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid
aliases; therefore, e.g. " ut £-8’ is a valid alias for the " ut £_8’ codec.

CPython implementation detail: Some common encodings can bypass the codecs lookup machinery to improve
performance. These optimization opportunities are only recognized by CPython for a limited set of aliases: utf-8,
utf8, latin-1, latinl, is0-8859-1, mbcs (Windows only), ascii, utf-16, and utf-32. Using alternative spellings for
these encodings may result in slower execution.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

e an ISO 8859 codeset

* a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control
characters with additional graphic characters

* an IBM EBCDIC code page

e an IBM PC code page, which is ASCII compatible
\ Continued on next page |

7.2. codecs — Codec registry and base classes 147

The Python Library Reference, Release 3.5.0

Table 7.1 — continued from previous page

| Codec | Aliases | Languages
Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional Chinese
bigShkscs big5-hkscs, hkscs Traditional Chinese
cp037 IBM037, IBM039 English
cp273 273, IBM273, csIBM273 German
New in version 3.4.
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cpS00 EBCDIC-CP-BE, EBCDIC-CP- | Western Europe
CH, IBM500
cp720 Arabic
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Mace-
donian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM857 Turkish
cp858 858, IBMS858 Western Europe
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM&61 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norwegian
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional Chinese
cpl006 Urdu
cpl026 ibm1026 Turkish
cpl125 1125, ibm1125, cp866u, ruscii Ukrainian
New in version 3.4.
cpl140 ibm1140 Western Europe
cpl250 windows-1250 Central and Eastern Europe
cpl251 windows-1251 Bulgarian, Byelorussian, Mace-
donian, Russian, Serbian
cpl252 windows-1252 Western Europe
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows-1256 Arabic
cpl257 windows-1257 Baltic languages
cpl258 windows-1258 Vietnamese
cp65001 Windows only: Windows UTF-8
(CP_UTF8)
New in version 3.3.
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese

Continued on next page

148

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.0

Table 7.1 — continued from previous page

Codec Aliases Languages
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks_c- | Korean
5601, ks_c-5601-1987, ksx1001,
ks_x-1001
gb2312 chinese, csis058gb231280, | Simplified Chinese
euc- cn, euccn, eucgb2312-cn,
gb2312-1980, gb2312-80, iso-
ir-58
gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese
1802022_jp ¢sis02022jp, 1s02022jp, is0-2022- | Japanese
Jp
1502022 _jp_1 1502022jp-1, is0-2022-jp-1 Japanese

i502022_jp_2
i502022_jp_2004

1s02022_jp_3
1502022 _jp_ext
1802022_kr

latin_1

is08859_2
is08859_3
1s08859_4
1s08859_5

is08859_6
1808859_7
i808859_8
is08859_9
is08859_10
is08859_13
1508859 14
is08859_15
1s08859_16
johab
koi8_r
koi8_t

koi8_u
kz1048

mac_cyrillic

mac_greek
mac_iceland
mac_latin2
mac_roman
mac_turkish
ptcpl54

shift_jis

i502022jp-2, i50-2022-jp-2

1502022jp-2004,
2004
1502022jp-3, is0-2022-jp-3
1502022jp-ext, is0-2022-jp-ext
¢sis02022kr, is02022kr, is0-2022-
kr

1s0-8859-1, is08859-1,
cp819, latin, latinl, L1
1s0-8859-2, latin2, L2
180-8859-3, latin3, L3
180-8859-4, latin4, L4
150-8859-5, cyrillic

150-2022-jp-

8859,

180-8859-6, arabic
150-8859-7, greek, greek8
150-8859-8, hebrew
1s0-8859-9, latin5, L5
150-8859-10, latin6, L6
150-8859-13, latin7, L7
150-8859-14, latin8, L8
180-8859-15, latin9, L9
180-8859-16, latin10, L10
cpl361, ms1361

kz_1048, strk1048_2002, rk1048
maccyrillic

macgreek

maciceland

maclatin2, maccentraleurope
macroman, macintosh
macturkish

csptepl54, pt154, cpl54, cyrillic-
asian

csshiftjis, shiftjis, sjis, s_jis

Japanese, Korean, Simplified Chi-
nese, Western Europe, Greek
Japanese

Japanese
Japanese
Korean

West Europe

Central and Eastern Europe
Esperanto, Maltese

Baltic languages
Bulgarian, Byelorussian, Mace-
donian, Russian, Serbian
Arabic

Greek

Hebrew

Turkish

Nordic languages

Baltic languages

Celtic languages

Western Europe
South-Eastern Europe
Korean

Russian

Tajik

New in version 3.5.
Ukrainian

Kazakh

New in version 3.5.
Bulgarian, Byelorussian, Mace-
donian, Russian, Serbian
Greek

Icelandic

Central and Eastern Europe
Western Europe

Turkish

Kazakh

Japanese

Continued on next page

7.2. codecs — Codec registry and base classes

149

The Python Library Reference, Release 3.5.0

Changed in version 3.4: The utf-16* and utf-32* encoders no longer allow surrogate code points (U+D800—
U+DFFF) to be encoded. The utf-32* decoders no longer decode byte sequences that correspond to surrogate

Table 7.1 — continued from previous page

Codec Aliases Languages
shift_jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese

shift_jisx0213 shiftjisx0213, sjisx0213, | Japanese

s_jisx0213

utf_32 U32, utf32 all languages
utf _32_be UTF-32BE all languages
utf_32_le UTF-32LE all languages
utf_16 Ul16, utf16 all languages
utf_16_be UTF-16BE all languages
utf_16_le UTF-16LE all languages
utf_7 U7, unicode-1-1-utf-7 all languages
utf_8 U8, UTF, utf8 all languages
utf_8_sig all languages

code points.

7.2.4 Python Specific Encodings

A number of predefined codecs are specific to Python, so their codec names have no meaning outside Python.
These are listed in the tables below based on the expected input and output types (note that while text encodings
are the most common use case for codecs, the underlying codec infrastructure supports arbitrary data transforms
rather than just text encodings). For asymmetric codecs, the stated purpose describes the encoding direction.

Text Encodings

The following codecs provide str to bytes encoding and bytes-like object to str decoding, similar to the

Unicode text encodings.

150

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.0

Codec Aliases Purpose

idna Implements RFC 3490, see
also encodings.idna. Only
errors='strict’ is sup-

ported.
mbcs dbcs Windows only: Encode operand
according to the ANSI codepage
(CP_ACP)
palmos Encoding of PalmOS 3.5
punycode Implements RFC 3492. Stateful
codecs are not supported.
raw_unicode_escape Latin-1 encoding with \uXXXX

and \UXXXXXXXX for other code
points. Existing backslashes are
not escaped in any way. It is used
in the Python pickle protocol.
undefined Raise an exception for all conver-
sions, even empty strings. The er-
ror handler is ignored.
unicode_escape Encoding suitable as the contents
of a Unicode literal in ASCII-
encoded Python source code, ex-
cept that quotes are not es-
caped. Decodes from Latin-1
source code. Beware that Python
source code actually uses UTF-8
by default.

unicode_internal Return the internal representation
of the operand. Stateful codecs
are not supported.

Deprecated since version 3.3:
This representation is obsoleted
by PEP 393.

Binary Transforms

The following codecs provide binary transforms: bytes-like object to bytes mappings. They are not supported
by bytes.decode () (which only produces st r output).

7.2. codecs — Codec registry and base classes 151

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://www.python.org/dev/peps/pep-0393

The Python Library Reference, Release 3.5.0

Codec

Alig

sert

pos

En-
ecod
/

de-
cod

base64_codec !

bz2_codec

hex_codec

base
baseg

bz2

hex

er

er

6€on- bade64 .b6dencode ()

_Gdrt

operahdige 64 .b64decode ()

to

MIME
base64

(the

cludes

’ \1’ ’)
Changed

ver-
sion
3.4:
ac-

cepts

any

byte

like
ob-
Jject
as
in-
put
for
en-
cod
ing
and
de-
cod
ing

Com-bz4.compress ()

press/
bz4.decompress ()

the

operand

ing
bz2

Con- bage64 .bl6encode ()

vert|

operahd

to
hex
adeg

mal

n

e64.blbedecode ()

152

rep-
re-
sen-

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.5.0

New in version 3.2: Restoration of the binary transforms.
Changed in version 3.4: Restoration of the aliases for the binary transforms.
Text Transforms

The following codec provides a text transform: a st r to st r mapping. It is not supported by st r.encode ()
(which only produces bytes output).

Codec | Aliases | Purpose
rot_13 rotl3 Returns the Caesar-cypher encryption of the operand

New in version 3.2: Restoration of the rot_ 13 text transform.

Changed in version 3.4: Restoration of the rot 13 alias.

7.2.5 encodings.idna — Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492
(Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode
encoding and stringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name
containing non-ASCII characters (such as www.Alliancefrancaise.nu) is converted into an ASCII-
compatible encoding (ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the do-
main name is then used in all places where arbitrary characters are not allowed by the protocol, such as DNS
queries, HTTP Host fields, and so on. This conversion is carried out in the application; if possible invisible to
the user: The application should transparently convert Unicode domain labels to IDNA on the wire, and convert
back ACE labels to Unicode before presenting them to the user.

Python supports this conversion in several ways: the idna codec performs conversion between Unicode and
ACE, separating an input string into labels based on the separator characters defined in section 3.1 (1) of RFC
3490 and converting each label to ACE as required, and conversely separating an input byte string into labels
based on the . separator and converting any ACE labels found into unicode. Furthermore, the socket module
transparently converts Unicode host names to ACE, so that applications need not be concerned about converting
host names themselves when they pass them to the socket module. On top of that, modules that have host names
as function parameters, such as http.client and ftplib, accept Unicode host names (http.client then
also transparently sends an IDNA hostname in the Host field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode
is performed: Applications wishing to present such host names to the user should decode them to Unicode.

The module encodings. idna also implements the nameprep procedure, which performs certain normaliza-
tions on host names, to achieve case-insensitivity of international domain names, and to unify similar characters.
The nameprep functions can be used directly if desired.

encodings.idna.nameprep (label)
Return the nameprepped version of label. The implementation currently assumes query strings, So
AllowUnassignedis true.

encodings.idna.ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

7.2.6 encodings.mbcs — Windows ANSI codepage

Encode operand according to the ANSI codepage (CP_ACP).
Auwailability: Windows only.

7.2. codecs — Codec registry and base classes 153

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3490#section-3.1
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html

The Python Library Reference, Release 3.5.0

Changed in version 3.3: Support any error handler.

Changed in version 3.2: Before 3.2, the errors argument was ignored; ' replace’ was always used to encode,
and ' ignore’ to decode.

7.2.7 encodings.utf 8_sig— UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM will be prepended
to the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte stream).
For decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

154 Chapter 7. Binary Data Services

CHAPTER
EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-
type arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particular, dict, 1ist, set and frozenset, and tuple.
The st r class is used to hold Unicode strings, and the bytes class is used to hold binary data.

The following modules are documented in this chapter:

8.1 datetime — Basic date and time types

Source code: Lib/datetime.py

The datetime module supplies classes for manipulating dates and times in both simple and complex ways.
While date and time arithmetic is supported, the focus of the implementation is on efficient attribute extraction for
output formatting and manipulation. For related functionality, see also the t ime and calendar modules.

There are two kinds of date and time objects: “naive” and “aware”.

An aware object has sufficient knowledge of applicable algorithmic and political time adjustments, such as time
zone and daylight saving time information, to locate itself relative to other aware objects. An aware object is used
to represent a specific moment in time that is not open to interpretation .

A naive object does not contain enough information to unambiguously locate itself relative to other date/time
objects. Whether a naive object represents Coordinated Universal Time (UTC), local time, or time in some other
timezone is purely up to the program, just like it is up to the program whether a particular number represents
metres, miles, or mass. Naive objects are easy to understand and to work with, at the cost of ignoring some
aspects of reality.

For applications requiring aware objects, datet ime and t ime objects have an optional time zone information
attribute, t zinfo, that can be set to an instance of a subclass of the abstract tzinfo class. These tzinfo
objects capture information about the offset from UTC time, the time zone name, and whether Daylight Saving
Time is in effect. Note that only one concrete t zinfo class, the t imezone class, is supplied by the datet ime
module. The t imezone class can represent simple timezones with fixed offset from UTC, such as UTC itself or
North American EST and EDT timezones. Supporting timezones at deeper levels of detail is up to the application.
The rules for time adjustment across the world are more political than rational, change frequently, and there is no
standard suitable for every application aside from UTC.

The datet ime module exports the following constants:

datetime.MINYEAR
The smallest year number allowed in a date or datet ime object. MINYEAR is 1.

datetime .MAXYEAR
The largest year number allowed in a date or datet ime object. MAXYEAR is 9999.

See also:

Module calendar General calendar related functions.

VIf, that is, we ignore the effects of Relativity

155

https://hg.python.org/cpython/file/3.5/Lib/datetime.py

The Python Library Reference, Release 3.5.0

Module time Time access and conversions.

8.1.1 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.

class datetime.time
Anidealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds
(there is no notion of “leap seconds” here). Attributes: hour, minute, second, microsecond, and
tzinfo.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second,
microsecond,and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, time, or datetime instances to microsecond
resolution.

class datetime.tzinfo
An abstract base class for time zone information objects. These are used by the datetime and time
classes to provide a customizable notion of time adjustment (for example, to account for time zone and/or
daylight saving time).

class datetime.timezone
A class that implements the t zinfo abstract base class as a fixed offset from the UTC.
New in version 3.2.

Objects of these types are immutable.

Objects of the date type are always naive.

An object of type t ime or datet ime may be naive or aware. A datetime objectd is aware if d.tzinfo is
not Noneandd.tzinfo.utcoffset (d) does not return None. If d.tzinfois None,orif d.tzinfois
not None butd.tzinfo.utcoffset (d) returns None, d is naive. A t ime object ¢ is aware if t . tzinfo
isnotNoneand t.tzinfo.utcoffset (None) does not return None. Otherwise, ¢ is naive.

The distinction between naive and aware doesn’t apply to t imede 1t a objects.
Subclass relationships:

object
timedelta
tzinfo
timezone
time
date
datetime

8.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class datetime.timedelta (days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0,

hours=0, weeks=0)
All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive or

negative.
Only days, seconds and microseconds are stored internally. Arguments are converted to those units:

*A millisecond is converted to 1000 microseconds.

156 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

*A minute is converted to 60 seconds.
*An hour is converted to 3600 seconds.
*A week is converted to 7 days.
and days, seconds and microseconds are then normalized so that the representation is unique, with
*0 <= microseconds < 1000000
°0 <= seconds < 3600%24 (the number of seconds in one day)
*—999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond using round-half-to-even
tiebreaker. If no argument is a float, the conversion and normalization processes are exact (no information
is lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.
Note that normalization of negative values may be surprising at first. For example,
>>> from datetime import timedelta
>>> d = timedelta (microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)
Class attributes are:

timedelta.min
The most negative t imede lta object, timedelta (-999999999).

timedelta.max
The most positive timedelta object, timedelta (days=999999999, hours=23,
minutes=59, seconds=59, microseconds=999999).

timedelta.resolution

The smallest possible difference between non-equal timedelta objects,
timedelta (microseconds=1).

Note that, because of normalization, timedelta.max > —timedelta.min. —-timedelta.max is not
representable as a t imedelta object.

Instance attributes (read-only):

Attribute Value

days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds | Between 0 and 999999 inclusive

Supported operations:

8.1. datetime — Basic date and time types 157

The Python Library Reference, Release 3.5.0

Operation Result
tl = t2 + t3 Sum of ¢2 and 3. Afterwards ¢/-t2 ==t3 and t1-t3 == t2 are true. (1)
tl = t2 - t3 Difference of 2 and ¢3. Afterwards t1 == 2 - ¢t3 and 2 ==t + {3 are true. (1)
tl = t2 » 1 or Delta multiplied by an integer. Afterwards ¢/ // i ==12 is true, provided 1 != 0.
tl = 1 % t2
In general, t1 *i==1tI * (i-1) + tI is true. (1)
tl = t2 « £ or Delta multiplied by a float. The result is rounded to the nearest multiple of
tl = £ * t2 timedelta.resolution using round-half-to-even.
f=t2 / t3 Division (3) of 2 by #3. Returns a £ 1oat object.
tl = t2 / £ or Delta divided by a float or an int. The result is rounded to the nearest multiple of
tl = t2 / 1 timedelta.resolution using round-half-to-even.
tl = t2 // iortl | The flooris computed and the remainder (if any) is thrown away. In the second
=t2 // t3 case, an integer is returned. (3)
tl = t2 % t3 The remainder is computed as a t imedelta object. (3)
q, r = Computes the quotient and the remainder: g = t1 // t2@3)andr = tl1 %

divmod (t1,
+t1

t2)

t2.qisaninteger and ris a t imedelta object.
Returns a t imedelta object with the same value. (2)

-tl equivalent to t imedelta(-tl.days, -tl.seconds, -tl.microseconds), and to t1*
-1 (D)

abs (t) equivalent to +7 when t .days >= 0,andto-f when t.days < 0.(2)

str(t) Returns a string in the form [D day([s],][H]H:MM:SS[.UUUUUU],
where D is negative for negative t. (5)

repr (t) Returns a string in the form datetime.timedelta (D[, SI[, Ull),
where D is negative for negative t. (5)

Notes:

1.

A

This is exact, but may overflow.

This is exact, and cannot overflow.

Division by 0 raises ZeroDivisionError.
-timedelta.max is not representable as a t imede 1t a object.

String representations of t imede 1t a objects are normalized similarly to their internal representation. This
leads to somewhat unusual results for negative timedeltas. For example:

>>> timedelta (hours=-5)
datetime.timedelta (-1,
>>> print (_)

-1 day, 19:00:00

68400)

In addition to the operations listed above t imedelta objects support certain additions and subtractions with
date and datetime objects (see below).

Changed in version 3.2: Floor division and true division of a t imede 1t a object by another t imede1ta object
are now supported, as are remainder operations and the divmod () function. True division and multiplication of
atimedelta object by a f1loat object are now supported.

Comparisons of t imedelta objects are supported with the t imedelta object representing the smaller dura-
tion considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the
default comparison by object address, when a t imedelta object is compared to an object of a different type,
TypeError is raised unless the comparison is == or ! =. The latter cases return False or True, respectively.

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts,
atimedelta object is considered to be true if and only if it isn’t equal to t imedelta (0).

Instance methods:

timedelta.total_seconds ()

Return the total number of seconds contained in the duration. to td /

timedelta (seconds=1).

Equivalent

158

Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

Note that for very large time intervals (greater than 270 years on most platforms) this method will lose
microsecond accuracy.

New in version 3.2.
Example usage:

>>> from datetime import timedelta
>>> year = timedelta (days=365)
>>> another_year = timedelta (weeks=40, days=84, hours=23,
minutes=50, seconds=600) # adds up to 365 days
>>> year.total_seconds ()

31536000.0

>>> year == another_year
True

>>> ten_years = 10 % year

>>> ten_years, ten_years.days // 365
(datetime.timedelta (3650), 10)

>>> nine_years = ten_years - year

>>> nine_years, nine_years.days // 365
(datetime.timedelta (3285), 9)

>>> three_years = nine_years // 3;

>>> three_years, three_years.days // 365
(datetime.timedelta (1095), 3)

>>> abs (three_years - ten_years) == 2 x three_years + year
True

8.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called
day number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and
Reingold’s book Calendrical Calculations, where it’s the base calendar for all computations. See the book for
algorithms for converting between proleptic Gregorian ordinals and many other calendar systems.

class datet ime.date (year, month, day)
All arguments are required. Arguments may be integers, in the following ranges:

*MINYEAR <= year <= MAXYEAR
*l <= month <= 12
*] <= day <= number of days in the given month and year
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod date.today ()
Return the current local date. This is equivalent to date. fromtimestamp (time.time ()).

classmethod date . fromtimestamp (timestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by t ime . time (). This
may raise OverflowError, if the timestamp is out of the range of values supported by the platform C
localtime () function, and OSError on localtime () failure. It’s common for this to be restricted
to years from 1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion
of a timestamp, leap seconds are ignored by fromt imestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of
the range of values supported by the platform C localtime () function. Raise OSError instead of
ValueError on localtime () failure.

classmethod date. fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal

8.1. datetime — Basic date and time types 159

The Python Library Reference, Release 3.5.0

1. ValueError is raised unless 1 <= ordinal <= date.max.toordinal (). For any date d,
date.fromordinal (d.toordinal()) ==

Class attributes:

date.min

The earliest representable date, date (MINYEAR, 1, 1).

date.max

The latest representable date, date (MAXYEAR, 12, 31).

date.resolution

The smallest possible difference between non-equal date objects, t imedelta (days=1).

Instance attributes (read-only):

date.year

Between MINYEAR and MAXYEAR inclusive.

date.month

Between 1 and 12 inclusive.

date.day

Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result

date2 = datel + date2 is t imedelta.days days removed from datel. (1)

timedelta

date2 = datel - Computes date2 such that date2 + timedelta == datel. (2)

timedelta

timedelta = datel - 3)

date?2

datel < date2 datel is considered less than date2 when datel precedes date?2 in time.
“4)

Notes:

1. date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.days

< 0. Afterward date2 - datel == timedelta.days. timedelta.seconds and
timedelta.microseconds are ignored. OverflowError is raised if date2.year would be
smaller than MINYEAR or larger than MAXYEAR.

2. This isn’t quite equivalent to datel + (-timedelta), because -timedelta in isolation can overflow in cases

where datel - timedelta does not. timedelta.seconds and timedelta.microseconds are ig-
nored.

3. This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are O, and date2 +

timedelta == datel after.

In other words, datel < date? if and only if datel.toordinal () < date2.toordinal().
In order to stop comparison from falling back to the default scheme of comparing object addresses, date
comparison normally raises TypeError if the other comparand isn’t also a date object. However,
Not Implemented is returned instead if the other comparand has a t imetuple () attribute. This hook
gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a date
object is compared to an object of a different type, TypeError is raised unless the comparison is == or
! =. The latter cases return False or True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all date objects are considered to be true.

Instance methods:

date.replace (year, month, day)

Return a date with the same value, except for those parameters given new values by whichever keyword
arguments are specified. For example, if d == date (2002, 12, 31),thend.replace (day=26)
== date (2002, 12, 26).

160

Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

date.timetuple ()

Return a time.struct_time such as returned by time.localtime (). The hours,
minutes and seconds are 0, and the DST flag is -1. d.timetuple () 1is equivalent
to time.struct_time((d.year, d.month, d.day, 0, 0, 0, d.weekday(), yday,
-1)), where yday = d.toordinal () - date(d.year, 1, 1).toordinal() + 1 is the

day number within the current year starting with 1 for January 1st.

date.toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date
objectd, date.fromordinal (d.toordinal()) ==

date.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002,
12, 4) .weekday () == 2,a Wednesday. See also i soweekday ().

date.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002,
12, 4).isoweekday () == 3, a Wednesday. See also weekday (), isocalendar ().

date.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. See
http://www.staff.science.uu.nl/~gent0113/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday.
The first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This
is called week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004, so that date (2003, 12, 29) .isocalendar () == (2004, 1,
1) and date (2004, 1, 4) .isocalendar () == (2004, 1, 7).

date.isoformat ()
Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD’. For example, date (2002,
12, 4) .isoformat () == "2002-12-04".

date.__str_ ()
For adate d, str (d) isequivalentto d.isoformat ().

date.ctime ()
Return a string representing the date, for example date (2002, 12,
4) .ctime () == "Wed Dec 4 00:00:00 2002". d.ctime () is equivalent to
time.ctime (time.mktime (d.timetuple ())) on platforms where the native C ctime ()
function (which t ime.ctime () invokes, but which date.ctime () does not invoke) conforms to the
C standard.

date.strftime (format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to
hours, minutes or seconds will see 0 values. For a complete list of formatting directives, see strftime() and
strptime() Behavior.

date._ format__ (format)
Same as date.strftime (). This makes it possible to specify format string for a date object when
using str. format (). For a complete list of formatting directives, see strftime() and strptime() Behavior.

Example of counting days to an event:

>>> import time

>>> from datetime import date

>>> today = date.today ()

>>> today

datetime.date (2007, 12, 5)

>>> today == date.fromtimestamp (time.time ())
True

8.1. datetime — Basic date and time types 161

http://www.staff.science.uu.nl/~gent0113/calendar/isocalendar.htm

The Python Library Reference, Release 3.5.0

>>> my_birthday = date(today.year, 6, 24)

>>> if my_birthday < today:

ce my_birthday = my_birthday.replace (year=today.year + 1)
>>> my_birthday

datetime.date (2008, 6, 24)

>>> time_to_birthday = abs (my_birthday - today)

>>> time_to_birthday.days

202

Example of working with date:

>>> from datetime import date

>>> d = date.fromordinal (730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date (2002, 3, 11)

>>> t = d.timetuple ()

>>> for 1 in t:

c.. print (i)

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year
-1

>>> jc = d.isocalendar ()

>>> for i in ic:

c. print (i)

2002 # ISO year

11 # ISO week number

1 # ISO day number (1 = Monday)
>>> d.isoformat ()

'2002-03-11"

>>> d.strftime ("$d/sm/%y")

'11/03/02"

>>> d.strftime ("%A %d. %B %Y")

'Monday 11. March 2002'

>>> 'The {1} is {0:%d}, the {2} is {0:%B}.'.format (d, "day", "month")
'The day is 11, the month is March.'

8.1.4 datetime Objects

A datetime object is a single object containing all the information from a date object and a t ime object.
Like a date object, datet ime assumes the current Gregorian calendar extended in both directions; like a time
object, datet ime assumes there are exactly 3600%*24 seconds in every day.

Constructor:

class datetime.datetime (year, month, day, hour=0, minute=0, second=0, microsecond=0, tz-
info=None)
The year, month and day arguments are required. zinfo may be None, or an instance of a t zinfo subclass.
The remaining arguments may be integers, in the following ranges:

*MINYEAR <= year <= MAXYEAR
*]l <= month <= 12

¢l <= day <= number of days in the given month and year

162 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

*0 <= hour < 24
*0 <= minute < 60
*0 <= second < 60
*0 <= microsecond < 1000000
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod datetime.today ()
Return the current local datetime, with tzinfo None. This is equivalent to
datetime.fromtimestamp (time.time ()). See also now (), fromtimestamp ().

classmethod datetime .now (fz=None)
Return the current local date and time. If optional argument #z is None or not specified, this is
like today (), but, if possible, supplies more precision than can be gotten from going through
a time.time () timestamp (for example, this may be possible on platforms supplying the C
gettimeofday () function).

Else #z must be an instance of a class tzinfo subclass, and the current date
and time are converted to #z‘s time zone. In this case the result is equivalent to
tz.fromutc (datetime.utcnow () .replace (tzinfo=tz)). See also today (), utcnow ().

classmethod datetime.utcnow ()
Return the current UTC date and time, with t zinfo None. This is like now (), but returns the current
UTC date and time, as a naive datetime object. An aware current UTC datetime can be obtained by
calling datetime.now (timezone.utc). See also now ().

classmethod datet ime . fromtimestamp (timestamp, tz=None)
Return the local date and time corresponding to the POSIX timestamp, such as is returned by
time.time (). If optional argument ¢z is None or not specified, the timestamp is converted to the plat-
form’s local date and time, and the returned datet ime object is naive.

Else 1z must be an instance of a «class tzinfo subclass, and the times-
tamp is converted to #z‘'s time zone. In this case the result is equivalent to
tz.fromutc (datetime.utcfromtimestamp (timestamp) .replace (tzinfo=tz)).

fromtimestamp () may raise OverflowError, if the timestamp is out of the range of values sup-
ported by the platform C localtime () or gmtime () functions, and OSError on localtime () or
gmtime () failure. It’s common for this to be restricted to years in 1970 through 2038. Note that on
non-POSIX systems that include leap seconds in their notion of a timestamp, leap seconds are ignored
by fromtimestamp (), and then it’s possible to have two timestamps differing by a second that yield
identical datet ime objects. See also utcfromtimestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C localtime () or gmtime () functions. Raise OSError
instead of ValueError on localtime () or gmtime () failure.

classmethod datetime.utcfromtimestamp (timestamp)
Return the UTC datet ime corresponding to the POSIX timestamp, with t zinfo None. This may raise
OverflowError, if the timestamp is out of the range of values supported by the platform C gmt ime ()
function, and OSError on gmtime () failure. It’s common for this to be restricted to years in 1970
through 2038.

To get an aware datet ime object, call fromt imestamp () :
datetime.fromtimestamp (timestamp, timezone.utc)
On the POSIX compliant platforms, it is equivalent to the following expression:

datetime (1970, 1, 1, tzinfo=timezone.utc) + timedelta (seconds=timestamp)

8.1. datetime — Basic date and time types 163

The Python Library Reference, Release 3.5.0

except the latter formula always supports the full years range: between MINYEAR and MAXYEAR inclusive.

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out
of the range of values supported by the platform C gmtime () function. Raise OSError instead of
ValueError on gmtime () failure.

classmethod datetime. fromordinal (ordinal)
Return the datetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1. ValueError israised unless 1 <= ordinal <= datetime.max.toordinal (). The
hour, minute, second and microsecond of the result are all 0, and t zinfo is None.

classmethod datetime.combine (date, time)
Return a new datet ime object whose date components are equal to the given date object’s, and whose
time components and t zinfo attributes are equal to the given t ime object’s. For any datet ime object
d,d == datetime.combine (d.date (), d.timetz()).Ifdateisa datetime object, its time
components and t zinfo attributes are ignored.

classmethod datetime . strptime (date_string, format)
Return a datetime corresponding to date_string, parsed according to format. This is equivalent to
datetime (x (time.strptime (date_string, format) [0:6])). ValueError is raised if
the date_string and format can’t be parsed by time.strptime () or if it returns a value which isn’t a
time tuple. For a complete list of formatting directives, see strftime() and strptime() Behavior.

Class attributes:

datetime.min
The earliest representable datetime, datetime (MINYEAR, 1, 1, tzinfo=None).

datetime.max
The latest representable datetime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

datetime.resolution
The smallest possible difference between non-equal datetime objects,
timedelta (microseconds=1).

Instance attributes (read-only):

datetime.year
Between MINYEAR and MAXYEAR inclusive.

datetime.month
Between 1 and 12 inclusive.

datetime.day
Between 1 and the number of days in the given month of the given year.

datetime.hour
In range (24).

datetime.minute
In range (60).

datetime.second
In range (60).

datetime.microsecond
In range (1000000).

datetime.tzinfo
The object passed as the #zinfo argument to the dat et ime constructor, or None if none was passed.

Supported operations:

164 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

Operation Result

datetime2 = datetimel + timedelta | (1)

datetime?2 datetimel - timedelta | (2)

timedelta = datetimel - datetime2 | (3)

datetimel < datetime?2 Compares datetime to datetime. (4)

1. datetime2 is a duration of timedelta removed from datetimel, moving forward in time if
timedelta.days > 0, or backward if timedelta.days < 0. The result has the same tzinfo at-
tribute as the input datetime, and datetime?2 - datetimel == timedelta after. OverflowError is raised if
datetime2.year would be smaller than MINYEAR or larger than MAXYEAR. Note that no time zone adjust-
ments are done even if the input is an aware object.

2. Computes the datetime?2 such that datetime2 + timedelta == datetimel. As for addition, the result has the
same tzinfo attribute as the input datetime, and no time zone adjustments are done even if the input is
aware. This isn’t quite equivalent to datetimel + (-timedelta), because -timedelta in isolation can overflow
in cases where datetimel - timedelta does not.

3. Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are
aware. If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same t zinfo attribute, the t zinfo attributes are ignored,
and the result is a t imedelta object f such that datetime2 + t == datetimel. No time zone
adjustments are done in this case.

If both are aware and have different t zinfo attributes, a—b acts as if a and b were first converted

to naive UTC datetimes first. The result is (a.replace (tzinfo=None) - a.utcoffset())
- (b.replace(tzinfo=None) - b.utcoffset ()) except that the implementation never over-
flows.

4. datetimel is considered less than datetime2 when datetimel precedes datetime?2 in time.

If one comparand is naive and the other is aware, TypeError is raised if an order comparison is attempted.
For equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same tzinfo attribute, the common tzinfo attribute
is ignored and the base datetimes are compared. If both comparands are aware and have different
tzinfo attributes, the comparands are first adjusted by subtracting their UTC offsets (obtained from
self.utcoffset ()).

Changed in version 3.3: Equality comparisons between naive and aware datet ime instances don’t raise
TypeError.

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses,
datetime comparison normally raises TypeError if the other comparand isn’t also a datet ime object.

However, Not Implemented is returned instead if the other comparand has a timetuple () attribute.
This hook gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a
datetime objectis compared to an object of a different type, TypeError is raised unless the comparison
is == or !=. The latter cases return False or True, respectively.

datetime objects can be used as dictionary keys. In Boolean contexts, all dat et ime objects are considered to
be true.

Instance methods:

datetime.date ()
Return date object with same year, month and day.

datetime.time ()
Return t ime object with same hour, minute, second and microsecond. t zinfo is None. See also method
timetz ().

datetime.timetz ()
Return t ime object with same hour, minute, second, microsecond, and tzinfo attributes. See also method
time ().

8.1. datetime — Basic date and time types 165

The Python Library Reference, Release 3.5.0

datetime.replace ([year[, month[, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]]]]

1)
Return a datetime with the same attributes, except for those attributes given new values by whichever key-

word arguments are specified. Note that t zinfo=None can be specified to create a naive datetime from
an aware datetime with no conversion of date and time data.

datetime.astimezone (1z=None)
Return a datet ime object with new t zinfo attribute ¢z, adjusting the date and time data so the result is
the same UTC time as self, but in #z°s local time.

If provided, ¢z must be an instance of a t zinfo subclass, andits utcof £set () and dst () methods must
not return None. self must be aware (self.tzinfo mustnotbe None,and self.utcoffset () must
not return None).

If called without arguments (or with t z=None) the system local timezone is assumed. The tzinfo
attribute of the converted datetime instance will be set to an instance of t imezone with the zone name and
offset obtained from the OS.

If self.tzinfois tz, self.astimezone (tz) is equal to self: no adjustment of date or time data
is performed. Else the result is local time in time zone #z, representing the same UTC time as self: after
astz = dt.astimezone (tz),astz - astz.utcoffset () will usually have the same date and
time data as dt — dt.utcoffset (). The discussion of class t zinfo explains the cases at Daylight
Saving Time transition boundaries where this cannot be achieved (an issue only if #z models both standard
and daylight time).

If you merely want to attach a time zone object #z to a datetime dr without adjustment of date and time
data, use dt . replace (tzinfo=tz). If you merely want to remove the time zone object from an aware
datetime dr without conversion of date and time data, use dt . replace (tzinfo=None).

Note that the default tzinfo. fromutc () method can be overridden in a t zin fo subclass to affect the
result returned by astimezone (). Ignoring error cases, astimezone () acts like:

def astimezone(self, tz):
if self.tzinfo is tz:
return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()) .replace(tzinfo=tz)
Convert from UTC to tz's local time.
return tz.fromutc (utc)

Changed in version 3.3: 7z now can be omitted.

datetime.utcoffset ()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset (self), and raises an
exception if the latter doesn’t return None, or a t imede 1t a object representing a whole number of minutes
with magnitude less than one day.

datetime.dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst (self), and raises an exception
if the latter doesn’t return None, or a timedelta object representing a whole number of minutes with
magnitude less than one day.

datetime.tzname ()
If tzinfo is None, returns None, else returns self.tzinfo.tzname (self), raises an exception if
the latter doesn’t return None or a string object,

datetime.timetuple ()
Return a time.struct_time such as returned by time.localtime (). d.timetuple() is
equivalent to time.struct_time((d.year, d.month, d.day, d.hour, d.minute,
d.second, d.weekday(), yday, dst)), where yday = d.toordinal () -
date(d.year, 1, 1).toordinal() + 1 is the day number within the current year starting
with 1 for January 1st. The tm_1isdst flag of the result is set according to the dst () method: tzinfo

166 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

is None or dst () returns None, tm_isdst is set to —1; else if dst () returns a non-zero value,
tm_isdstissetto 1;else tm_isdst issetto 0.

datetime.utctimetuple ()
If datetime instance d is naive, this is the same as d.timetuple () except that tm_isdst is forced
to O regardless of what d . dst () returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset (), and a
time.struct_time for the normalized time is returned. tm_isdst is forced to 0. Note that an
OverflowError may be raised if d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a
year boundary.

datetime.toordinal ()
Return the proleptic Gregorian ordinal of the date. The same as self.date () .toordinal ().

datetime.timestamp ()
Return POSIX timestamp corresponding to the datet ime instance. The return value is a f1oat similar
to that returned by t ime . t ime ().

Naive datet ime instances are assumed to represent local time and this method relies on the platform C
mktime () function to perform the conversion. Since datetime supports wider range of values than
mktime () on many platforms, this method may raise OverflowError for times far in the past or far in
the future.

For aware datet ime instances, the return value is computed as:
(dt - datetime (1970, 1, 1, tzinfo=timezone.utc)) .total_seconds ()

New in version 3.3.

Note: There is no method to obtain the POSIX timestamp directly from a naive datetime instance
representing UTC time. If your application uses this convention and your system timezone is not set to

UTC, you can obtain the POSIX timestamp by supplying t zinfo=t imezone.utc:
timestamp = dt.replace(tzinfo=timezone.utc) .timestamp ()
or by calculating the timestamp directly:

timestamp = (dt - datetime (1970, 1, 1)) / timedelta (seconds=1)

datetime.weekday ()
Return the day of the week as an integer, where Monday is O and Sunday is 6. The same as
self.date () .weekday (). See also i soweekday ().

datetime.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as
self.date () .isoweekday (). See also weekday (), isocalendar ().

datetime.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as
self.date () .isocalendar ().

datetime.isoformat (sep="T")
Return a string representing the date and time in ISO 8601 format, YYYY-MM-
DDTHH:MM:SS.mmmmmm or, if microsecondis 0, YYYY-MM-DDTHH:MM:SS

Ifutcoffset () does notreturn None, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM or, if microsecondisOYYYY-
MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default T’) is a one-character separator, placed between the date and time
portions of the result. For example,

8.1. datetime — Basic date and time types 167

The Python Library Reference, Release 3.5.0

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ (tzinfo):
def utcoffset (self, dt): return timedelta (minutes=-399)

>>> datetime (2002, 12, 25, tzinfo=TZ()).isoformat (' ")
'2002-12-25 00:00:00-06:39"

datetime.__str ()
For a datetime instance d, str (d) is equivalentto d.isoformat (* ’).

datetime.ctime ()
Return a string representing the date and time, for example datetime (2002, 12, 4,

20, 30, 40).ctime() == 'Wed Dec 4 20:30:40 2002’'. d.ctime () is equivalent to
time.ctime (time.mktime (d.timetuple ())) on platforms where the native C ctime () func-
tion (which t ime . ct ime () invokes, but which datetime.ctime () does not invoke) conforms to the
C standard.

datetime.strftime (format)
Return a string representing the date and time, controlled by an explicit format string. For a complete list of
formatting directives, see strftime() and strptime() Behavior.

datetime._ format__ (format)
Same as datetime.strftime (). This makes it possible to specify format string for a datet ime ob-
ject when using st r. format (). For a complete list of formatting directives, see strftime() and strptime()
Behavior

Examples of working with datetime objects:

>>> from datetime import datetime, date, time

>>> # Using datetime.combine ()

>>> d = date (2005, 7, 14)

>>> t = time (12, 30)

>>> datetime.combine (d, t)

datetime.datetime (2005, 7, 14, 12, 30)

>>> # Using datetime.now() or datetime.utcnow ()

>>> datetime.now ()

datetime.datetime (2007, 12, 6, 16, 29, 43, 79043) # GMT +1
>>> datetime.utcnow ()

datetime.datetime (2007, 12, 6, 15, 29, 43, 79060)

>>> # Using datetime.strptime ()

>>> dt = datetime.strptime("21/11/06 16:30", "%d/%m/%y $H:%M")
>>> dt

datetime.datetime (2006, 11, 21, 16, 30)

>>> # Using datetime.timetuple() to get tuple of all attributes
>>> tt = dt.timetuple ()

>>> for it in tt:

print (it)
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1lst January
-1 # dst - method tzinfo.dst () returned None
>>> # Date in ISO format
>>> ic = dt.isocalendar ()
>>> for it in ic:
print (it)

168 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

2006 # ISO year

47 # ISO week
2 # ISO weekday

>>> # Formatting datetime
>>> dt.strftime ("%A, %d. %$B $Y $I:%MSp")
'Tuesday, 21. November 2006 04:30PM'

>>> 'The {1} is {0:%d}, the {2} is {0:%B}, the {3} is {0:%I:%M%p}.'.format (dt,

'The day is 21, the month is November, the time is 04:30PM.'
Using datetime with tzinfo:

>>> from datetime import timedelta, datetime, tzinfo
>>> class GMT1 (tzinfo) :
def utcoffset(self, dt):
return timedelta (hours=1) + self.dst (dt)
def dst (self, dt):
DST starts last Sunday in March
d = datetime (dt.year, 4, 1) # ends last Sunday in October
self.dston = d - timedelta (days=d.weekday () + 1)
d = datetime (dt.year, 11, 1)
self.dstoff = d - timedelta(days=d.weekday () + 1)
if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
return timedelta (hours=1)
else:
return timedelta (0)
def tzname (self,dt):
return "GMT +1"

>>> class GMT2 (tzinfo) :
def utcoffset (self, dt):
return timedelta (hours=2) + self.dst (dt)
def dst (self, dt):
d = datetime (dt.year, 4, 1)
self.dston = d - timedelta (days=d.weekday () + 1)
d = datetime (dt.year, 11, 1)
self.dstoff = d - timedelta (days=d.weekday () + 1)
if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
return timedelta (hours=1)
else:
return timedelta (0)
def tzname (self,dt):
return "GMT +2"

>>> gmtl = GMT1 ()

>>> # Daylight Saving Time

>>> dtl = datetime (2006, 11, 21, 16, 30, tzinfo=gmtl)
>>> dtl.dst ()

datetime.timedelta (0)

>>> dtl.utcoffset ()

datetime.timedelta (0, 3600)

>>> dt2 = datetime (2006, 6, 14, 13, 0, tzinfo=gmtl)
>>> dt2.dst ()

datetime.timedelta (0, 3600)

>>> dt2.utcoffset ()

datetime.timedelta (0, 7200)

>>> # Convert datetime to another time zone

>>> dt3 = dt2.astimezone (GMT2())

>>> dt3

8.1. datetime — Basic date and time types 169

n day" ,

"n

The Python Library Reference, Release 3.5.0

datetime.datetime (2006, 6, 14, 14, 0, tzinfo=<GMT2 object at 0x...>)
>>> dt2

datetime.datetime (2006, 6, 14, 13, 0, tzinfo=<GMT1l object at 0x...>)
>>> dt2.utctimetuple () == dt3.utctimetuple ()

True

8.1.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

class datetime.time (hour=0, minute=0, second=0, microsecond=0, tzinfo=None)
All arguments are optional. fzinfo may be None, or an instance of a t zinfo subclass. The remaining
arguments may be integers, in the following ranges:

*0 <= hour < 24

*0 <= minute < 60

*0 <= second < 60

*0 <= microsecond < 1000000.

If an argument outside those ranges is given, ValueError is raised. All default to 0 except tzinfo, which
defaults to None.

Class attributes:

time.min
The earliest representable t ime, time (0, 0, 0, 0).

time.max
The latest representable t ime, time (23, 59, 59, 999999).

time.resolution
The smallest possible difference between non-equal t ime objects, timedelta (microseconds=1),
although note that arithmetic on t ime objects is not supported.

Instance attributes (read-only):

time.hour
In range (24).

time.minute
In range (60).

time.second
In range (60).

time.microsecond
In range (1000000).

time.tzinfo
The object passed as the tzinfo argument to the t ime constructor, or None if none was passed.

Supported operations:

e comparison of t ime to t ime, where a is considered less than b when a precedes b in time. If one com-
parand is naive and the other is aware, TypeError is raised if an order comparison is attempted. For
equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same tzinfo attribute, the common t zinfo attribute is ig-
nored and the base times are compared. If both comparands are aware and have different t z info attributes,
the comparands are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()).
In order to stop mixed-type comparisons from falling back to the default comparison by object address,
when a t ime object is compared to an object of a different type, TypeError is raised unless the compar-
ison is == or ! =. The latter cases return False or True, respectively.

170 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

Changed in version 3.3: Equality comparisons between naive and aware time instances don’t raise
TypeError.

* hash, use as dict key
* efficient pickling
In boolean contexts, a t ime object is always considered to be true.

Changed in version 3.5: Before Python 3.5, a t ime object was considered to be false if it represented midnight
in UTC. This behavior was considered obscure and error-prone and has been removed in Python 3.5. See issue
13936 for full details.

Instance methods:

time.replace ([hour[, minute[, second[, microsecond[, tzinfo]]]]])
Return a t ime with the same value, except for those attributes given new values by whichever keyword
arguments are specified. Note that t zinfo=None can be specified to create a naive t ime from an aware
t ime, without conversion of the time data.

time.isoformat ()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset () does not return None, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm-+HH:MM or, if self.microsecond is 0,
HH:MM:SS+HH:MM

time.__str ()
Foratimet str (t) isequivalenttot.isoformat ().

time.strftime (format)
Return a string representing the time, controlled by an explicit format string. For a complete list of format-
ting directives, see strftime() and strptime() Behavior.

time.__format__ (format)
Same as time.strftime (). This makes it possible to specify format string for a t ime object when
using str. format (). For a complete list of formatting directives, see strftime() and strptime() Behavior.

time.utcoffset ()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset (None), and raises an
exception if the latter doesn’t return None or a t imede 1t a object representing a whole number of minutes
with magnitude less than one day.

time.dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst (None), and raises an exception
if the latter doesn’t return None, or a t imedelta object representing a whole number of minutes with
magnitude less than one day.

time.tzname ()
If tzinfo is None, returns None, else returns self.tzinfo.tzname (None), or raises an exception
if the latter doesn’t return None or a string object.

Example:

>>> from datetime import time, tzinfo
>>> class GMT1 (tzinfo) :
def utcoffset (self, dt):
return timedelta (hours=1)
def dst (self, dt):
return timedelta (0)
def tzname (self,dt):
return "Europe/Prague"

>>> t = time (12, 10, 30, tzinfo=GMT1())

>>> t

datetime.time (12, 10, 30, tzinfo=<GMT1l object at 0Ox...>)
>>> gmt = GMTL1 ()

8.1. datetime — Basic date and time types 171

https://bugs.python.org/issue13936
https://bugs.python.org/issue13936

The Python Library Reference, Release 3.5.0

>>> t.isoformat ()

'12:10:30+01:00"

>>> t.dst ()

datetime.timedelta (0)

>>> t.tzname ()

'Europe/Prague’

>>> t.strftime ("SH:S$M:%S %Z2")

'12:10:30 Europe/Prague'

>>> 'The {} 1is {:%H:%M}.'.format ("time", t)
'The time is 12:10."

8.1.6 tzinfo Objects

tzinfo is an abstract base class, meaning that this class should not be instantiated directly. You need to de-
rive a concrete subclass, and (at least) supply implementations of the standard t zinfo methods needed by
the datet ime methods you use. The datetime module supplies a simple concrete subclass of tzinfo
timezone which can represent timezones with fixed offset from UTC such as UTC itself or North American
EST and EDT.

An instance of (a concrete subclass of) tzinfo can be passed to the constructors for datetime and time
objects. The latter objects view their attributes as being in local time, and the t zinfo object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time
object passed to them.

Special requirement for pickling: A tzinfo subclass must have an __init__ () method that can be called
with no arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that
may be relaxed in the future.

A concrete subclass of tzinfo may need to implement the following methods. Exactly which methods are
needed depends on the uses made of aware datet ime objects. If in doubt, simply implement all of them.

tzinfo.utcoffset (dt)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should
be negative. Note that this is intended to be the total offset from UTC; for example, if a t zinfo object
represents both time zone and DST adjustments, ut cof fset () should return their sum. If the UTC offset
isn’t known, return None. Else the value returned must be a t imede 1t a object specifying a whole number
of minutes in the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less
than one day). Most implementations of utcoffset () will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst (dt) # daylight-aware class

If utcoffset () does notreturn None, dst () should not return None either.
The default implementation of utcoffset () raises Not ImplementedError.

tzinfo.dst (dt)

Return the daylight saving time (DST) adjustment, in minutes east of UTC, or None if DST information
isn’t known. Return timedelta (0) if DST is not in effect. If DST is in effect, return the offset as a
timedelta object (see utcoffset () for details). Note that DST offset, if applicable, has already been
added to the UTC offset returned by utcoffset (), so there’s no need to consult dst () unless you're
interested in obtaining DST info separately. For example, datetime.timetuple () callsits tzinfo
attribute’s dst () method to determine how the tm_isdst flag should be set,and t zinfo. fromutc ()
calls dst () to account for DST changes when crossing time zones.

An instance 7z of a t zinfo subclass that models both standard and daylight times must be consistent in

this sense:
tz.utcoffset (dt) - tz.dst (dt)
must return the same result for every datetime df with dt.tzinfo == tz For sane tzinfo sub-

classes, this expression yields the time zone’s “standard offset”, which should not depend on the date or

172 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

the time, but only on geographic location. The implementation of datetime.astimezone () relies on
this, but cannot detect violations; it’s the programmer’s responsibility to ensure it. If a tzinfo subclass
cannot guarantee this, it may be able to override the default implementation of tzinfo.fromutc () to
work correctly with astimezone () regardless.

Most implementations of dst () will probably look like one of these two:

def dst (self, dt):
a fixed-offset class: doesn't account for DST
return timedelta (0)

or

def dst (self, dt):
Code to set dston and dstoff to the time zone's DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta (hours=1)

else:
return timedelta (0)

The default implementation of dst () raises Not ImplementedError.

tzinfo.tzname (df)
Return the time zone name corresponding to the datet ime object df, as a string. Nothing about string
names is defined by the datet ime module, and there’s no requirement that it mean anything in particular.
For example, “GMT”, “UTC”, “-500”, “-5:00”, “EDT”, “US/Eastern”, “America/New York™ are all valid
replies. Return None if a string name isn’t known. Note that this is a method rather than a fixed string
primarily because some t zinfo subclasses will wish to return different names depending on the specific
value of dt passed, especially if the t zinfo class is accounting for daylight time.

The default implementation of t zname () raises Not ImplementedError.

These methods are called by a datetime or t ime object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a t ime object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a df argument of None, or of class datetime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is
appropriate if the class wishes to say that time objects don’t participate in the t z info protocols. It may be more
useful for utcoffset (None) toreturn the standard UTC offset, as there is no other convention for discovering
the standard offset.

When a datetime object is passed in response to a datetime method, dt.tzinfo is the same object as
self. t zinfo methods can rely on this, unless user code calls t zinfo methods directly. The intent is that the
tzinfo methods interpret df as being in local time, and not need worry about objects in other timezones.

There is one more t z info method that a subclass may wish to override:

tzinfo.fromute (dr)
This is called from the default datetime.astimezone () implementation. When called from that,
dt.tzinfo is self, and dt‘s date and time data are to be viewed as expressing a UTC time. The purpose
of fromutc () is to adjust the date and time data, returning an equivalent datetime in self ‘s local time.

Most tzinfo subclasses should be able to inherit the default fromutc () implementation without prob-
lems. It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard
and daylight time, and the latter even if the DST transition times differ in different years. An example of a
time zone the default fromutc () implementation may not handle correctly in all cases is one where the
standard offset (from UTC) depends on the specific date and time passed, which can happen for political
reasons. The default implementations of astimezone () and fromutc () may not produce the result
you want if the result is one of the hours straddling the moment the standard offset changes.

8.1. datetime — Basic date and time types 173

The Python Library Reference, Release 3.5.0

Skipping code for error cases, the default f romutc () implementation acts like:

def fromutc(self, dt):
raise ValueError error if dt.tzinfo 1is not self
dtoff = dt.utcoffset ()
dtdst = dt.dst ()
raise ValueError if dtoff is None or dtdst 1is None
delta = dtoff - dtdst # this is self's standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst ()
raise ValueError 1f dtdst 1s None
if dtdst:
return dt + dtdst
else:
return dt

Example t zinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta (0)
HOUR timedelta (hours=1)

A UTC class.

class UTC(tzinfo):
mn "UTC mmn

def utcoffset (self, dt):
return ZERO

def tzname (self, dt):
return "UTC"

def dst (self, dt):
return ZERO

utc = UTC()

A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset (0, "UTIC") is a different way to build a
UTC tzinfo object.

class FixedOffset (tzinfo) :
""'pixed offset in minutes east from UIC."""

def _ init_ (self, offset, name):
self.__offset = timedelta (minutes=offset)
self.__ _name = name

def utcoffset (self, dt):
return self._ offset

def tzname (self, dt):
return self._ name

def dst (self, dt):
return ZERO

174 Chapter 8

. Data Types

The Python Library Reference, Release 3.5.0

A class capturing the platform's idea of local time.

import time as _time

STDOFFSET = timedelta (seconds = —_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = —_time.altzone)
else:

DSTOFFSET = STDOFFSET

DSTDIFF = DSTOFFSET - STDOFFSET

class LocalTimezone (tzinfo) :

def utcoffset (self, dt):
if self._isdst (dt):
return DSTOFFSET
else:
return STDOFFSET

def dst (self, dt):
if self._isdst(dt):
return DSTDIFF
else:
return ZERO

def tzname (self, dt):
return _time.tzname[self._isdst (dt)]

def _isdst (self, dt):

tt = (dt.year, dt.month, dt.day,
dt .hour, dt.minute, dt.second,
dt .weekday (), 0, 0)

stamp = _time.mktime (tt)

tt = _time.localtime (stamp)

return tt.tm_isdst > 0

Local = LocalTimezone ()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):
days_to_go = 6 - dt.weekday ()
if days_to_go:
dt += timedelta (days_to_go)
return dt

US DST Rules

This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz-1ink.htm
http://sourceforge.net/projects/pytz/ (might not be up-to-date)

S Hh R R IR R R H

8.1. datetime — Basic date and time types 175

The Python Library Reference, Release 3.5.0

In the US, since 2007, DST starts at Z2am (standard time) on the second

Sunday in March, which is the first Sunday on or after Mar 8.

DSTSTART_2007 = datetime(l, 3, 8, 2)

and ends at 2am (DST time; lam standard time) on the first Sunday of Nov.
DSTEND_2007 = datetime(1, 11, 1, 1)

From 1987 to 2006, DST used to start at 2am (standard time) on the first

Sunday in April and to end at Z2am (DST time; lam standard time) on the last
Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime(1, 4, 1, 2)

DSTEND_1987_2006 = datetime (1, 10, 25, 1)

From 1967 to 1986, DST used to start at 2am (standard time) on the last

Sunday in April (the one on or after April 24) and to end at 2am (DST time;
lam standard time) on the last Sunday of October, which is the first Sunday
on or after Oct 25.

DSTSTART_1967_1986 = datetime(l, 4, 24, 2)

DSTEND_1967_1986 = DSTEND_1987_2006

class USTimeZone (tzinfo) :

def _ _init__ (self, hours, reprname, stdname, dstname):
self.stdoffset = timedelta (hours=hours)
self.reprname = reprname
self.stdname = stdname

self.dstname = dstname

def _ repr_ (self):
return self.reprname

def tzname (self, dt):
if self.dst(dt):
return self.dstname
else:
return self.stdname

def utcoffset (self, dt):
return self.stdoffset + self.dst (dt)

def dst (self, dt):

if dt is None or dt.tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc () implementation (called by the default astimezone ()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find start and end times for US DST. For years before 1967, return
ZERO for no DST.
if 2006 < dt.year:
dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < dt.year < 2007:
dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006
elif 1966 < dt.year < 1987:
dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
else:
return ZERO

start = first_sunday_on_or_after (dststart.replace (year=dt.year))

176 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

end = first_sunday_on_or_after (dstend.replace (year=dt.year))

Can't compare naive to aware objects, so strip the timezone from
dt first.
if start <= dt.replace(tzinfo=None) < end:
return HOUR
else:
return ZERO

Eastern = USTimeZone (-5, "Eastern", "EST", "EDT")
Central = USTimeZone (-6, "Central", "CST", "CDT")
Mountain = USTimeZone (-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone (-8, "Pacific", "psT", "PDT")

Note that there are unavoidable subtleties twice per year in a t zinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT
begins the minute after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59 (EDT) on the
first Sunday in November:

UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM : MM MM 2:MM 3:MM
EDT 23:MM O:MM 1:MM 2:MM 3:MM 4:MM

(@)
=

start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM
doesn’t really make sense on that day, so ast imezone (Eastern) won’t deliver a result with hour == 2 on
the day DST begins. In order for astimezone () to make this guarantee, the tzinfo.dst () method must
consider times in the “missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unam-
biguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the
day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again.
Local times of the form 1:MM are ambiguous. astimezone () mimics the local clock’s behavior by mapping
two adjacent UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM
and 6:MM both map to 1:MM when converted to Eastern. In order for ast imezone () to make this guarantee,
the tzinfo.dst () method must consider times in the “repeated hour” to be in standard time. This is easily
arranged, as in the example, by expressing DST switch times in the time zone’s standard local time.

Applications that can’t bear such ambiguities should avoid using hybrid t zinfo subclasses; there are no ambi-
guities when using t imezone, or any other fixed-offset t zinfo subclass (such as a class representing only EST
(fixed offset -5 hours), or only EDT (fixed offset -4 hours)).

See also:

pytz The standard library has timezone class for handling arbitrary fixed offsets from UTC and
timezone.utc as UTC timezone instance.

pytz library brings the JANA timezone database (also known as the Olson database) to Python and its usage
is recommended.

TANA timezone database The Time Zone Database (often called tz or zoneinfo) contains code and data that rep-
resent the history of local time for many representative locations around the globe. It is updated periodically
to reflect changes made by political bodies to time zone boundaries, UTC offsets, and daylight-saving rules.

8.1.7 timezone Objects

The t imezone class is a subclass of t zinfo, each instance of which represents a timezone defined by a fixed
offset from UTC. Note that objects of this class cannot be used to represent timezone information in the locations

8.1. datetime — Basic date and time types 177

https://pypi.python.org/pypi/pytz/
http://www.iana.org/time-zones

The Python Library Reference, Release 3.5.0

where different offsets are used in different days of the year or where historical changes have been made to civil
time.

class datetime.timezone (oﬁset[, name])
The offset argument must be specified as a t imede 1t a object representing the difference between the local
time and UTC. It must be strictly between —t imedelta (hours=24) and timedelta (hours=24)
and represent a whole number of minutes, otherwise ValueError is raised.

The name argument is optional. If specified it must be a string that is used as the value returned by the
tzname (dt) method. Otherwise, t zname (dt) returns a string ‘UTCsHH:MM’, where s is the sign of
offset, HH and MM are two digits of of fset .hours and of fset .minutes respectively.

New in version 3.2.

timezone.utcoffset (dr)
Return the fixed value specified when the t imezone instance is constructed. The df argument is ignored.
The return value is a t imede 1t a instance equal to the difference between the local time and UTC.

timezone.tzname (dt)
Return the fixed value specified when the t imezone instance is constructed or a string ‘UTCsHH:MM’,
where s is the sign of offset, HH and MM are two digits of of fset.hours and offset.minutes
respectively.

timezone.dst (dt)
Always returns None.

timezone.fromutc (dt)
Return dt + offset. The df argument must be an aware datet ime instance, with tzinfo set to
self.

Class attributes:

timezone.utec
The UTC timezone, t imezone (timedelta (0)).

8.1.8 strftime () and strptime () Behavior

date, datetime, and t ime objects all supporta strftime (format) method, to create a string representing
the time under the control of an explicit format string. Broadly speaking, d. strftime (fmt) acts like the t ime
module’s time.strftime (fmt, d.timetuple ()) although not all objects support a timetuple ()

method.

Conversely, the datetime.strptime () class method creates a datet ime object from a string representing
a date and time and a corresponding format string. datetime.strptime (date_string, format) is
equivalent to datetime (x (time.strptime (date_string, format) [0:6])).

For t ime objects, the format codes for year, month, and day should not be used, as time objects have no such
values. If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as date
objects have no such values. If they’re used anyway, O is substituted for them.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime () function, and platform variations are common. To see the full set of format codes supported on
your platform, consult the st rft ime (3) documentation.

The following is a list of all the format codes that the C standard (1989 version) requires, and these work on all
platforms with a standard C implementation. Note that the 1999 version of the C standard added additional format
codes.

178 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

Directive Meaning Example Notes
%a Weekday as locale’s abbre- (D)
viated name. Sun, Mon, ..., Sat
(en_US);
So, Mo, ..., Sa (de_DE)
SA Weekday as locale’s full @))
name. Sunday, Monday, ...,
Saturday (en_US);
Sonntag, Montag, ...,
Samstag (de_DE)
Sw Weekday as a decimal | 0, 1,...,6
number, where 0 is Sunday
and 6 is Saturday.
sd Day of the month as a | 01,02, ..., 31
zero-padded decimal num-
ber.
%b Month as locale’s abbrevi- (D)
ated name. Jan, Feb, ..., Dec (en_US);
Jan, Feb, ..., Dez (de_DE)
%B Month as locale’s full (D)
name. January, February, ...,
December (en_US);
Januar, Februar, ...,
Dezember (de_DE)
$m Month as a zero-padded | 01,02, ..., 12
decimal number.
Sy Year without century as a | 00, 01, ..., 99
zero-padded decimal num-
ber.
%Y Year with century as adec- | 0001, 0002, .., 2013, | (2)
imal number. 2014, ..., 9998, 9999
%H Hour (24-hour clock) as a | 00,01, ..., 23
zero-padded decimal num-
ber.
$I Hour (12-hour clock) as a | 01,02, ..., 12
zero-padded decimal num-
ber.
E3e) Locale’s equivalent of ei- M, 3
ther AM or PM. AM. PM (en_US);
am, pm (de_DE)
M Minute as a zero-padded | 00, 01, ..., 59
decimal number.
%S Second as a zero-padded | 00, 01, ..., 59 @
decimal number.
$f Microsecond as a decimal | 000000, 000001, v | (5
number, zero-padded on | 999999
the left.
%7z UTC offset in the form | (empty), +0000, -0400, | (6)
+HHMM or -HHMM | +1030
(empty string if the the
object is naive).
8?!? datetime — Basic cla{ér.%anéﬁ?ﬁ}él ?\I{nggéempt.y (empty), UTE, EST €51 179

o
u

string
naive).
Day of the year as a zero-
padded decimal number.

e”'object 1s

001, 002, ..., 366

The Python Library Reference, Release 3.5.0

Notes:

1. Because the format depends on the current locale, care should be taken when making assumptions about
the output value. Field orderings will vary (for example, “month/day/year” versus “day/month/year”), and
the output may contain Unicode characters encoded using the locale’s default encoding (for example, if
the current locale is ja_JP, the default encoding could be any one of eucJP, SJIS, or ut£-8; use
locale.getlocale () to determine the current locale’s encoding).

2. The strptime () method can parse years in the full [1, 9999] range, but years < 1000 must be zero-filled
to 4-digit width.

Changed in version 3.2: In previous versions, st rft ime () method was restricted to years >= 1900.
Changed in version 3.3: In version 3.2, st rft ime () method was restricted to years >= 1000.

3. When used with the st rptime () method, the $p directive only affects the output hour field if the $T
directive is used to parse the hour.

4. Unlike the t ime module, the datet ime module does not support leap seconds.

5. When used with the st rpt ime () method, the % £ directive accepts from one to six digits and zero pads on
the right. $f is an extension to the set of format characters in the C standard (but implemented separately
in datetime objects, and therefore always available).

6. For a naive object, the $z and %$Z format codes are replaced by empty strings.
For an aware object:

%z utcoffset () is transformed into a 5-character string of the form +HHMM or -HHMM, where HH
is a 2-digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the
number of UTC offset minutes. For example, if utcoffset () returns timedelta (hours=-3,
minutes=-30), %z is replaced with the string * —0330".

%Z If tzname () returns None, %7 is replaced by an empty string. Otherwise %7 is replaced by the
returned value, which must be a string.

Changed in version 3.2: When the %z directive is provided to the strptime () method, an aware
datetime object will be produced. The t zinfo of the result will be set to a t imezone instance.

7. When used with the st rptime () method, $U and $W are only used in calculations when the day of the
week and the year are specified.

8.2 calendar — General calendar-related functions

Source code: Lib/calendar.py

This module allows you to output calendars like the Unix cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the
last (the European convention). Use setfirstweekday () to set the first day of the week to Sunday (6) or
to any other weekday. Parameters that specify dates are given as integers. For related functionality, see also the
datetime and t ime modules.

Most of these functions and classes rely on the datet ime module which uses an idealized calendar, the current
Gregorian calendar extended in both directions. This matches the definition of the “proleptic Gregorian” calendar
in Dershowitz and Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all computations.

class calendar .Calendar (firstweekday=0)
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. 0 is Monday
(the default), 6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for format-
ting. This class doesn’t do any formatting itself. This is the job of subclasses.

Calendar instances have the following methods:

180 Chapter 8. Data Types

https://hg.python.org/cpython/file/3.5/Lib/calendar.py

The Python Library Reference, Release 3.5.0

iterweekdays ()
Return an iterator for the week day numbers that will be used for one week. The first value from the
iterator will be the same as the value of the £irstweekday property.

itermonthdates (year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days (as
datetime.date objects) for the month and all days before the start of the month or after the end
of the month that are required to get a complete week.

itermonthdays2 (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days
returned will be tuples consisting of a day number and a week day number.

itermonthdays (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days
returned will simply be day numbers.

monthdatescalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

monthdays2calendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples
of day numbers and weekday numbers.

monthdayscalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar (year, width=3)
Return the data for the specified year ready for formatting. The return value is a list of month rows.
Each month row contains up to width months (defaulting to 3). Each month contains between 4 and 6
weeks and each week contains 1-7 days. Days are datetime.date objects.

yeardays2calendar (year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()).
Entries in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this
month are zero.

yeardayscalendar (year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()).
Entries in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar (firstweekday=0)
This class can be used to generate plain text calendars.

TextCalendar instances have the following methods:

formatmonth (theyear, themonth, w=0, [=0)
Return a month’s calendar in a multi-line string. If w is provided, it specifies the width of the date
columns, which are centered. If [is given, it specifies the number of lines that each week will use.
Depends on the first weekday as specified in the constructor or set by the setfirstweekday ()
method.

prmonth (theyear, themonth, w=0, [=0)
Print a month’s calendar as returned by formatmonth ().

formatyear (theyear, w=2, =1, c=6, m=3)
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, [, and ¢
are for date column width, lines per week, and number of spaces between month columns, respectively.
Depends on the first weekday as specified in the constructor or set by the set firstweekday ()
method. The earliest year for which a calendar can be generated is platform-dependent.

pryear (theyear, w=2, [=1, c=6, m=3)
Print the calendar for an entire year as returned by formatyear ().

8.2. calendar — General calendar-related functions 181

The Python Library Reference, Release 3.5.0

class calendar .HTMLCalendar (firstweekday=0)
This class can be used to generate HTML calendars.

HTMLCalendar instances have the following methods:

formatmonth (theyear, themonth, withyear=True)
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the
header, otherwise just the month name will be used.

formatyear (theyear, width=3)
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months
per row.

formatyearpage (theyear, width=3, css="calendar.css’, encoding=None)
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of
months per row. css is the name for the cascading style sheet to be used. None can be passed if no
style sheet should be used. encoding specifies the encoding to be used for the output (defaulting to the
system default encoding).

class calendar.LocaleTextCalendar (firstweekday=0, locale=None)
This subclass of TextCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode.

class calendar.LocaleHTMLCalendar (firstweekday=0, locale=None)
This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode.

Note: The formatweekday () and formatmonthname () methods of these two classes temporarily change
the current locale to the given locale. Because the current locale is a process-wide setting, they are not thread-safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday (weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For ex-
ample, to set the first weekday to Sunday:

import calendar
calendar.setfirstweekday (calendar.SUNDAY)

calendar. firstweekday ()
Returns the current setting for the weekday to start each week.

calendar.isleap (year)
Returns True if year is a leap year, otherwise False.

calendar.leapdays (yl, y2)
Returns the number of leap years in the range from y/ to y2 (exclusive), where y/ and y2 are years.

This function works for ranges spanning a century change.

calendar .weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970-...), month (1-12), day (1-31).

calendar .weekheader (n)
Return a header containing abbreviated weekday names. n specifies the width in characters for one weekday.

calendar .monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and month.

calendar .monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless set by set firstweekday ().

182 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

calendar .prmonth (theyear, themonth, w=0, [=0)
Prints a month’s calendar as returned by month ().

calendar .month (theyear, themonth, w=0, I=0)
Returns a month’s calendar in a multi-line string using the formatmonth () of the TextCalendar
class.

calendar.precal (year, w=0, [=0, c=6, m=3)
Prints the calendar for an entire year as returned by calendar ().

calendar.calendar (year, w=2, =1, c=6, m=3)
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear () of the
TextCalendar class.

calendar.timegm (fuple)
An unrelated but handy function that takes a time tuple such as returned by the gmt ime () function in the
time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In fact, t ime . gmtime () and timegm () are each others’ inverse.

The calendar module exports the following data attributes:

calendar.day_name
An array that represents the days of the week in the current locale.

calendar.day_abbr
An array that represents the abbreviated days of the week in the current locale.

calendar .month_name
An array that represents the months of the year in the current locale. This follows normal convention of
January being month number 1, so it has a length of 13 and month_name [0] is the empty string.

calendar.month_ abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal
convention of January being month number 1, so it has a length of 13 and month_abbr [0] is the empty
string.

See also:
Module datetime Object-oriented interface to dates and times with similar functionality to the t ime module.

Module time Low-level time related functions.

8.3 collections — Container datatypes

Source code: Lib/collections/__init__.py

This module implements specialized container datatypes providing alternatives to Python’s general purpose built-
in containers, dict, 1ist, set, and tuple.

namedtuple () | factory function for creating tuple subclasses with named fields
deque list-like container with fast appends and pops on either end
ChainMap dict-like class for creating a single view of multiple mappings
Counter dict subclass for counting hashable objects

OrderedDict dict subclass that remembers the order entries were added
defaultdict dict subclass that calls a factory function to supply missing values
UserDict wrapper around dictionary objects for easier dict subclassing
UserList wrapper around list objects for easier list subclassing
UserString wrapper around string objects for easier string subclassing

Changed in version 3.3: Moved Collections Abstract Base Classes to the collections.abc module. For
backwards compatibility, they continue to be visible in this module as well.

8.3. collections — Container datatypes 183

https://hg.python.org/cpython/file/3.5/Lib/collections/__init__.py

The Python Library Reference, Release 3.5.0

8.3.1 ChainMap objects

New in version 3.3.

AcC
Itis

The

clas

See

hainMap class is provided for quickly linking a number of mappings so they can be treated as a single unit.
often much faster than creating a new dictionary and running multiple update () calls.

class can be used to simulate nested scopes and is useful in templating.

s collections.ChainMap (*maps)
A ChainMap groups multiple dicts or other mappings together to create a single, updateable view. If
no maps are specified, a single empty dictionary is provided so that a new chain always has at least one
mapping.

The underlying mappings are stored in a list. That list is public and can accessed or updated using the maps
attribute. There is no other state.

Lookups search the underlying mappings successively until a key is found. In contrast, writes, updates, and
deletions only operate on the first mapping.

A ChainMap incorporates the underlying mappings by reference. So, if one of the underlying mappings
gets updated, those changes will be reflected in ChainMap.

All of the usual dictionary methods are supported. In addition, there is a maps attribute, a method for
creating new subcontexts, and a property for accessing all but the first mapping:

maps
A user updateable list of mappings. The list is ordered from first-searched to last-searched. It is the
only stored state and can be modified to change which mappings are searched. The list should always
contain at least one mapping.

new_child (m=None)
Returns a new ChainMap containing a new map followed by all of the maps in the current instance.
If m is specified, it becomes the new map at the front of the list of mappings; if not specified, an empty
dictis used, so thatacall to d.new_child () isequivalentto: ChainMap ({}, =*d.maps). This
method is used for creating subcontexts that can be updated without altering values in any of the parent
mappings.

Changed in version 3.4: The optional m parameter was added.

parents
Property returning a new ChainMap containing all of the maps in the current instance except the
first one. This is useful for skipping the first map in the search. Use cases are similar to those for
the nonlocal keyword used in nested scopes. The use cases also parallel those for the built-in
super () function. A reference to d.parents is equivalent to: ChainMap («xd.maps[1:]).

also:

* The MultiContext class in the Enthought CodeTools package has options to support writing to any mapping
in the chain.

* Django’s Context class for templating is a read-only chain of mappings. It also features pushing and popping
of contexts similar to the new_child () method and the parents () property.

* The Nested Contexts recipe has options to control whether writes and other mutations apply only to the first
mapping or to any mapping in the chain.

* A greatly simplified read-only version of Chainmap.

ChainMap Examples and Recipes

This section shows various approaches to working with chained maps.

Example of simulating Python’s internal lookup chain:

184

Chapter 8. Data Types

https://github.com/enthought/codetools/blob/4.0.0/codetools/contexts/multi_context.py
https://github.com/enthought/codetools
https://github.com/django/django/blob/master/django/template/context.py
http://code.activestate.com/recipes/577434/
http://code.activestate.com/recipes/305268/

The Python Library Reference, Release 3.5.0

import builtins
pylookup = ChainMap (locals (), globals(), vars(builtins))

Example of letting user specified command-line arguments take precedence over environment variables which in
turn take precedence over default values:

import os, argparse
defaults = {'color': 'red', 'user': 'guest'}

parser = argparse.ArgumentParser ()

parser.add_argument ('-u', '——user')

parser.add_argument ('-c', '—--color'")

namespace = parser.parse_args ()

command_line_args = {k:v for k, v in vars(namespace) .items () if v}
combined = ChainMap (command_line_args, os.environ, defaults)

print (combined['color'])
print (combined['user'])

Example patterns for using the ChainMap class to simulate nested contexts:

c = ChainMap () # Create root context

d = c.new_child{() # Create nested child context

e = c.new_child{() # Child of ¢, independent from d

e.maps[0] # Current context dictionary —- like Python's locals/()
e.maps|[—1] # Root context —-- like Python's globals ()

e.parents # Enclosing context chain —-- like Python's nonlocals
dl'x"] # Get first key in the chain of contexts

dl'x"'"] = 1 # Set value in current context

del d['x"] # Delete from current context

list (d) # All nested values

k in d # Check all nested values

len (d) # Number of nested values

d.items () # All nested items

dict (d) # Flatten into a regular dictionary

The ChainMap class only makes updates (writes and deletions) to the first mapping in the chain while lookups
will search the full chain. However, if deep writes and deletions are desired, it is easy to make a subclass that
updates keys found deeper in the chain:

class DeepChainMap (ChainMap) :
'Variant of ChainMap that allows direct updates to inner scopes'

def _ setitem_ (self, key, value):
for mapping in self.maps:
if key in mapping:

mapping[key] = value
return
self.maps[0] [key] = value

def _ delitem__ (self, key):
for mapping in self.maps:
if key in mapping:
del mappinglkey]
return
raise KeyError (key)

>>> d = DeepChainMap ({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})
>>> d['lion'] = 'orange' # update an existing key two levels down

8.3. collections — Container datatypes 185

The Python Library Reference, Release 3.5.0

>>> d['snake'] = 'red' # new keys get added to the topmost dict
>>> del d['elephant'] # remove an existing key one level down
DeepChainMap ({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})

8.3.2 Counter objects

A counter tool is provided to support convenient and rapid tallies. For example:

>>> # Tally occurrences of words in a 1list

>>> cnt = Counter ()

>>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue'l]:

.. cnt [word] += 1

>>> cnt

Counter ({'blue': 3, 'red': 2, 'green': 1})

>>> # Find the ten most common words in Hamlet

>>> import re

>>> words = re.findall(r'\w+', open('hamlet.txt').read().lower())

>>> Counter (words) .most_common (10)

[("the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

ckwscollections.Counter([hwubkﬂwumapng])
A Counter isadict subclass for counting hashable objects. It is an unordered collection where elements
are stored as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any
integer value including zero or negative counts. The Counter class is similar to bags or multisets in other
languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

>>> ¢ = Counter () # a new, empty counter

>>> ¢ = Counter('gallahad") # a new counter from an literable
>>> ¢ = Counter({'red': 4, 'blue': 2}) # a new counter from a mapping
>>> ¢ = Counter (cats=4, dogs=8) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero count for missing items instead of
raising a KeyError:

>>> ¢ = Counter(['eggs', 'ham'])
>>> c['bacon'] # count of a missing element 1is zero
0

Setting a count to zero does not remove an element from a counter. Use del to remove it entirely:

>>> c['sausage'] = 0 # counter entry with a zero count
>>> del c['sausage'] # del actually removes the entry

New in version 3.1.

Counter objects support three methods beyond those available for all dictionaries:

elements ()
Return an iterator over elements repeating each as many times as its count. Elements are returned in
arbitrary order. If an element’s count is less than one, e lements () will ignore it.

>>> ¢ = Counter (a=4, b=2, c=0, d=-2)
>>> list (c.elements())
[lal, 'aV, lal, laV, lbl’ lb‘]

186 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

most__common ([n])

Return a list of the » most common elements and their counts from the most common to the least. If
n is omitted or None, most_common () returns all elements in the counter. Elements with equal
counts are ordered arbitrarily:

>>> Counter ('abracadabra') .most__common (3)
[('a', 5), ('r',

2), ('b',

subtract ([iterable—or—mapping])
Elements are subtracted from an iferable or from another mapping (or counter). Like
dict.update () but subtracts counts instead of replacing them. Both inputs and outputs may be

Zero or negative.

>>> ¢ = Counter (
>>> d = Counter (
>>> c.subtract (d
>>> ¢

Counter ({'a

New in version 3.2.

3,

a=
a=
)

4,
1

4

'b': 0O,

2)]

The usual dictionary methods are available for Counter objects except for two which work differently for

counters.

fromkeys (iterable)

This class method is not implemented for Counter objects.

update ([itemble-or-mapping])
Elements are counted from an iterable or added-in from another mapping (or counter). Like
dict.update () but adds counts instead of replacing them. Also, the iterable is expected to be
a sequence of elements, not a sequence of (key, value) pairs.

Common patterns for working with Counter objects:

sum(c.values ())
c.clear ()

list (c)

set (c)

dict (c)
c.items ()

Counter (dict (list_of_pairs))

c.most_common () [:—n-1:-1]

+c

e

S ke R R R R

total of all counts

reset all counts

list unique elements

convert to a set

convert to a regular dictionary

convert to a list of (elem, cnt) pairs
convert from a list of (elem, cnt) pairs
n least common elements

remove zero and negative counts

Several mathematical operations are provided for combining Counter objects to produce multisets (counters that
have counts greater than zero). Addition and subtraction combine counters by adding or subtracting the counts
of corresponding elements. Intersection and union return the minimum and maximum of corresponding counts.
Each operation can accept inputs with signed counts, but the output will exclude results with counts of zero or

less.

>>> ¢ = Counter (a=3,
>>> d = Counter (a=1,
>>> ¢ + d
Counter({'a': 4, 'b':
>>> ¢ — d
Counter({'a': 2})

>>> ¢ & d
Counter({'a': 1, 'b':
>>> ¢ | d
Counter({'a': 3, 'b':

1)

21)

add two counters together: c[x] + d[x]
subtract (keeping only positive counts)
intersection: min(c[x], d[x])

union: max(c[x], d[x])

Unary addition and subtraction are shortcuts for adding an empty counter or subtracting from an empty counter.

8.3. collections — Container datatypes

187

The Python Library Reference, Release 3.5.0

>>> ¢ = Counter (a=2, b=-4)
>>> +c¢

Counter ({'a': 2})

>>> —¢

Counter ({'b': 4})

New in version 3.3: Added support for unary plus, unary minus, and in-place multiset operations.

Note:

Counters were primarily designed to work with positive integers to represent running counts; however,

care was taken to not unnecessarily preclude use cases needing other types or negative values. To help with those
use cases, this section documents the minimum range and type restrictions.

The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values
are intended to be numbers representing counts, but you could store anything in the value field.

The most_common () method requires only that the values be orderable.

For in-place operations such as c [key] += 1, the value type need only support addition and subtraction.
So fractions, floats, and decimals would work and negative values are supported. The same is also true for
update () and subtract () which allow negative and zero values for both inputs and outputs.

The multiset methods are designed only for use cases with positive values. The inputs may be negative or
zero, but only outputs with positive values are created. There are no type restrictions, but the value type
needs to support addition, subtraction, and comparison.

The elements () method requires integer counts. It ignores zero and negative counts.

See also:

Bag class in Smalltalk.
Wikipedia entry for Multisets.
C++ multisets tutorial with examples.

For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer
Programming Volume II, Section 4.6.3, Exercise 19.

To enumerate all distinct multisets of a given size over a given set of elements, see
itertools.combinations_with_replacement ():

map(Counter, combinations_with_replacement(‘ABC’, 2)) > AA AB AC BB BC CC

8.3.3 deque objects

class collections.deque ([iterable[, maxlen]])

Returns a new deque object initialized left-to-right (using append ()) with data from iterable. If iterable
is not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the
deque with approximately the same O(1) performance in either direction.

Though 1ist objects support similar operations, they are optimized for fast fixed-length operations and
incur O(n) memory movement costs for pop (0) and insert (0, v) operations which change both the
size and position of the underlying data representation.

If maxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is
bounded to the specified maximum length. Once a bounded length deque is full, when new items are added,
a corresponding number of items are discarded from the opposite end. Bounded length deques provide
functionality similar to the tail filter in Unix. They are also useful for tracking transactions and other
pools of data where only the most recent activity is of interest.

Deque objects support the following methods:

188

Chapter 8. Data Types

http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
http://en.wikipedia.org/wiki/Multiset
http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 3.5.0

append (x)
Add x to the right side of the deque.

appendleft (x)
Add x to the left side of the deque.

clear ()
Remove all elements from the deque leaving it with length 0.

copy ()
Create a shallow copy of the deque.

New in version 3.5.

count (x)
Count the number of deque elements equal to x.

New in version 3.2.

extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iterable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left appends
results in reversing the order of elements in the iterable argument.

index (x[, start[, stop]])
Return the position of x in the deque (at or after index start and before index sfop). Returns the first
match or raises ValueError if not found.

New in version 3.5.

insert (i, x)
Insert x into the deque at position i.

New in version 3.5.

pop ()
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError.

popleft ()
Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError.

remove (value)
Remove the first occurrence of value. If not found, raises a ValueError.

reverse ()
Reverse the elements of the deque in-place and then return None.

New in version 3.2.

rotate (n)
Rotate the deque = steps to the right. If n is negative, rotate to the left. Rotating one step to the right is
equivalent to: d.appendleft (d.pop()).

Deque objects also provide one read-only attribute:

maxlen
Maximum size of a deque or None if unbounded.

New in version 3.1.

In addition to the above, deques support iteration, pickling, len (d), reversed(d), copy.copy (d),
copy .deepcopy (d), membership testing with the in operator, and subscript references such as d[-1]. In-
dexed access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Starting in version 3.5, deques support __add__ (),__mul__ (),and __imul__ ().

8.3. collections — Container datatypes 189

The Python Library Reference, Release 3.5.0

Example:

>>> from collections import deque
>>> d = deque('ghi'")

>>> for elem in d:

print (elem.upper())

G

H

make a new deque with three items
iterate over the deque's elements

H
I
>>> d.append('Jj") # add a new entry to the right side
>>> d.appendleft ('f") # add a new entry to the left side
>>> d # show the representation of the deque
deque (['f', 'g', 'h', 'i', '3'])
>>> d.pop () # return and remove the rightmost item
ljl
>>> d.popleft () # return and remove the leftmost item
lfl
>>> list (d) # list the contents of the deque
['g', 'h', 'i']
>>> d[0] # peek at leftmost item
lgl
>>> d[-1] # peek at rightmost item
lil
>>> list (reversed(d)) # 1list the contents of a deque 1in reverse
['i', 'h', 'g']
>>> 'h' in d # search the deque
True
>>> d.extend('jkl") # add multiple elements at once
>>> d
deque([!gl’ lhl, !il’ ljl, 'k!, ll'])
>>> d.rotate (1) # right rotation
>>> d
deque(['1l', 'g', 'h', 'i', '3', 'k'])
>>> d.rotate (-1) # left rotation
>>> d
deque (['g', 'h', 'i', '3', 'k', '1'])
>>> deque (reversed (d)) # make a new deque in reverse order
deque(['1', 'k', '3', 'i', 'h', 'g'l)
>>> d.clear() # empty the deque
>>> d.pop () # cannot pop from an empty deque
Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
d.pop ()
IndexError: pop from an empty deque

>>> d.extendleft ('abc'")
>>> d
deque(['c",

extendleft () reverses the input order

deque Recipes

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tail filter in Unix:

190 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

def tail(filename, n=10):
'Return the last n lines of a file'
with open(filename) as f:
return deque (f, n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right
and popping to the left:

def moving_average (iterable, n=3):
moving_average ([40, 30, 50, 46, 39, 44]) —-> 40.0 42.0 45.0 43.0
http://en.wikipedia.org/wiki/Moving average

it = iter (iterable)

d = deque(itertools.islice(it, n-1))
d.appendleft (0)

s = sum(d)

for elem in it:
s += elem - d.popleft ()
d.append (elem)
yield s / n

The rotate () method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate () method to position elements to be popped:

def delete_nth(d, n):
d.rotate (—n)
d.popleft ()
d.rotate (n)

To implement deque slicing, use a similar approach applying rotate () to bring a target element to the left
side of the deque. Remove old entries with popleft (), add new entries with extend (), and then reverse the
rotation. With minor variations on that approach, it is easy to implement Forth style stack manipulations such as
dup, drop, swap, over, pick, rot,and roll.

8.3.4 defaultdict objects

class collections.defaultdict ([default_factory[,]])
Returns a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides
one method and adds one writable instance variable. The remaining functionality is the same as for the
dict class and is not documented here.

The first argument provides the initial value for the default_factory attribute; it defaults to None.
All remaining arguments are treated the same as if they were passed to the dict constructor, including
keyword arguments.

defaultdict objects support the following method in addition to the standard dict operations:

__missing__ (key)
If the default_factory attribute is None, this raises a KeyError exception with the key as
argument.

If default_factory is not None, it is called without arguments to provide a default value for the
given key, this value is inserted in the dictionary for the key, and returned.

If calling default_factory raises an exception this exception is propagated unchanged.

This method is called by the __getitem__ () method of the dict class when the requested key is
not found; whatever it returns or raises is then returned or raised by __getitem__ ().

Note that _ _missing__ () is not called for any operations besides __getitem__ (). This
means that get () will, like normal dictionaries, return None as a default rather than using
default_factory

defaultdict objects support the following instance variable:

8.3. collections — Container datatypes 191

The Python Library Reference, Release 3.5.0

default_factory
This attribute is used by the __missing__ () method; it is initialized from the first argument to the
constructor, if present, or to None, if absent.

defaultdict Examples

Using 1ist as the default_factory, itis easy to group a sequence of key-value pairs into a dictionary of
lists:

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict (list)
>>> for k, v in s:

d[k] .append(v)

>>> list (d.items())
[('blue', [2, 41), ('red', [11), ('yellow', [1, 31)]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created
using the default_factory function which returns an empty 1ist. The 1ist.append () operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the
list for that key) and the 1ist . append () operation adds another value to the list. This technique is simpler and
faster than an equivalent technique using dict .setdefault ():

>>> d = {}
>>> for k, v in s:
d.setdefault (k, []) .append(v)

>>> list (d.items())
[(‘blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

Setting the default_factory to int makes the defaultdict useful for counting (like a bag or multiset
in other languages):

>>> g5 = 'mississippi’
>>> d defaultdict (int)
>>> for k in s:

dik] += 1

>>> list (d.items ())
(¢rat, 4), ('p', 2), ('s', 4), ('m', 1)]

When a letter is first encountered, it is missing from the mapping, so the default_factory function calls
int () to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int () which always returns zero is just a special case of constant functions. A faster and more
flexible way to create constant functions is to use a lambda function which can supply any constant value (not just
Zero):

>>> def constant_factory(value) :

.. return lambda: value

>>> d = defaultdict (constant_factory('<missing>"))
>>> d.update (name="'John', action='ran')

>>> '$(name)s % (action)s to %$(object)s' % d

'John ran to <missing>'

Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:

>>> g

>>> d defaultdict (set)

>>> for k, v in s:
d[k].add(v)

192 Chapter 8. Data Types

[('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue',

4)1]

The Python Library Reference, Release 3.5.0

>>>
[('b

list (d.items())
lue', {2, 4}), ('red', {1, 3})]

8.3.5 namedtuple () Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code.
They can be used wherever regular tuples are used, and they add the ability to access fields by name instead of
position index.

collections.namedtuple (typename, field_names, verbose=False, rename="False)

Returns a new tuple subclass named fypename. The new subclass is used to create tuple-like objects that
have fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass
also have a helpful docstring (with typename and field_names) and a helpful __repr__ () method which
lists the tuple contents in a name=value format.

The field_names are a single string with each fieldname separated by whitespace and/or commas, for exam-
ple "x vy’ or’x, vy’. Alternatively, field_names can be a sequence of strings suchas ["x’, ’'vy'].

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be
a keyword such as class, for, return, global, pass, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For example,
["abc’, 'def’, "ghi’, ’"abc’]isconvertedto ["abc’, ’_1’, 'ghi’, ’_3’],eliminat-
ing the keyword de f and the duplicate fieldname abc.

If verbose is true, the class definition is printed after it is built. This option is outdated; instead, it is simpler
to print the _source attribute.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more
memory than regular tuples.

Changed in version 3.1: Added support for rename.

>>> # Basic example

>>> Point = namedtuple ('Point', ['x', 'y'])

>>> p = Point (11, y=22) # instantiate with positional or keyword arguments
>>> p[0] + pl[l] # indexable like the plain tuple (11, 22)

33

>>> X, y = p # unpack like a regular tuple

>>> x, y

(11, 22)

>>> p.x + p.y # fields also accessible by name

33

>>> p # readable __repr. with a name=value style

Point (x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sglite3
modules:

EmployeeRecord = namedtuple ('EmployeeRecord', 'name, age, title, department, paygrade')
import csv

for emp in map (EmployeeRecord._make, csv.reader (open("employees.csv", "rb"))):

print (emp.name, emp.title)

import sqglite3

conn
curs
curs
for

= sqglite3.connect ('/companydata')
or = conn.cursor ()
or.execute ('SELECT name, age, title, department, paygrade FROM employees')

emp in map (EmployeeRecord._make, cursor.fetchall()):
print (emp.name, emp.title)

8.3.

collections — Container datatypes 193

The Python Library Reference, Release 3.5.0

In addition to the methods inherited from tuples, named tuples support three additional methods and two attributes.
To prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple._make (iterable)
Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point._make (t)
Point (x=11, y=22)

somenamedtuple._asdict ()
Return a new OrderedDict which maps field names to their corresponding values. Note, this method is
no longer needed now that the same effect can be achieved by using the built-in vars () function:

>>> vars (p)
OrderedDict ([('x', 11), ('y', 22)1)

Changed in version 3.1: Returns an OrderedDict instead of a regular dict.

somenamedtuple._replace (kwargs)
Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point(x=11, y=22)
>>> p._replace (x=33)
Point (x=33, y=22)

>>> for partnum, record in inventory.items():
inventory[partnum] = record._replace(price=newprices|[partnum], timestamp=tir

somenamedtuple._source
A string with the pure Python source code used to create the named tuple class. The source makes the
named tuple self-documenting. It can be printed, executed using exec (), or saved to a file and imported.

New in version 3.3.

somenamedtuple._£fields
Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types
from existing named tuples.

>>> p._fields # view the field names
(IX|, lyl)

>>> Color namedtuple ('Color', 'red green blue')

>>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
>>> Pixel (11, 22, 128, 255, 0)

Pixel (x=11, y=22, red=128, green=255, blue=0)

To retrieve a field whose name is stored in a string, use the getattr () function:

>>> getattr(p, 'x')
11

To convert a dictionary to a named tuple, use the double-star-operator (as described in tut-unpacking-arguments):

>>> d = {'x"': 11, 'y': 22}
>>> Point (*+d)
Point (x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is
how to add a calculated field and a fixed-width print format:

194 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

>>> class Point (namedtuple('Point', 'x y')):
__slots__ = ()
@property
def hypot (self):
return (self.x xx 2 + self.y xx 2) xx 0.5
def _ _str__ (self):
return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot)

>>> for p in Point (3, 4), Point (14, 5/7):
print (p)

Point: x= 3.000 vy= 4.000 hypot= 5.000

Point: x=14.000 vy= 0.714 hypot=14.018

The subclass shown above sets ___slots___ to an empty tuple. This helps keep memory requirements low by
preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
__fields attribute:

>>> Point3D = namedtuple ('Point3D', Point._fields + ('z',))

Docstrings can be customized by making direct assignments to the ___doc___ fields:

>>> Book = namedtuple('Book', ['id', 'title', 'authors'])

>>> Book.__doc___ = 'Hardcover book in active collection'

>>> Book.id.__doc__ = '"13-digit ISBN'

>>> Book.title.__doc__ = 'Title of first printing'

>>> Book.author.__doc__ = 'List of authors sorted by last name'

Default values can be implemented by using _replace () to customize a prototype instance:

>>> Account = namedtuple('Account', 'owner balance transaction_count')
>>> default_account = Account ('<owner name>', 0.0, 0)

>>> johns_account = default_account._replace (owner='John')

>>> janes_account = default_account._replace (owner="Jane')

Enumerated constants can be implemented with named tuples, but it is simpler and more efficient to use a simple
Enum:

>>> Status = namedtuple ('Status', 'open pending closed') ._make (range(3))
>>> Status.open, Status.pending, Status.closed
(0, 1, 2)

>>> from enum import Enum
>>> class Status (Enum) :
open, pending, closed = range (3)

See also:

* Recipe for named tuple abstract base class with a metaclass mix-in by Jan Kaliszewski. Besides providing
an abstract base class for named tuples, it also supports an alternate metaclass-based constructor that is
convenient for use cases where named tuples are being subclassed.

8.3.6 OrderedDict oObjects

Ordered dictionaries are just like regular dictionaries but they remember the order that items were inserted. When
iterating over an ordered dictionary, the items are returned in the order their keys were first added.

class collections.OrderedDict ([items])
Return an instance of a dict subclass, supporting the usual dict methods. An OrderedDict is a dict that
remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the original
insertion position is left unchanged. Deleting an entry and reinserting it will move it to the end.

New in version 3.1.

8.3. collections — Container datatypes 195

http://code.activestate.com/recipes/577629-namedtupleabc-abstract-base-class-mix-in-for-named/

The Python Library Reference, Release 3.5.0

popitem (last=True)
The popitem () method for ordered dictionaries returns and removes a (key, value) pair. The pairs
are returned in LIFO order if last is true or FIFO order if false.

move_to_end (key, last=True)
Move an existing key to either end of an ordered dictionary. The item is moved to the right end if last
is true (the default) or to the beginning if last is false. Raises KeyError if the key does not exist:

>>> d = OrderedDict.fromkeys ('abcde')
>>> d.move_to_end('b")

>>> "' join(d.keys())

'acdeb'

>>> d.move_to_end('b', last=False)
>>> "' _ join(d.keys{())

'bacde’

New in version 3.2.
In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using reversed ().

Equality tests between OrderedDict objects are order-sensitive and are implemented as
list (odl.items())==1list (od2.items ()). Equality tests between OrderedDict objects and
other Mapping objects are order-insensitive like regular dictionaries. This allows OrderedDict objects to be
substituted anywhere a regular dictionary is used.

The OrderedDict constructor and update () method both accept keyword arguments, but their order is lost
because Python’s function call semantics pass-in keyword arguments using a regular unordered dictionary.

Changed in version 3.5: The items, keys, and values views of OrderedDict now support reverse iteration using
reversed().

OrderedDict Examples and Recipes

Since an ordered dictionary remembers its insertion order, it can be used in conjunction with sorting to make a
sorted dictionary:

>>> # regular unsorted dictionary
>>> d = {'banana': 3, 'apple':4, 'pear': 1, 'orange': 2}

>>> # dictionary sorted by key
>>> QOrderedDict (sorted(d.items (), key=lambda t: t[0]))
OrderedDict ([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)1])

>>> # dictionary sorted by value
>>> OrderedDict (sorted(d.items (), key=lambda t: t[1l]))
OrderedDict ([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)1])

>>> # dictionary sorted by length of the key string
>>> OrderedDict (sorted(d.items (), key=lambda t: len(t[0])))
OrderedDict ([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)1)

The new sorted dictionaries maintain their sort order when entries are deleted. But when new keys are added, the
keys are appended to the end and the sort is not maintained.

It is also straight-forward to create an ordered dictionary variant that remembers the order the keys were last
inserted. If a new entry overwrites an existing entry, the original insertion position is changed and moved to the
end:

class LastUpdatedOrderedDict (OrderedDict) :
'Store items in the order the keys were last added'

def _ setitem__ (self, key, value):

196 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

if key in self:
del self[key]
OrderedDict.__setitem__ (self, key, value)

An ordered dictionary can be combined with the Counter class so that the counter remembers the order elements
are first encountered:

class OrderedCounter (Counter, OrderedDict) :
'Counter that remembers the order elements are first encountered'

def _ repr_ (self):
return '$s(%r)' % (self._ class_ ._ _name_ , OrderedDict (self))

def _ reduce_ (self):
return self._ class_ , (OrderedDict (self),)

8.3.7 UserDict objects

The class, UserDict acts as a wrapper around dictionary objects. The need for this class has been partially
supplanted by the ability to subclass directly from dict; however, this class can be easier to work with because
the underlying dictionary is accessible as an attribute.

class collections.UserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute of UserDict instances. If initialdata is provided, data is initialized with its
contents; note that a reference to initialdata will not be kept, allowing it be used for other purposes.

In addition to supporting the methods and operations of mappings, UserDict instances provide the fol-
lowing attribute:

data
A real dictionary used to store the contents of the UserDict class.

8.3.8 UserList objects

This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which can
inherit from them and override existing methods or add new ones. In this way, one can add new behaviors to lists.

The need for this class has been partially supplanted by the ability to subclass directly from 11 st; however, this
class can be easier to work with because the underlying list is accessible as an attribute.

class collections.UserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of list, defaulting to the
empty list []. list can be any iterable, for example a real Python list or a UserList object.

In addition to supporting the methods and operations of mutable sequences, UserLi st instances provide
the following attribute:

data
A real 1ist object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expected to offer a constructor which can be called
with either no arguments or one argument. List operations which return a new sequence attempt to create an
instance of the actual implementation class. To do so, it assumes that the constructor can be called with a single
parameter, which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this
class will need to be overridden; please consult the sources for information about the methods which need to be
provided in that case.

8.3. collections — Container datatypes 197

The Python Library Reference, Release 3.5.0

8.3.9 Userstring objects

The class, UserString acts as a wrapper around string objects. The need for this class has been partially
supplanted by the ability to subclass directly from st r; however, this class can be easier to work with because the
underlying string is accessible as an attribute.

class collections.UserString([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string
object, which is accessible via the data attribute of UserSt ring instances. The instance’s contents are
initially set to a copy of sequence. The sequence can be an instance of bytes, str, UserString (or a
subclass) or an arbitrary sequence which can be converted into a string using the built-in st r () function.

8.4 collections.abc — Abstract Base Classes for Containers

New in version 3.3: Formerly, this module was part of the col lect ions module.

Source code: Lib/ _collections_abc.py

This module provides abstract base classes that can be used to test whether a class provides a particular interface;
for example, whether it is hashable or whether it is a mapping.

8.4.1 Collections Abstract Base Classes

The collections module offers the following ABCs:

198 Chapter 8. Data Types

https://hg.python.org/cpython/file/3.5/Lib/_collections_abc.py

The Python Library Reference, Release 3.5.0

ABC Inherits Abstract Methods Mixin Methods
from
Container __contains_
Hashable __hash___
Iterable __iter_
Iterator Iterable | __next__ __iter_
Generator Iterator | send, throw close,__iter_ ,_ next_
Sized __len_
Callable __call_
Sequence Sized, __getitem__ , __contains__ ,__iter_,
Iterable,| __len___ __reversed__, index, and count
Containen
MutableSequence | Sequence | __getitem__, Inherited Sequence methods and
___setitem_, append, reverse, extend, pop,
__delitem__, remove,and ___iadd___
__len__,insert
Set Sized, __contains__, _le_ , lt_ ,__eq ,__ne__,
Iterable,| _ iter ,_ len_ __gt__, ge_ ,__and__,
Containen _or__,_ sub__,_ xor_ ,and
isdisjoint
MutableSet Set __contains__, Inherited Set methods and clear,
__iter_ ,__len_ , pop, remove, __ior__ ,__iand__,
add, discard __ixor_ ,and __isub__
Mapping Sized, __getitem_ , __contains__,keys, items,
Iterable,| __iter , len_ values,get,__eq ,and_ ne_
Containen
MutableMapping Mapping | __getitem_ , Inherited Mapping methods and pop,
__setitem_, popitem, clear, update, and
__delitem_, setdefault
__dter_ ,_ len_
MappingView Sized __len___
ItemsView MappingView, __contains__ ,_ iter_
Set
KeysView MappingVilew, __contains__ ,_ _iter_
Set
ValuesView MappingView __contains__ ,__iter_
Awaitable __await_
Coroutine Awaitablg send, throw close
AsynclIterable __aiter_
Asynclterator Asyncltenablanext_ __aiter
class collections.abc.Container
class collections.abc.Hashable
class collections.abc.Sized
class collections.abc.Callable
ABCs for classes that provide respectively the methods ___contains__ (), __hash__ (),
len (),and _call__ ().
class collections.abc.Iterable
ABC for classes that provide the __iter__ () method. See also the definition of iterable.
class collections.abc.Iterator
ABC for classes that provide the __iter__ () and _ _next__ () methods. See also the definition of

iterator.

class collections.abc.Generator
ABC for generator classes that implement the protocol defined in PEP 342 that extends iterators with the
send (), throw () and close () methods. See also the definition of generator.

New in version 3.5.

8.4. collections.abc — Abstract Base Classes for Containers 199

http://www.python.org/dev/peps/pep-0342

The Python Library Reference, Release 3.5.0

class collections.abc.Sequence
class collections.abc.MutableSequence
ABC:s for read-only and mutable sequences.

Implementation note: Some of the mixin methods, such as _ iter (), _ reversed_ ()
and index (), make repeated calls to the underlying _ getitem__ () method. Consequently, if
__getitem__ () is implemented with constant access speed, the mixin methods will have linear per-

formance; however, if the underlying method is linear (as it would be with a linked list), the mixins will
have quadratic performance and will likely need to be overridden.

Changed in version 3.5: The index() method added support for stop and start arguments.

class collections.abc.Set
class collections.abc.MutableSet
ABC:s for read-only and mutable sets.

class collections.abc.Mapping
class collections.abc.MutableMapping
ABC:s for read-only and mutable mappings.

class collections.abc.MappingView
class collections.abc.ItemsView
class collections.abc.KeysView
class collections.abc.ValuesView
ABC:s for mapping, items, keys, and values views.

class collections.abc.Awaitable
ABC for awaitable objects, which can be used in await expressions. Custom implementations must
provide the __await__ () method.

Coroutine objects and instances of the Corout ine ABC are all instances of this ABC.

Note: In CPython, generator-based coroutines (generators decorated with types.coroutine ()
or asyncio.coroutine ()) are awaitables, even though they do not have an __await__ ()

method. Using isinstance (gencoro, Awaitable) for them will return False. Use
inspect.isawaitable () to detect them.

New in version 3.5.

class collections.abc.Coroutine
ABC for coroutine compatible classes. These implement the following methods, defined in coroutine-
objects: send (), throw(), and close(). Custom implementations must also implement
__await__ (). All Coroutine instances are also instances of Awaitable. See also the definition
of coroutine.

Note: In CPython, generator-based coroutines (generators decorated with types.coroutine ()
or asyncio.coroutine ()) are awaitables, even though they do not have an __await__ ()

method. Using isinstance (gencoro, Coroutine) for them will return False. Use
inspect.isawaitable () to detect them.

New in version 3.5.

class collections.abc.AsyncIterable
ABC for classes that provide __aiter__ method. See also the definition of asynchronous iterable.

New in version 3.5.

class collections.abc.AsyncIterator
ABC for classes that provide __aiter__ and __anext__ methods. See also the definition of asyn-
C/’li’()l‘l()l/lS itemt()r.

New in version 3.5.

These ABCs allow us to ask classes or instances if they provide particular functionality, for example:

200 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

size = None
if isinstance (myvar, collections.abc.Sized):
size = len (myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs. For
example, to write a class supporting the full Set API, it is only necessary to supply the three underlying abstract
methods: __contains__ (), __iter_ (), and __len__ (). The ABC supplies the remaining methods
suchas __and__ () and isdisjoint ():

class ListBasedSet (collections.abc.Set):
"'! Alternate set implementation favoring space over speed
and not requiring the set elements to be hashable. '''
def @ init_ (self, iterable):
self.elements = 1lst = []
for value in iterable:
if value not in 1lst:
lst.append (value)
def _ iter_ (self):
return iter (self.elements)
def _ contains__ (self, wvalue):
return value in self.elements
def @ len_ (self):
return len(self.elements)

sl ListBasedSet ('abcdef')
s2 = ListBasedSet ('defghi')
overlap = sl & s2 # The __and__ () method is supported automatically

Notes on using Set and MutableSet as a mixin:

1. Since some set operations create new sets, the default mixin methods need a way to create new
instances from an iterable. The class constructor is assumed to have a signature in the form
ClassName (iterable). That assumption is factored-out to an internal classmethod called
_from_iterable () which calls cls (iterable) to produce a new set. If the Set mixin is be-
ing used in a class with a different constructor signature, you will need to override _from_iterable ()
with a classmethod that can construct new instances from an iterable argument.

2. To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le__ () and
__ge__ (), then the other operations will automatically follow suit.

3. The Set mixin provides a _hash () method to compute a hash value for the set; however, __hash__ ()
is not defined because not all sets are hashable or immutable. To add set hashability using mixins, inherit
from both Set () and Hashable (), thendefine_ _hash__ = Set._hash.

See also:
* OrderedSet recipe for an example built on MutableSet.

¢ For more about ABCs, see the abc module and PEP 3119.

8.5 heapq — Heap queue algorithm

Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children. This
implementation uses arrays for which heap [k] <= heap[2xk+1] and heap[k] <= heap[2*k+2] for
all k, counting elements from zero. For the sake of comparison, non-existing elements are considered to be infinite.
The interesting property of a heap is that its smallest element is always the root, heap [0].

8.5. heapq — Heap queue algorithm 201

http://code.activestate.com/recipes/576694/
http://www.python.org/dev/peps/pep-3119
https://hg.python.org/cpython/file/3.5/Lib/heapq.py

The Python Library Reference, Release 3.5.0

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more
suitable since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest
(called a “min heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place
sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap [0] is the smallest
item, and heap . sort () maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function
heapify ().

The following functions are provided:

heapqg.heappush (heap, item)
Push the value ifem onto the heap, maintaining the heap invariant.

heapqg.heappop (heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError israised. To access the smallest item without popping it, use heap [0].

heapqg.heappushpop (heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action runs more
efficiently than heappush () followed by a separate call to heappop ().

heapg.heapify (x)
Transform list x into a heap, in-place, in linear time.

heapqg.heapreplace (heap, item)
Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t change.
If the heap is empty, IndexError is raised.

This one step operation is more efficient than a heappop () followed by heappush () and can be more
appropriate when using a fixed-size heap. The pop/push combination always returns an element from the
heap and replaces it with item.

The value returned may be larger than the item added. If that isn’t desired, consider using
heappushpop () instead. Its push/pop combination returns the smaller of the two values, leaving the
larger value on the heap.

The module also offers three general purpose functions based on heaps.

heapqg.merge (*iterables, key=None, reverse=False)
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from
multiple log files). Returns an iterator over the sorted values.

Similarto sorted (itertools.chain (xiterables)) butreturns an iterable, does not pull the data
into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).

Has two optional arguments which must be specified as keyword arguments.

key specifies a key function of one argument that is used to extract a comparison key from each input element.
The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the input elements are merged as if each comparison were
reversed.

Changed in version 3.5: Added the optional key and reverse parameters.

heapqg.nlargest (n, iterable, key=None)
Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted (iterable, key=key, reverse=True) [:n]

heapg.nsmallest (n, iterable, key=None)
Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted (iterable, key=key) [:n]

202 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use the
sorted () function. Also, when n==1, it is more efficient to use the built-in min () and max () functions. If
repeated usage of these functions is required, consider turning the iterable into an actual heap.

8.5.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values one at
a time:

>>> def heapsort (iterable):
h = []
for value in iterable:
heappush (h, wvalue)
return [heappop (h) for i in range(len(h))]

>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 01)
[OV l’ 2’ 3, 4’ 5’ 6’ 77 8’ 9]

This is similar to sorted (iterable), but unlike sorted (), this implementation is not stable.

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside the
main record being tracked:

>>> h = []

>>> heappush (h,
>>> heappush (h,
>>> heappush (h
>>> heappush (h,
>>> heappop (h)
(1, 'write spec')

'write code'))
'release product'))

~

~

, 'write spec'))

w P 39w,
~

~

'create tests'))

8.5.2 Priority Queue Implementation Notes

A priority queue is common use for a heap, and it presents several implementation challenges:

* Sort stability: how do you get two tasks with equal priorities to be returned in the order they were originally
added?

 Tuple comparison breaks for (priority, task) pairs if the priorities are equal and the tasks do not have a
default comparison order.

* If the priority of a task changes, how do you move it to a new position in the heap?
 Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry count, and
the task. The entry count serves as a tie-breaker so that two tasks with the same priority are returned in the order
they were added. And since no two entry counts are the same, the tuple comparison will never attempt to directly
compare two tasks.

The remaining challenges revolve around finding a pending task and making changes to its priority or removing it
entirely. Finding a task can be done with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would break the heap structure invariants.
So, a possible solution is to mark the entry as removed and add a new entry with the revised priority:

pa = [] # list of entries arranged in a heap
entry_finder = {} # mapping of tasks to entries
REMOVED = '<removed-task>" # placeholder for a removed task
counter = itertools.count () # unique sequence count

def add_task(task, priority=0):

8.5. heapq — Heap queue algorithm 203

http://en.wikipedia.org/wiki/Heapsort
http://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 3.5.0

'Add a new task or update the priority of an existing task'
if task in entry_finder:
remove_task (task)
count = next (counter)
entry = [priority, count, task]
entry_finder[task] = entry
heappush (pg, entry)

def remove_task (task):
'Mark an existing task as REMOVED. Raise KeyError if not found.'
entry = entry_finder.pop (task)
entry[-1] = REMOVED

def pop_task():
'Remove and return the lowest priority task. Raise KeyError if empty.'
while pqg:
priority, count, task = heappop (pqg)
if task is not REMOVED:
del entry_finder[task]
return task
raise KeyError ('pop from an empty priority queue')

8.5.3 Theory

Heaps are arrays for which a[k] <= a[2xk+1] anda[k] <= a[2+k+2] for all k, counting elements from
0. For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a
heap is that a [0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers
below are k, not a [k]:

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell & is topping 2 «k+1 and 2xk+2. In an usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and
the rule becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the
two topped cells.

If this heap invariant is protected at all time, index O is clearly the overall winner. The simplest algorithmic way
to remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the 0
position, and then percolate this new O down the tree, exchanging values, until the invariant is re-established. This
is clearly logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n)
sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that
the inserted items are not “better’ than the last 0’th element you extracted. This is especially useful in simulation
contexts, where the tree holds all incoming events, and the “win” condition means the smallest scheduled time.
When an event schedules other events for execution, they are scheduled into the future, so they can easily go into
the heap. So, a heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer

-).

204 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, whose size is usually related to the amount of CPU memory), followed by a
merging passes for these runs, which merging is often very cleverly organised °. It is very important that the initial
sort produces the longest runs possible. Tournaments are a good way to achieve that. If, using all the memory
available to hold a tournament, you replace and percolate items that happen to fit the current run, you’ll produce
runs which are twice the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because
the value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly
the same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new
run. Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to
keep a ‘heap’ module around. :-)

8.6 bisect — Array bisection algorithm

Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each
insertion. For long lists of items with expensive comparison operations, this can be an improvement over the more
common approach. The module is called bisect because it uses a basic bisection algorithm to do its work.
The source code may be most useful as a working example of the algorithm (the boundary conditions are already
right!).

The following functions are provided:

bisect.bisect_left (a, x, lo=0, hi=len(a))
Locate the insertion point for x in a to maintain sorted order. The parameters lo and hi may be used to specify
a subset of the list which should be considered; by default the entire list is used. If x is already present in q,
the insertion point will be before (to the left of) any existing entries. The return value is suitable for use as
the first parameter to 1ist .insert () assuming that a is already sorted.

The returned insertion point i partitions the array a into two halves so that all (val < x for val in
al[lo:i]) fortheleftsideand all (val >= x for val in a[i:hi]) for the right side.

bisect .bisect_right (a, x, lo=0, hi=len(a))

bisect .bisect (a, x, lo=0, hi=len(a))
Similar to bisect_left (), butreturns an insertion point which comes after (to the right of) any existing
entries of x in a.

The returned insertion point i partitions the array a into two halves so that all (val <= x for val
in a[lo:1i]) fortheleftsideand all (val > x for val in al[i:hi]) for the right side.

bisect.insort_left (a, x, lo=0, hi=len(a))
Insert x in a in sorted order. This is equivalent to a.insert (bisect.bisect_left (a, x, lo,
hi), =x) assuming that a is already sorted. Keep in mind that the O(log n) search is dominated by the
slow O(n) insertion step.

bisect.insort_right (a, x, lo=0, hi=len(a))

2 The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking
capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to
ensure (far in advance) that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge).
Some tapes were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite
spectacular to watch! From all times, sorting has always been a Great Art! :-)

8.6. bisect — Array bisection algorithm 205

https://hg.python.org/cpython/file/3.5/Lib/bisect.py

The Python Library Reference, Release 3.5.0

bisect.insort (a, x, lo=0, hi=len(a))
Similar to insort_left (), butinserting x in a after any existing entries of x.

See also:

SortedCollection recipe that uses bisect to build a full-featured collection class with straight-forward search meth-
ods and support for a key-function. The keys are precomputed to save unnecessary calls to the key function during
searches.

8.6.1 Searching Sorted Lists

The above bisect () functions are useful for finding insertion points but can be tricky or awkward to use for
common searching tasks. The following five functions show how to transform them into the standard lookups for
sorted lists:

def index(a, x):
'Locate the leftmost value exactly equal to x'
i = bisect_left (a, x)
if i != len(a) and al[i] == x:
return i
raise ValueError

def find_ 1t (a, x):
'Find rightmost value less than x'
i = bisect_left (a, x)
if i:
return a[i-1]
raise ValueError

def find_le(a, x):
'Find rightmost value less than or equal to x'
i = bisect_right(a, x)
if i:
return a[i-1]
raise ValueError

def find_gt(a, x):
'Find leftmost value greater than x'
i = bisect_right(a, x)
if i != len(a):
return ali]
raise ValueError

def find _ge(a, x):
'Find leftmost item greater than or equal to x'
i = bisect_left (a, x)
if i != len(a):
return ali]
raise ValueError

8.6.2 Other Examples

The bisect () function can be useful for numeric table lookups. This example uses bisect () to look up a
letter grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89 is
a ‘B’, and so on:

>>> def grade (score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):
i = bisect (breakpoints, score)

206 Chapter 8. Data Types

http://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 3.5.0

return grades([i]
>>> [grade (score) for score in [33, 99, 77, 70, 89, 90, 100]]
[lFl, VAV, ICI, |CV, IBI, 'Al, IAI]

Unlike the sorted () function, it does not make sense for the bisect () functions to have key or reversed argu-
ments because that would lead to an inefficient design (successive calls to bisect functions would not “remember”
all of the previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index of the record in question:

>>> data = [('red', 5), ('blue', 1), ('yellow', 8), ('black', 0)]
>>> data.sort (key=lambda r: r[1])
>>> keys = [r[1l] for r in data] # precomputed 1list of keys

>>> datal[bisect_left (keys, 0)]
('"black', 0)

>>> datalbisect_left (keys, 1)]
('blue', 1)

>>> datal[bisect_left (keys, 5)]
('red', 5)

>>> datalbisect_left (keys, 8)]
('yellow', 8)

8.7 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

Type code | C Type Python Type Minimum size in bytes | Notes
"o’ signed char int 1

"B’ unsigned char int 1

rua’ Py_UNICODE Unicode character | 2 (D)
"h' signed short int 2

"H' unsigned short int 2

rir signed int int 2

rI’ unsigned int int 2

r1’ signed long int 4

g unsigned long int 4

rq’ signed long long int 8 2)
rQ’ unsigned long long | int 8 2)
rf£r float float 4

rd’ double float 8

Notes:

1. The "u’ type code corresponds to Python’s obsolete unicode character (Py_UNICODE which is
wchar_t). Depending on the platform, it can be 16 bits or 32 bits.

"u’ will be removed together with the rest of the Py_ UNICODE APL
Deprecated since version 3.3, will be removed in version 4.0.

2. The " g’ and " Q' type codes are available only if the platform C compiler used to build Python supports C
long long, or, on Windows, ___int64.

New in version 3.3.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C imple-
mentation). The actual size can be accessed through the itemsize attribute.

8.7. array — Efficient arrays of numeric values 207

The Python Library Reference, Release 3.5.0

The module defines the following type:

class array.array (typecode [, initializer])
A new array whose items are restricted by typecode, and initialized from the optional initializer value, which
must be a list, a byfes-like object, or iterable over elements of the appropriate type.

If given a list or string, the initializer is passed to the new array’s fromlist (), frombytes (), or
fromunicode () method (see below) to add initial items to the array. Otherwise, the iterable initializer is
passed to the extend () method.

array.typecodes
A string with all available type codes.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication.
When using slice assignment, the assigned value must be an array object with the same type code; in all other
cases, TypeError is raised. Array objects also implement the buffer interface, and may be used wherever
bytes-like objects are supported.

The following data items and methods are also supported:

array.typecode
The typecode character used to create the array.

array.itemsize
The length in bytes of one array item in the internal representation.

array .append (x)
Append a new item with value x to the end of the array.

array.buffer info()
Return a tuple (address, length) giving the current memory address and the length in elements
of the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
array.buffer_info () [1] % array.itemsize. This is occasionally useful when working with
low-level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioctl ()
operations. The returned numbers are valid as long as the array exists and no length-changing operations
are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method

is maintained for backward compatibility and should be avoided in new code. The buffer interface is docu-
mented in bufferobjects.

array.byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of values, Runt imeError is raised. It is useful when reading data from a file written on a
machine with a different byte order.

array.count (x)
Return the number of occurrences of x in the array.

array .extend (iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly the same
type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its elements
must be the right type to be appended to the array.

array.frombytes (s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been read
from a file using the fromfile () method).

New in version 3.2: fromstring () isrenamedto frombytes () for clarity.

array.fromfile (f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less than
n items are available, EOFError is raised, but the items that were available are still inserted into the array.
Jf must be a real built-in file object; something else with a read () method won’t do.

208 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

array.fromlist (list)
Append items from the list. This is equivalent to for x in list: a.append(x) except that if
there is a type error, the array is unchanged.

array.fromstring()
Deprecated alias for frombytes ().

array.fromunicode (s)
Extends this array with data from the given unicode string. The array must be a type ’ u’ array; otherwise
a ValueError is raised. Use array.frombytes (unicodestring.encode (enc)) to append
Unicode data to an array of some other type.

array.index (x)
Return the smallest i such that i is the index of the first occurrence of x in the array.

array.insert (i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being relative to
the end of the array.

array.pop ([l])
Removes the item with the index i from the array and returns it. The optional argument defaults to -1, so
that by default the last item is removed and returned.

array.remove (x)
Remove the first occurrence of x from the array.

array.reverse ()
Reverse the order of the items in the array.

array.tobytes ()
Convert the array to an array of machine values and return the bytes representation (the same sequence of
bytes that would be written to a file by the tofile () method.)

New in version 3.2: tostring () is renamed to tobytes () for clarity.

array.tofile (f)
Write all items (as machine values) to the file object f.

array.tolist ()
Convert the array to an ordinary list with the same items.

array.tostring()
Deprecated alias for tobytes ().

array.tounicode ()
Convert the array to a unicode string. The array must be a type ' u’ array; otherwise a ValueError is
raised. Use array.tobytes () .decode (enc) to obtain a unicode string from an array of some other

type.

When an array object is printed or converted to a string, it is represented as array (typecode,
initializer). The initializer is omitted if the array is empty, otherwise it is a string if the typecode is ' u’,
otherwise it is a list of numbers. The string is guaranteed to be able to be converted back to an array with the
same type and value using eval (), so long as the array () function has been imported using from array
import array. Examples:

array ('1l")

array('u', 'hello \u2641")
array('1', [1, 2, 3, 4, 51)
array('d', [1.0, 2.0, 3.147)
See also:

Module st ruct Packing and unpacking of heterogeneous binary data.

Module xdrlib Packing and unpacking of External Data Representation (XDR) data as used in some remote
procedure call systems.

8.7. array — Efficient arrays of numeric values 209

The Python Library Reference, Release 3.5.0

The Numerical Python Documentation The Numeric Python extension (NumPy) defines another array type;
see http://www.numpy.org/ for further information about Numerical Python.

8.8 weakref — Weak references

Source code: Lib/weakref.py

The weakref module allows the Python programmer to create weak references to objects.
In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. However, until the object is actually destroyed the weak reference may return the object even if there are no
strong references to it.

A primary use for weak references is to implement caches or mappings holding large objects, where it’s desired
that a large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with each.
If you used a Python dictionary to map names to images, or images to names, the image objects would re-
main alive just because they appeared as values or keys in the dictionaries. The WeakKeyDictionary and
WeakValueDictionary classes supplied by the weakref module are an alternative, using weak references
to construct mappings that don’t keep objects alive solely because they appear in the mapping objects. If, for
example, an image object is a value in a WeakValueDictionary, then when the last remaining references to
that image object are the weak references held by weak mappings, garbage collection can reclaim the object, and
its corresponding entries in weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting
up callback functions on the weak references that notify the weak dictionaries when a key or value has been
reclaimed by garbage collection. WeakSet implements the set interface, but keeps weak references to its
elements, just like a WeakKeyDictionary does.

finalize provides a straight forward way to register a cleanup function to be called when an object is garbage
collected. This is simpler to use than setting up a callback function on a raw weak reference, since the module
automatically ensures that the finalizer remains alive until the object is collected.

Most programs should find that using one of these weak container types or £inalize is all they need — it’s
not usually necessary to create your own weak references directly. The low-level machinery is exposed by the
weakref module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in
Python (but not in C), instance methods, sets, frozensets, some file objects, generators, type objects, sockets,
arrays, deques, regular expression pattern objects, and code objects.

Changed in version 3.2: Added support for thread.lock, threading.Lock, and code objects.

Several built-in types such as 11 st and dict do not directly support weak references but can add support through
subclassing:

class Dict (dict):
pass
obj = Dict(red=1, green=2, blue=3) # this object is weak referenceable

Other built-in types such as tuple and int do not support weak references even when subclassed (This is an
implementation detail and may be different across various Python implementations.).

Extension types can easily be made to support weak references; see weakref-support.

class weakref.ref (object[, callback])
Return a weak reference to object. The original object can be retrieved by calling the reference object if the

210 Chapter 8. Data Types

http://docs.scipy.org/doc/
http://www.numpy.org/
https://hg.python.org/cpython/file/3.5/Lib/weakref.py

The Python Library Reference, Release 3.5.0

referent is still alive; if the referent is no longer alive, calling the reference object will cause None to be
returned. If callback is provided and not None, and the returned weakref object is still alive, the callback
will be called when the object is about to be finalized; the weak reference object will be passed as the only
parameter to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an object’s __del__ () method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after the
object was deleted. If hash () is called the first time only after the object was deleted, the call will raise
TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardless of the callback). If either referent has been
deleted, the references are equal only if the reference objects are the same object.

This is a subclassable type rather than a factory function.

_ _callback_
This read-only attribute returns the callback currently associated to the weakref. If there is no callback
or if the referent of the weakref is no longer alive then this attribute will have value None.

Changed in version 3.4: Addedthe __callback___ attribute.

weakref.proxy (object[, callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object will
have a type of either ProxyType or CallableProxyType, depending on whether object is callable.
Proxy objects are not hashable regardless of the referent; this avoids a number of problems related to
their fundamentally mutable nature, and prevent their use as dictionary keys. callback is the same as the
parameter of the same name to the ref () function.

weakref .getweakrefcount (object)
Return the number of weak references and proxies which refer to object.

weakref .getweakrefs (object)
Return a list of all weak reference and proxy objects which refer to object.

class weakref .WeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned by
other parts of an application without adding attributes to those objects. This can be especially useful with
objects that override attribute accesses.

Note: Caution: Because a WeakKeyDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakKeyDictionary because

actions performed by the program during iteration may cause items in the dictionary to vanish “by magic”
(as a side effect of garbage collection).

WeakKeyDictionary objects have the following additional methods. These expose the internal references
directly. The references are not guaranteed to be “live” at the time they are used, so the result of calling the
references needs to be checked before being used. This can be used to avoid creating references that will cause
the garbage collector to keep the keys around longer than needed.

WeakKeyDictionary.keyrefs ()
Return an iterable of the weak references to the keys.

class weakref .WeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong
reference to the value exists any more.

8.8. weakref — Weak references 211

The Python Library Reference, Release 3.5.0

Note: Caution: Because a WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakValueDictionary because

actions performed by the program during iteration may cause items in the dictionary to vanish “by magic”
(as a side effect of garbage collection).

WeakValueDictionary objects have the following additional methods. These method have the same issues
as the and keyrefs () method of WeakKeyDictionary objects.

WeakValueDictionary.valuerefs ()

Return an iterable of the weak references to the values.

class weakref .WeakSet ([elements])

Set class that keeps weak references to its elements. An element will be discarded when no strong reference
to it exists any more.

class weakref .WeakMethod (method)

A custom ref subclass which simulates a weak reference to a bound method (i.e., a method defined on a
class and looked up on an instance). Since a bound method is ephemeral, a standard weak reference cannot
keep hold of it. WeakMethod has special code to recreate the bound method until either the object or the
original function dies:

>>> class C:
def method(self):
print ("method called!")

>>>

c = C()
>>> r = weakref.ref (c.method)
>>> r ()
>>> r = weakref.WeakMethod (c.method)
>>> r ()

<bound method C.method of <__main__.C object at 0x7fc859830220>>
>>> v () ()

method called!

>>> del c

>>> gc.collect ()

0

>>> 1 ()

>>>

New in version 3.4.

class weakref . finalize (0bj, func, *args, **kwargs)

Return a callable finalizer object which will be called when obj is garbage collected. Unlike an ordinary
weak reference, a finalizer will always survive until the reference object is collected, greatly simplifying
lifecycle management.

A finalizer is considered alive until it is called (either explicitly or at garbage collection), and after that it is
dead. Calling a live finalizer returns the result of evaluating func (xrarg, =x*kwargs), whereas calling
a dead finalizer returns None.

Exceptions raised by finalizer callbacks during garbage collection will be shown on the standard error out-
put, but cannot be propagated. They are handled in the same way as exceptions raised from an object’s
__del__ () method or a weak reference’s callback.

When the program exits, each remaining live finalizer is called unless its atexit attribute has been set to
false. They are called in reverse order of creation.

A finalizer will never invoke its callback during the later part of the interpreter shutdown when module
globals are liable to have been replaced by None.

__call_ ()
If self is alive then mark it as dead and return the result of calling func (xrargs, =*xkwargs). If

212

Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

self is dead then return None.

detach ()
If self is alive then mark it as dead and return the tuple (obj, func, args, kwargs). If self
is dead then return None.

peek ()
If self is alive then return the tuple (obj, func, args, kwargs). If self is dead then return
None.

alive
Property which is true if the finalizer is alive, false otherwise.

atexit
A writable boolean property which by default is true. When the program exits, it calls all remaining
live finalizers for which atexit is true. They are called in reverse order of creation.

Note: It is important to ensure that func, args and kwargs do not own any references to obj, either directly
or indirectly, since otherwise obj will never be garbage collected. In particular, func should not be a bound

method of 0bj.

New in version 3.4.

weakref.ReferenceType
The type object for weak references objects.

weakref.ProxyType
The type object for proxies of objects which are not callable.

weakref.CallableProxyType
The type object for proxies of callable objects.

weakref.ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exception weakref .ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same
as the standard Re ferenceError exception.

See also:

PEP 0205 - Weak References The proposal and rationale for this feature, including links to earlier implementa-
tions and information about similar features in other languages.

8.8.1 Weak Reference Objects

Weak reference objects have no methods and no attributes besides ref.___callback__. A weak reference
object allows the referent to be obtained, if it still exists, by calling it:

>>> import weakref
>>> class Object:
pass

>>> o = Object ()

>>> r = weakref.ref (o)
>>> 02 = r()

>>> o is 02

True

If the referent no longer exists, calling the reference object returns None:

8.8. weakref — Weak references 213

http://www.python.org/dev/peps/pep-0205

The Python Library Reference, Release 3.5.0

>>> del o, o2
>>> print(r())
None

Testing that a weak reference object is still live should be done using the expression ref () is not None.
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o = r()
if o is None:
referent has been garbage collected
print ("Object has been deallocated; can't frobnicate.")
else:
print ("Object is still live!")
o.do_something_ useful ()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause
a weak reference to become invalidated before the weak reference is called; the idiom shown above is safe in
threaded applications as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation of
the WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most
useful to associate additional information with a reference, but could also be used to insert additional processing
on calls to retrieve the referent.

This example shows how a subclass of ref can be used to store additional information about an object and affect
the value that’s returned when the referent is accessed:

import weakref

class ExtendedRef (weakref.ref):

def _ init__ (self, ob, callback=None, **annotations):
super (ExtendedRef, self).__init__ (ob, callback)
self._ counter = 0

for k, v in annotations.items /() :
setattr(self, k, v)

def _ call_ (self):
"""Return a palr containing the referent and the number of
times the reference has been called.

mmn

ob = super (ExtendedRef, self).__call__ ()
if ob is not None:

self.__counter += 1

ob = (ob, self._ counter)

return ob

8.8.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The
IDs of the objects can then be used in other data structures without forcing the objects to remain alive, but the
objects can still be retrieved by ID if they do.

import weakref
_1d2o0bj_dict = weakref.WeakValueDictionary ()

def remember (obj) :
oid = id(ob7j)
_id2obj_dict[oid] = obj
return oid

214 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

def id2obj(oid):
return _id2obj_dict[oid]

8.8.3 Finalizer Objects

The main benefit of using finalize is that it makes it simple to register a callback without needing to preserve
the returned finalizer object. For instance

>>> import weakref
>>> class Object:
pass

>>> kenny = Object ()

>>> weakref.finalize (kenny, print, "You killed Kenny!")
<finalize object at ...; for 'Object' at ...>

>>> del kenny

You killed Kenny!

The finalizer can be called directly as well. However the finalizer will invoke the callback at most once.

>>> def callback(x, vy, z):
print ("CALLBACK")
return x + y + 2z

>>> obj = Object ()
>>> f = weakref.finalize (obj, callback, 1, 2, z=3)
>>> assert f.alive

>>> assert f() == 6

CALLBACK

>>> assert not f.alive

>>> £ () # callback not called because finalizer dead
>>> del obj # callback not called because finalizer dead

You can unregister a finalizer using its detach () method. This kills the finalizer and returns the arguments
passed to the constructor when it was created.

>>> obj = Object ()

>>> f = weakref.finalize(obj, callback, 1, 2, z=3)

>>> f.detach ()

(<_main__ .Object object ...>, <function callback ...>, (1, 2), {'z': 3})
>>> newobj, func, args, kwargs = _

>>> assert not f.alive

>>> assert newobj is obj

>>> assert func(rxargs, =**xkwargs) == 6

CALLBACK

Unless you set the atexit attribute to False, a finalizer will be called when the program exits if it is still alive.
For instance

>>> obj = Object ()

>>> weakref.finalize (obj, print, "obj dead or exiting")
<finalize object at ...; for 'Object' at ...>

>>> exit ()

obj dead or exiting

8.8.4 Comparing finalizers with __del__ () methods

Suppose we want to create a class whose instances represent temporary directories. The directories should be
deleted with their contents when the first of the following events occurs:

8.8. weakref — Weak references 215

The Python Library Reference, Release 3.5.0

* the object is garbage collected,
* the object’s remove () method is called, or
* the program exits.
We might try to implement the class usinga ___del__ () method as follows:

class TempDir:
def _ init_ (self):
self.name = tempfile.mkdtemp ()

def remove (self):
if self.name is not None:
shutil.rmtree (self.name)
self.name = None

@property
def removed(self) :
return self.name is None

def _ del_ (self):
self.remove ()

Starting with Python 3.4, __del__ () methods no longer prevent reference cycles from being garbage collected,
and module globals are no longer forced to None during interpreter shutdown. So this code should work without
any issues on CPython.

However, handling of __del__ () methods is notoriously implementation specific, since it depends on internal
details of the interpreter’s garbage collector implementation.

A more robust alternative can be to define a finalizer which only references the specific functions and objects that
it needs, rather than having access to the full state of the object:

class TempDir:
def init_ (self):
self.name = tempfile.mkdtemp ()
self._ finalizer = weakref.finalize(self, shutil.rmtree, self.name)

def remove (self) :
self._finalizer ()

@property
def removed(self):
return not self._ finalizer.alive

Defined like this, our finalizer only receives a reference to the details it needs to clean up the directory appropri-
ately. If the object never gets garbage collected the finalizer will still be called at exit.

The other advantage of weakref based finalizers is that they can be used to register finalizers for classes where the
definition is controlled by a third party, such as running code when a module is unloaded:

import weakref, sys
def unloading_module () :

implicit reference to the module globals from the function body
weakref.finalize (sys.modules[__name__], unloading_module)

Note: If you create a finalizer object in a daemonic thread just as the program exits then there is the possibility
that the finalizer does not get called at exit. However, in a daemonic thread atexit.register (), try:

finally: ... andwith: ... donotguarantee that cleanup occurs either.

216 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

8.9 types — Dynamic type creation and names for built-in types

Source code: Lib/types.py

This module defines utility function to assist in dynamic creation of new types.

It also defines names for some object types that are used by the standard Python interpreter, but not exposed as
builtins like int or st r are.

Finally, it provides some additional type-related utility classes and functions that are not fundamental enough to
be builtins.

8.9.1 Dynamic Type Creation
types.new_class (name, bases=(), kwds=None, exec_body=None)
Creates a class object dynamically using the appropriate metaclass.

The first three arguments are the components that make up a class definition header: the class name, the
base classes (in order), the keyword arguments (such as metaclass).

The exec_body argument is a callback that is used to populate the freshly created class namespace. It should
accept the class namespace as its sole argument and update the namespace directly with the class contents.
If no callback is provided, it has the same effect as passing in lambda ns: ns.

New in version 3.3.

types.prepare_class (name, bases=(), kwds=None)
Calculates the appropriate metaclass and creates the class namespace.

The arguments are the components that make up a class definition header: the class name, the base classes
(in order) and the keyword arguments (such as metaclass).

The return value is a 3-tuple: metaclass, namespace, kwds

metaclass is the appropriate metaclass, namespace is the prepared class namespace and kwds is an updated
copy of the passed in kwds argument with any 'metaclass’ entry removed. If no kwds argument is
passed in, this will be an empty dict.

New in version 3.3.
See also:
metaclasses Full details of the class creation process supported by these functions

PEP 3115 - Metaclasses in Python 3000 Introduced the _ _prepare_ namespace hook

8.9.2 Standard Interpreter Types

This module provides names for many of the types that are required to implement a Python interpreter. It
deliberately avoids including some of the types that arise only incidentally during processing such as the
listiterator type.

Typical use of these names is for isinstance () or issubclass () checks.
Standard names are defined for the following types:

types.FunctionType
types.LambdaType
The type of user-defined functions and functions created by 1ambda expressions.

types.GeneratorType
The type of generator-iterator objects, produced by calling a generator function.

8.9. types — Dynamic type creation and names for built-in types 217

https://hg.python.org/cpython/file/3.5/Lib/types.py
http://www.python.org/dev/peps/pep-3115

The Python Library Reference, Release 3.5.0

types.CoroutineType
The type of coroutine objects, produced by calling a function defined with an async def statement.

New in version 3.5.

types.CodeType
The type for code objects such as returned by compile ().

types.MethodType
The type of methods of user-defined class instances.

types.BuiltinFunctionType

types.BuiltinMethodType
The type of built-in functions like 1en () or sys.exit (), and methods of built-in classes. (Here, the
term “built-in” means “written in C”.)

class t ypes .ModuleType (name, doc=None)
The type of modules. Constructor takes the name of the module to be created and optionally its docstring.

Note: Use importlib.util.module_from_spec () to create a new module if you wish to set the
various import-controlled attributes.

doc

The docstring of the module. Defaults to None.

_ _loader
The loader which loaded the module. Defaults to None.

Changed in version 3.4: Defaults to None. Previously the attribute was optional.

__name_
The name of the module.

__package___
Which package a module belongs to. If the module is top-level (i.e. not a part of any specific package)
then the attribute should be set to ” 7, else it should be set to the name of the package (which can be
__name___if the module is a package itself). Defaults to None.

Changed in version 3.4: Defaults to None. Previously the attribute was optional.

types.TracebackType
The type of traceback objects such as found in sys.exc_info () [2].

types.FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

types.GetSetDescriptorType
The type of objects defined in extension modules with PyGet SetDef, such as FrameType.f_locals
or array.array.typecode. This type is used as descriptor for object attributes; it has the same pur-
pose as the property type, but for classes defined in extension modules.

types.MemberDescriptorType
The type of objects defined in extension modules with PyMemberDef, such as
datetime.timedelta.days. This type is used as descriptor for simple C data members which
use standard conversion functions; it has the same purpose as the property type, but for classes defined
in extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical to
GetSetDescriptorType.

class t ypes .MappingProxyType (mapping)
Read-only proxy of a mapping. It provides a dynamic view on the mapping’s entries, which means that
when the mapping changes, the view reflects these changes.

New in version 3.3.

218 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

key in proxy
Return True if the underlying mapping has a key key, else False.

proxy [key]
Return the item of the underlying mapping with key key. Raises a KeyError if key is not in the
underlying mapping.

iter (proxy)
Return an iterator over the keys of the underlying mapping. This is a shortcut for

iter (proxy.keys()).

len (proxy)
Return the number of items in the underlying mapping.

copy ()
Return a shallow copy of the underlying mapping.

get (key[, default])
Return the value for key if key is in the underlying mapping, else default. If default is not given, it
defaults to None, so that this method never raises a KeyError.

items ()
Return a new view of the underlying mapping’s items ((key, value) pairs).

keys ()
Return a new view of the underlying mapping’s keys.

values ()
Return a new view of the underlying mapping’s values.

8.9.3 Additional Utility Classes and Functions

class t ypes.SimpleNamespace
A simple object subclass that provides attribute access to its namespace, as well as a meaningful repr.

Unlike object, with SimpleNamespace you can add and remove attributes. If a SimpleNamespace
object is initialized with keyword arguments, those are directly added to the underlying namespace.

The type is roughly equivalent to the following code:

class SimpleNamespace:
def _ _init__ (self, «+kwargs):
self.__dict__ .update (kwargs)
def _ repr_ (self):
keys = sorted(self._ dict_)

items = ("{}={!r}".format (k, self._ _dict_ [k]) for k in keys)

return "{} ({})".format (type(self).__name__, ", ".Jjoin(items))
def _ _eq_ (self, other):

return self._ dict_ == other._ dict_

SimpleNamespace may be useful as a replacement for class NS: pass. However, for a structured
record type use namedtuple () instead.

New in version 3.3.

types.DynamicClassAttribute (fget=None, fset=None, fdel=None, doc=None)
Route attribute access on a class to __getattr__.

This is a descriptor, used to define attributes that act differently when accessed through an instance and
through a class. Instance access remains normal, but access to an attribute through a class will be routed to
the class’s __getattr__ method; this is done by raising AttributeError.

This allows one to have properties active on an instance, and have virtual attributes on the class with the
same name (see Enum for an example).

8.9. types — Dynamic type creation and names for built-in types 219

The Python Library Reference, Release 3.5.0

New in version 3.4.

8.9.4 Coroutine Utility Functions

types.coroutine (gen_func)
This function transforms a generator function into a coroutine function which returns a generator-based
coroutine. The generator-based coroutine is still a generator iterator, but is also considered to be a coroutine
object and is awaitable. However, it may not necessarily implement the __await__ () method.

If gen_func is a generator function, it will be modified in-place.

If gen_func is not a generator function, it will be wrapped. If it returns an instance of
collections.abc.Generator, the instance will be wrapped in an awaitable proxy object. All other
types of objects will be returned as is.

New in version 3.5.

8.10 copy — Shallow and deep copy operations

Assignment statements in Python do not copy objects, they create bindings between a target and an object. For
collections that are mutable or contain mutable items, a copy is sometimes needed so one can change one copy
without changing the other. This module provides generic shallow and deep copy operations (explained below).

Interface summary:

copy . copy (x)
Return a shallow copy of x.

copy . deepcopy (x)
Return a deep copy of x.

exception copy .error
Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain
other objects, like lists or class instances):

* A shallow copy constructs a new compound object and then (to the extent possible) inserts references into
it to the objects found in the original.

* A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects
found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

* Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may
cause a recursive loop.

* Because deep copy copies everything it may copy too much, e.g., administrative data structures that should
be shared even between copies.

The deepcopy () function avoids these problems by:
* keeping a “memo” dictionary of objects already copied during the current copying pass; and
* letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, array, or
any similar types. It does “copy” functions and classes (shallow and deeply), by returning the original object
unchanged; this is compatible with the way these are treated by the pickle module.

Shallow copies of dictionaries can be made using dict .copy (), and of lists by assigning a slice of the entire
list, for example, copied_list = original_list[:].

220 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

Classes can use the same interfaces to control copying that they use to control pickling. See the description of
module pickle for information on these methods. In fact, copy module uses the registered pickle functions
from copyreg module.

In order for a class to define its own copy implementation, it can define special methods __copy__ () and
__deepcopy___ (). The former is called to implement the shallow copy operation; no additional arguments
are passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo
dictionary. If the ___deepcopy___ () implementation needs to make a deep copy of a component, it should call
the deepcopy () function with the component as first argument and the memo dictionary as second argument.

See also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

8.11 pprint — Data pretty printer

Source code: Lib/pprint.py

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can
be used as input to the interpreter. If the formatted structures include objects which are not fundamental Python
types, the representation may not be loadable. This may be the case if objects such as files, sockets or classes are
included, as well as many other objects which are not representable as Python literals.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they
don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to adjust the width
constraint.

Dictionaries are sorted by key before the display is computed.
The pprint module defines one class:

class pprint .PrettyPrinter (indent=1, width=80, depth=None, stream=None, *, compact=False)

Construct a PrettyPrinter instance. This constructor understands several keyword parameters. An
output stream may be set using the stream keyword; the only method used on the stream object is the file
protocol’s write () method. If not specified, the PrettyPrinter adopts sys.stdout. The amount
of indentation added for each recursive level is specified by indent; the default is one. Other values can
cause output to look a little odd, but can make nesting easier to spot. The number of levels which may be
printed is controlled by depth; if the data structure being printed is too deep, the next contained level is
replaced by By default, there is no constraint on the depth of the objects being formatted. The desired
output width is constrained using the width parameter; the default is 80 characters. If a structure cannot be
formatted within the constrained width, a best effort will be made. If compact is false (the default) each
item of a long sequence will be formatted on a separate line. If compact is true, as many items as will fit
within the width will be formatted on each output line.

Changed in version 3.4: Added the compact parameter.

>>> import pprint
>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert (0, stuff[:])
>>> pp = pprint.PrettyPrinter (indent=4)
>>> pp.pprint (stuff)
[["'spam', 'eggs', 'lumberjack', 'knights', 'ni'],
'spam',
'eggs',
'lumberjack',
'knights',
'ni']
>>> pp = pprint.PrettyPrinter (width=41, compact=True)
>>> pp.pprint (stuff)

8.11. pprint — Data pretty printer 221

https://hg.python.org/cpython/file/3.5/Lib/pprint.py

The Python Library Reference, Release 3.5.0

[['spam', 'eggs', 'lumberjack',
'knights', 'ni'],

'spam', 'eggs', 'lumberjack', 'knights',

'l'li']

>>> tup = ('spam', ('eggs', ('lumberjack',
('parrot', ('fresh fruit',))))))))
>>> pp = pprint.PrettyPrinter (depth=6)

>>> pp.pprint (tup)

("spam', ('eggs', ('lumberjack', ('knights', ('ni',

The pprint module also provides several shortcut functions:

("knights', ('ni', ('dead',

('"dead’, (...)))))))

pprint .pformat (object, indent=1, width=80, depth=None, *, compact=False)
Return the formatted representation of object as a string. indent, width, depth and compact will be passed

to the PrettyPrinter constructor as formatting parameters.

Changed in version 3.4: Added the compact parameter.

pprint .pprint (object, stream=None, indent=1, width=80, depth=None, *, compact=False)

Prints the formatted representation of object on stream, followed by a newline. If stream is None,
sys.stdout is used. This may be used in the interactive interpreter instead of the print () function for
pprint.pprint for use within a scope). indent,
width, depth and compact will be passed to the PrettyPrinter constructor as formatting parameters.

inspecting values (you can even reassign print =

Changed in version 3.4: Added the compact parameter.

>>> import pprint

>>> stuff = ['spam', 'eggs', 'lumberijack',

>>> stuff.insert (0, stuff)
>>> pprint.pprint (stuff)
[<Recursion on list with id=...>,
'spam',
'eggs',
'lumberjack’,
'knights',
'ni']

pprint.isreadable (object)
Determine if the formatted representation of object is “readable,” or can be used to reconstruct the value
using eval (). This always returns False for recursive objects.

>>> pprint.isreadable (stuff)
False

pprint.isrecursive (object)
Determine if object requires a recursive representation.

One more support function is also defined:

pprint.saferepr (object)
Return a string representation of object, protected against recursive data structures. If the representa-
tion of object exposes a recursive entry, the recursive reference will be represented as <Recursion on
typename with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr (stuff)
"[<Recursion on list with id=...>,

8.11.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

'spam',

'knights', 'ni']

'eggs',

'lumberjack', 'knights'

222

Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

PrettyPrinter.pformat (object)
Return the formatted representation of object. This takes into account the options passed to the
PrettyPrinter constructor.

PrettyPrinter.pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using
these methods on an instance is slightly more efficient since new PrettyPrinter objects don’t need to be
created.

PrettyPrinter.isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value using eval (). Note that this returns False for recursive objects. If the depth parameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns False.

PrettyPrinter.isrecursive (object)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The
default implementation uses the internals of the saferepr () implementation.

PrettyPrinter.format (object, context, maxlevels, level)

Returns three values: the formatted version of object as a string, a flag indicating whether the result is
readable, and a flag indicating whether recursion was detected. The first argument is the object to be
presented. The second is a dictionary which contains the id () of objects that are part of the current
presentation context (direct and indirect containers for object that are affecting the presentation) as the keys;
if an object needs to be presented which is already represented in context, the third return value should
be True. Recursive calls to the format () method should add additional entries for containers to this
dictionary. The third argument, maxlevels, gives the requested limit to recursion; this will be 0 if there is no
requested limit. This argument should be passed unmodified to recursive calls. The fourth argument, level,
gives the current level; recursive calls should be passed a value less than that of the current call.

8.11.2 Example

To demonstrate several uses of the pprint () function and its parameters, let’s fetch information about a project
from PyPI:

>>> import Jjson

>>> import pprint

>>> from urllib.request import urlopen

>>> with urlopen('http://pypi.python.org/pypi/Twisted/json') as url:
http_info = url.info ()

.. raw_data = url.read() .decode (http_info.get_content_charset ())

>>> project_info = json.loads (raw_data)

In its basic form, pprint () shows the whole object:

>>> pprint.pprint (project_info)
{"info': {'_pypi_hidden': False,
' _pypi_ordering': 125,

'author': 'Glyph Lefkowitz',
'author_email': 'glyph@twistedmatrix.com',
'bugtrack_url': '"',

'cheesecake_code_kwalitee_id': None,
'cheesecake_documentation_id': None,
'cheesecake_installability_id': None,

'classifiers': ['Programming Language :: Python :: 2.6',
'Programming Language :: Python :: 2.7'",
'Programming Language :: Python :: 2 :: Only'],

'description': 'An extensible framework for Python programming, with

'special focus\r\n'

8.11. pprint — Data pretty printer 223

https://pypi.python.org/pypi

The Python Library Reference, Release 3.5.0

'on event-based network programming and multiprotocol '
'"integration.',

'docs_url': '',

'download_url': 'UNKNOWN',

'home_page': 'http://twistedmatrix.com/',

'keywords': '',

'license': 'MIT',

'maintainer': '',

'maintainer_email': '',

'name': 'Twisted',

'package_url': 'http://pypi.python.org/pypi/Twisted',
'platform': 'UNKNOWN',

'release_url': 'http://pypil.python.org/pypi/Twisted/12.3.0"',

'requires_python': None,
'stable_version': None,
'summary': 'An asynchronous networking framework written in Python',
'version': '12.3.0'},
'urls': [{'comment_text': '',
'downloads': 71844,
'filename': 'Twisted-12.3.0.tar.bz2',
'has_sig': False,
'md5_digest': '6e289825f3bf5591cfd670874cc0862d',
'packagetype': 'sdist',
'python_version': 'source',
'size': 2615733,
'upload_time': '2012-12-26T12:47:03",
'url': 'https://pypi.python.org/packages/source/T/Twisted/Twisted-12.3.0.tar.
'comment_text': '',
'downloads': 5224,
'filename': 'Twisted-12.3.0.win32-py2.7.msi’',
'has_sig': False,
'md5_digest': '6b778£5201b622a5519%9a2acala2febl2"',
'packagetype': 'bdist_msi',
'python_version': '2.7"',
'size': 2916352,
'upload_time': '2012-12-26T12:48:15",
'url': 'https://pypi.python.org/packages/2.7/T/Twisted/Twisted-12.3.0.win32-y

—_~

The result can be limited to a certain depth (ellipsis is used for deeper contents):
>>> pprint.pprint (project_info, depth=2)
{"info': {'_pypi_hidden': False,

' _pypi_ordering': 125,

'author': 'Glyph Lefkowitz',
'author_email': 'glyph@twistedmatrix.com',
'bugtrack_url': '"',

'cheesecake_code_kwalitee_id': None,

'cheesecake_documentation_id': None,

'cheesecake_installability_id': None,

'classifiers': [...],

'description': 'An extensible framework for Python programming, with '
'special focus\r\n'
'on event-based network programming and multiprotocol '
'integration.',

'docs_url': '"',

'download_url': 'UNKNOWN',

'home_page': 'http://twistedmatrix.com/',
'keywords': '',

'license': 'MIT',

224 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

'maintainer': '"',
'maintainer_email': "'
'name': 'Twisted',
'package_url': 'http://pypi.python.org/pypi/Twisted’,
'platform': 'UNKNOWN',

'release_url': 'http://pypi.python.org/pypi/Twisted/12.3.0"',
'requires_python': None,

'stable_version': None,

14

'summary': 'An asynchronous networking framework written in Python',
'version': '12.3.0'},

'urls': [{...}, {...}]1}

Additionally, maximum character width can be suggested. If a long object cannot be split, the specified width will
be exceeded:

>>> pprint.pprint (project_info, depth=2, width=50)
{"info': {'_pypi_hidden': False,

' _pypi_ordering': 125,

'author': 'Glyph Lefkowitz',

'author_email': 'glyph@twistedmatrix.com',

'bugtrack_url': '"',

'cheesecake_code_kwalitee_id': None,

'cheesecake_documentation_id': None,

'cheesecake_installability_id': None,

'classifiers': [...],

'description': 'An extensible '

'framework for Python '
'programming, with '
'special focus\r\n'

'on event-based network '
'programming and '
'multiprotocol '
'integration.',

'docs_url': '"',

'download_url': 'UNKNOWN',

'home_page': 'http://twistedmatrix.com/',

'keywords': '',

'license': 'MIT',

'maintainer': '"',
'maintainer_email': "'
'name': 'Twisted',
'package_url': 'http://pypi.python.org/pypi/Twisted’,
'platform': 'UNKNOWN',

'release_url': 'http://pypi.python.org/pypi/Twisted/12.3.0"',
'requires_python': None,
'stable_version': None,
'summary': 'An asynchronous networking '
'framework written in '
'Python',
'version': '12.3.0'},

'urls': [{...}, {...}]}

14

8.12 reprlib — Alternate repr () implementation

Source code: Lib/reprlib.py

8.12. reprlib — Alternate repr () implementation 225

https://hg.python.org/cpython/file/3.5/Lib/reprlib.py

The Python Library Reference, Release 3.5.0

The repr1ib module provides a means for producing object representations with limits on the size of the result-
ing strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class reprlib.Repr
Class which provides formatting services useful in implementing functions similar to the built-in repr () ;
size limits for different object types are added to avoid the generation of representations which are exces-
sively long.

reprlib.aRepr
This is an instance of Repr which is used to provide the repr () function described below. Changing the
attributes of this object will affect the size limits used by repr () and the Python debugger.

reprlib.repr (0bj)
This is the repr () method of aRepr. It returns a string similar to that returned by the built-in function of
the same name, but with limits on most sizes.

In addition to size-limiting tools, the module also provides a decorator for detecting recursive calls to
__repr__ () and substituting a placeholder string instead.

@reprlib.recursive_repr (fillvalue="...")
Decorator for ___repr__ () methods to detect recursive calls within the same thread. If a recursive call is
made, the fillvalue is returned, otherwise, the usual __repr__ () call is made. For example:

>>> class MyList (list):
@recursive_repr ()
def _ _repr__ (self):
return '<' + '|'.Jjoin (map(repr, self)) + '>'

>>> m = MyList ('abc')
>>> m.append (m)

>>> m.append ('x")

>>> print (m)
<'a'|'b'['c'|...|"'x">

New in version 3.2.

8.12.1 Repr Objects

Repr instances provide several attributes which can be used to provide size limits for the representations of
different object types, and methods which format specific object types.

Repr.maxlevel
Depth limit on the creation of recursive representations. The default is 6.

Repr.maxdict

Repr.maxlist

Repr.maxtuple

Repr .maxset

Repr.maxfrozenset

Repr .maxdeque

Repr.maxarray
Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5
for maxarray, and 6 for the others.

Repr.maxlong
Maximum number of characters in the representation for an integer. Digits are dropped from the middle.
The default is 40.

Repr.maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation

226 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

of the string is used as the character source: if escape sequences are needed in the representation, these may
be mangled when the representation is shortened. The default is 30.

Repr.maxother
This limit is used to control the size of object types for which no specific formatting method is available on
the Repr object. It is applied in a similar manner as maxstring. The default is 20.

Repr.repr (obj)
The equivalent to the built-in repr () that uses the formatting imposed by the instance.

Repr.reprl (obj, level)

Recursive implementation used by repr (). This uses the type of obj to determine which formatting
method to call, passing it obj and level. The type-specific methods should call repr1 () to perform recur-
sive formatting, with level - 1 for the value of level in the recursive call.

Repr.repr_TYPE (obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name.
In the method name, TYPE is replaced by ’ _’ . join (type (obj) .__name__.split ()). Dispatch
to these methods is handled by repr1 (). Type-specific methods which need to recursively format a value
should call self.reprl (subobj, level - 1).

8.12.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.reprl () allows subclasses of Repr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how special
support for file objects could be added:

import reprlib
import sys

class MyRepr (reprlib.Repr) :

def repr_TextIOWrapper (self, obj, level):
if obj.name in {'<stdin>', '<stdout>', '<stderr>'}:
return obj.name
return repr (obj)

aRepr = MyRepr ()
print (aRepr.repr (sys.stdin)) # prints '<stdin>'

8.13 enum — Support for enumerations

New in version 3.4.

Source code: Lib/enum.py

An enumeration is a set of symbolic names (members) bound to unique, constant values. Within an enumeration,
the members can be compared by identity, and the enumeration itself can be iterated over.

8.13.1 Module Contents

This module defines two enumeration classes that can be used to define unique sets of names and values: Enum
and TntEnum. It also defines one decorator, unique ().

class enum.Enum
Base class for creating enumerated constants. See section Functional API for an alternate construction
syntax.

8.13. enum — Support for enumerations 227

https://hg.python.org/cpython/file/3.5/Lib/enum.py

The Python Library Reference, Release 3.5.0

class enum. IntEnum
Base class for creating enumerated constants that are also subclasses of int.

enum.unique ()
Enum class decorator that ensures only one name is bound to any one value.

8.13.2 Creating an Enum

Enumerations are created using the class syntax, which makes them easy to read and write. An alternative
creation method is described in Functional API. To define an enumeration, subclass Enum as follows:

>>> from enum import Enum
>>> class Color (Enum) :
red = 1
green = 2
blue = 3

Note: Nomenclature

e The class Color is an enumeration (or enum)
¢ The attributes Color.red, Color.green, etc., are enumeration members (or enum members).

¢ The enum members have names and values (the name of Color.red is red, the value of Color.blue
is 3, etc.)

Note: Even though we use the class syntax to create Enums, Enums are not normal Python classes. See How
are Enums different? for more details.

Enumeration members have human readable string representations:

>>> print (Color.red)
Color.red

...while their repr has more information:

>>> print (repr (Color.red))
<Color.red: 1>

The type of an enumeration member is the enumeration it belongs to:

>>> type (Color.red)

<enum 'Color'>

>>> isinstance (Color.green, Color)
True

>>>

Enum members also have a property that contains just their item name:

>>> print (Color.red.name)
red

Enumerations support iteration, in definition order:

>>> class Shake (Enum) :

vanilla = 7
chocolate = 4
cookies = 9
mint = 3

>>> for shake in Shake:
print (shake)

228 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

Shake.vanilla
Shake.chocolate
Shake.cookies
Shake.mint

Enumeration members are hashable, so they can be used in dictionaries and sets:

>>> apples = {}

>>> apples[Color.red] = 'red delicious'

>>> apples[Color.green] = 'granny smith'

>>> apples == {Color.red: 'red delicious', Color.green: 'granny smith'}
True

8.13.3 Programmatic access to enumeration members and their attributes

Sometimes it’s useful to access members in enumerations programmatically (i.e. situations where Color.red
won’t do because the exact color is not known at program-writing time). Enum allows such access:

>>> Color (1)
<Color.red: 1>
>>> Color (3)
<Color.blue: 3>

If you want to access enum members by name, use item access:

>>> Color['red']
<Color.red: 1>
>>> Color['green']
<Color.green: 2>

If you have an enum member and need its name or value:

>>> member = Color.red
>>> member.name

'red'

>>> member.value

1

8.13.4 Duplicating enum members and values

Having two enum members with the same name is invalid:

>>> class Shape (Enum) :
square = 2
square = 3

Traceback (most recent call last):

TypeError: Attempted to reuse key: 'square'

However, two enum members are allowed to have the same value. Given two members A and B with the same
value (and A defined first), B is an alias to A. By-value lookup of the value of A and B will return A. By-name
lookup of B will also return A:

>>> class Shape (Enum) :

square = 2
diamond = 1
circle = 3
alias_for_square = 2

8.13. enum — Support for enumerations 229

The Python Library Reference, Release 3.5.0

>>> Shape.square
<Shape.square: 2>

>>> Shape.alias_for_square
<Shape.square: 2>

>>> Shape (2)
<Shape.square: 2>

Note: Attempting to create a member with the same name as an already defined attribute (another member, a
method, etc.) or attempting to create an attribute with the same name as a member is not allowed.

8.13.5 Ensuring unique enumeration values

By default, enumerations allow multiple names as aliases for the same value. When this behavior isn’t desired,
the following decorator can be used to ensure each value is used only once in the enumeration:

@enum.unique

A class decorator specifically for enumerations. It searches an enumeration’s ___members___ gathering any
aliases it finds; if any are found ValueError is raised with the details:

>>> from enum import Enum, unique
>>> @Qunique
class Mistake (Enum) :

one = 1
two = 2
three = 3
four = 3

Traceback (most recent call last):

ValueError: duplicate values found in <enum 'Mistake'>: four —-> three

8.13.6 lteration

Iterating over the members of an enum does not provide the aliases:

>>> list (Shape)
[<Shape.square: 2>, <Shape.diamond: 1>, <Shape.circle: 3>]

The special attribute __members___is an ordered dictionary mapping names to members. It includes all names
defined in the enumeration, including the aliases:

>>> for name, member in Shape.__members__.items () :
name, member

'square', <Shape.square: 2>)

circle', <Shape.circle: 3>)
alias_for_square', <Shape.square: 2>)

(
('"diamond', <Shape.diamond: 1>)
(
(

The __members___ attribute can be used for detailed programmatic access to the enumeration members. For
example, finding all the aliases:

>>> [name for name, member in Shape.__members__.items () if member.name != name]
['alias_for_square']

8.13.7 Comparisons

Enumeration members are compared by identity:

230 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

>>> Color.red is Color.red

True

>>> Color.red is Color.blue
False

>>> Color.red is not Color.blue
True

Ordered comparisons between enumeration values are not supported. Enum members are not integers (but see
IntEnum below):

>>> Color.red < Color.blue
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unorderable types: Color() < Color()

Equality comparisons are defined though:

>>> Color.blue == Color.red
False
>>> Color.blue != Color.red
True
>>> Color.blue == Color.blue
True

Comparisons against non-enumeration values will always compare not equal (again, ITntEnum was explicitly
designed to behave differently, see below):

>>> Color.blue ==
False

8.13.8 Allowed members and attributes of enumerations

The examples above use integers for enumeration values. Using integers is short and handy (and provided by
default by the Functional API), but not strictly enforced. In the vast majority of use-cases, one doesn’t care what
the actual value of an enumeration is. But if the value is important, enumerations can have arbitrary values.

Enumerations are Python classes, and can have methods and special methods as usual. If we have this enumeration:

>>> class Mood (Enum) :
funky =1
happy = 3

def describe(self):
self is the member here
return self.name, self.value

def _ str_ (self):
return 'my custom str! {0}'.format (self.value)

@classmethod

def favorite_mood(cls):
cls here is the enumeration
return cls.happy

Then:

>>> Mood.favorite_mood()
<Mood.happy: 3>

>>> Mood.happy.describe ()
("happy', 3)

8.13. enum — Support for enumerations 231

The Python Library Reference, Release 3.5.0

>>> str (Mood. funky)
'my custom str! 1°

The rules for what is allowed are as follows: names that start and end with a with a single underscore are reserved
by enum and cannot be used; all other attributes defined within an enumeration will become members of this
enumeration, with the exception of special methods (__str__ (), __add__ (), etc.) and descriptors (methods
are also descriptors).

Note: if your enumeration defines __new__ () and/or __init__ () then whatever value(s) were given to the
enum member will be passed into those methods. See Planet for an example.

8.13.9 Restricted subclassing of enumerations

Subclassing an enumeration is allowed only if the enumeration does not define any members. So this is forbidden:
>>> class MoreColor (Color):
pink = 17

Traceback (most recent call last):

TypeError: Cannot extend enumerations
But this is allowed:

>>> class Foo (Enum) :
def some_behavior (self):
pass

>>> class Bar (Foo) :

happy = 1
sad = 2

Allowing subclassing of enums that define members would lead to a violation of some important invariants of
types and instances. On the other hand, it makes sense to allow sharing some common behavior between a group
of enumerations. (See OrderedEnum for an example.)

8.13.10 Pickling

Enumerations can be pickled and unpickled:

>>> from test.test_enum import Fruit

>>> from pickle import dumps, loads

>>> Fruit.tomato is loads (dumps (Fruit.tomato))
True

The usual restrictions for pickling apply: picklable enums must be defined in the top level of a module, since
unpickling requires them to be importable from that module.

Note: With pickle protocol version 4 it is possible to easily pickle enums nested in other classes.

It is possible to modify how Enum members are pickled/unpickled by defining __reduce_ex__ () in the enu-
meration class.

8.13.11 Functional API

The Enum class is callable, providing the following functional API:

232 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

>>> Animal = Enum('Animal', 'ant bee cat dog')

>>> Animal

<enum 'Animal'>

>>> Animal.ant

<Animal.ant: 1>

>>> Animal.ant.value

1

>>> list (Animal)

[<Animal.ant: 1>, <Animal.bee: 2>, <Animal.cat: 3>, <Animal.dog: 4>]

The semantics of this API resemble namedtuple. The first argument of the call to Enum is the name of the
enumeration.

The second argument is the source of enumeration member names. It can be a whitespace-separated string of
names, a sequence of names, a sequence of 2-tuples with key/value pairs, or a mapping (e.g. dictionary) of names
to values. The last two options enable assigning arbitrary values to enumerations; the others auto-assign increasing
integers starting with 1 (use the start parameter to specify a different starting value). A new class derived from
Enum is returned. In other words, the above assignment to Animal is equivalent to:

>>> class Animal (Enum) :

ant = 1
bee = 2
cat = 3
dog = 4

The reason for defaulting to 1 as the starting number and not 0 is that 0 is False in a boolean sense, but enum
members all evaluate to True.

Pickling enums created with the functional API can be tricky as frame stack implementation details are used to
try and figure out which module the enumeration is being created in (e.g. it will fail if you use a utility function
in separate module, and also may not work on IronPython or Jython). The solution is to specify the module name
explicitly as follows:

>>> Animal = Enum('Animal', 'ant bee cat dog', module=__ _name_)

Warning: If module is not supplied, and Enum cannot determine what it is, the new Enum members will
not be unpicklable; to keep errors closer to the source, pickling will be disabled.

The new pickle protocol 4 also, in some circumstances, relies on __qualname__ being set to the location where

pickle will be able to find the class. For example, if the class was made available in class SomeData in the global

scope:

>>> Animal = Enum('Animal', 'ant bee cat dog', qualname='SomeData.Animal')

The complete signature is:

Enum (value='NewEnumName', names=<...>, %, module='...', qualname='...', type=<mixed-in <

value What the new Enum class will record as its name.

names The Enum members. This can be a whitespace or comma separated string (values will start
at 1 unless otherwise specified):

'red green blue' | 'red,green,blue' | 'red, green, blue'
or an iterator of names:

['red', 'green', 'blue']

or an iterator of (name, value) pairs:

[('cyan', 4), ('magenta', 5), ('yellow',6 6)]

or a mapping:

{'chartreuse': 7, 'sea_green': 11, 'rosemary': 42}

8.13. enum — Support for enumerations 233

The Python Library Reference, Release 3.5.0

module name of module where new Enum class can be found.
qualname where in module new Enum class can be found.
type type to mix in to new Enum class.

start number to start counting at if only names are passed in

Changed in version 3.5: The start parameter was added.

8.13.12 Derived Enumerations

IntEnum

A variation of Enum is provided which is also a subclass of int. Members of an Int Enum can be compared to
integers; by extension, integer enumerations of different types can also be compared to each other:

>>> from enum import IntEnum
>>> class Shape (IntEnum) :
circle = 1
square = 2

>>> class Request (IntEnum) :
post = 1
get = 2

>>> Shape == 1

False

>>> Shape.circle == 1

True

>>> Shape.circle == Request.post
True

However, they still can’t be compared to standard Enum enumerations:

>>> class Shape (IntEnum) :
circle =1
square = 2

>>> class Color (Enum) :
red = 1
green = 2

>>> Shape.circle == Color.red
False
IntEnum values behave like integers in other ways you’d expect:

>>> int (Shape.circle)

1

>>> ['a', 'b'", 'c'][Shape.circle]
lb'

>>> [1 for i in range (Shape.square)]
[0, 11

For the vast majority of code, Enum is strongly recommended, since TntEnum breaks some semantic promises
of an enumeration (by being comparable to integers, and thus by transitivity to other unrelated enumerations).
It should be used only in special cases where there’s no other choice; for example, when integer constants are
replaced with enumerations and backwards compatibility is required with code that still expects integers.

234 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

Others

While IntEnum is part of the enum module, it would be very simple to implement independently:

class IntEnum(int, Enum):

pass

This demonstrates how similar derived enumerations can be defined; for example a St rEnum that mixes in st r
instead of int.

Some rules:

1.

8.13

When subclassing Enum, mix-in types must appear before Enum itself in the sequence of bases, as in the
IntEnum example above.

While Enum can have members of any type, once you mix in an additional type, all the members must have
values of that type, e.g. int above. This restriction does not apply to mix-ins which only add methods and
don’t specify another data type such as int or str.

When another data type is mixed in, the value attribute is not the same as the enum member itself, although
it is equivalent and will compare equal.

%-style formatting: %s and %r call Enum‘s __str__ () and __repr__ () respectively; other codes
(such as %i or %h for IntEnum) treat the enum member as its mixed-in type.

str.__format__ () (or format ()) will use the mixed-in type’s __ _format__ (). If the Enum's
str () or repr () is desired use the /s or /r st r format codes.

.13 Interesting examples

While Enum and IntEnum are expected to cover the majority of use-cases, they cannot cover them all. Here are
recipes for some different types of enumerations that can be used directly, or as examples for creating one’s own.

AutoNumber

Avoids having to specify the value for each enumeration member:

>>> class AutoNumber (Enum) :

def _ new__ (cls):
value = len(cls._ _members__) + 1
obj = object.__new__ (cls)
obj._value_ = value

return ob]j

>>> class Color (AutoNumber) :

red = ()
green = ()
blue = ()

>>> Color.green.value ==

True

Note: The _ new__ () method, if defined, is used during creation of the Enum members; it is then replaced by
Enum’s ___new__ () which is used after class creation for lookup of existing members.

OrderedEnum

An ordered enumeration that is not based on IntEnum and so maintains the normal Enum invariants (such as not
being comparable to other enumerations):

8.13.

enum — Support for enumerations 235

The Python Library Reference, Release 3.5.0

>>> class OrderedEnum (Enum) :
def _ ge_ (self, other):
if self._ class___ is other._ class__ :
return self.value >= other.value
return NotImplemented
def _ gt_ (self, other):
if self._class___ is other._ class__:
return self.value > other.value
return NotImplemented
def _ le_ (self, other):
if self._ class__ is other._ class__ :
return self.value <= other.value
return NotImplemented
def _ 1t (self, other):
if self.__class__ is other._ _class__:
return self.value < other.value
return NotImplemented

>>> class Grade (OrderedEnum) :
A =5

DO QW
o
=N W

>>> Grade.C < Grade.A
True

DuplicateFreeEnum

Raises an error if a duplicate member name is found instead of creating an alias:

>>> class DuplicateFreeEnum (Enum) :

def _ init_ (self, xargs):
cls = self.__class_
if any(self.value == e.value for e in cls):
a = self.name
e = cls(self.value) .name
raise ValueError (
"aliases not allowed in DuplicateFreeEnum: %r —--> %r"
% (a, e))

>>> class Color (DuplicateFreeEnum) :

red = 1

green = 2
blue = 3
grene = 2

Traceback (most recent call last):

ValueError: aliases not allowed in DuplicateFreeEnum: 'grene' --> 'green'

Note: This is a useful example for subclassing Enum to add or change other behaviors as well as disallowing
aliases. If the only desired change is disallowing aliases, the unique () decorator can be used instead.

236 Chapter 8. Data Types

The Python Library Reference, Release 3.5.0

Planet

If __new__ () or__init__ () isdefined the value of the enum member will be passed to those methods:

>>> class Planet (Enum) :

MERCURY = (3.303e+23, 2.4397e6)

VENUS = (4.869e+24, 6.0518e6)

EARTH = (5.976e+24, 6.37814e06)

MARS = (6.421e+23, 3.3972e06)

JUPITER = (1.9e+27, 7.1492e7)

SATURN = (5.688e+26, 6.0268e7)

URANUS = (8.686e+25, 2.5559e7)

NEPTUNE = (1.024e+26, 2.4746e7)

def = init_ (self, mass, radius):
self.mass = mass # in kilograms
self.radius = radius # in meters

@property

def surface_gravity(self):
universal gravitational constant (m3 kg-1 s-2)
G = 6.67300E-11
return G » self.mass / (self.radius * self.radius)

>>> Planet.EARTH.value
(5.976e+24, 6378140.0)

>>> Planet .EARTH.surface_gravity
9.802652743337129

8.13.14 How are Enums different?

Enums have a custom metaclass that affects many aspects of both derived Enum classes and their instances (mem-
bers).

Enum Classes

The EnumMeta metaclass is responsible for providing the __contains__ (), __dir__ (), _iter__ ()
and other methods that allow one to do things with an Enum class that fail on a typical class, such as list(Color)
or some_var in Color. EnumMeta is responsible for ensuring that various other methods on the final Enum class
are correct (suchas __new__ (), _ _getnewargs__ (),__str__ () and__repr__ ())

Enum Members (aka instances)

The most interesting thing about Enum members is that they are singletons. EnumMeta creates them all while it
is creating the Enum class itself, and then puts a custom __new___ () in place to ensure that no new ones are ever
instantiated by returning only the existing member instances.

Finer Points

Enum members are instances of an Enum class, and even though they are accessible as EnumClass.member, they
are not accessible directly from the member:

>>> Color.red

<Color.red: 1>

>>> Color.red.blue

Traceback (most recent call last):

AttributeError: 'Color' object has no attribute 'blue'

8.13. enum — Support for enumerations 237

The Python Library Reference, Release 3.5.0

Likewise, the __members___is only available on the class.

If you give your Enum subclass extra methods, like the Planet class above, those methods will show upinadir ()
of the member, but not of the class:

>>> dir (Planet)
["EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS', 'VENUS',
>>> dir (Planet .EARTH)

['_class__ ', '__doc__"', '_module__', 'name', 'surface_gravity', 'value']
The __new___ () method will only be used for the creation of the Enum members — after that it is replaced. Any
custom ___new___ () method must create the object and set the _value_ attribute appropriately.

If you wish to change how Enum members are looked up you should either write a helper function or a
classmethod () for the Enum subclass.

238 Chapter 8. Data Types

! class:

CHAPTER
NINE

NUMERIC AND MATHEMATICAL MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The numbers
module defines an abstract hierarchy of numeric types. The math and cmath modules contain various mathe-
matical functions for floating-point and complex numbers. The decimal module supports exact representations
of decimal numbers, using arbitrary precision arithmetic.

The following modules are documented in this chapter:

9.1 numbers — Numeric abstract base classes

The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which progressively
define more operations. None of the types defined in this module can be instantiated.

class numbers . Number
The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring
what kind, use isinstance (x, Number).

9.1.1 The numeric tower

class numbers.Complex
Subclasses of this type describe complex numbers and include the operations that work on the built-in

complex type. These are: conversions to complex and bool, real, imag, +, —, *, /, abs (),
conjugate (), ==,and !=. All except — and ! = are abstract.
real

Abstract. Retrieves the real component of this number.
imag
Abstract. Retrieves the imaginary component of this number.

conjugate ()
Abstract. Returns the complex conjugate. For example, (1+37) .conjugate () == (1-37).

class numbers.Real
To Complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, math.trunc(), round(), math.floor (),
math.ceil (),divmod (), //, %, <, <=, >, and >=.

Real also provides defaults for complex (), real, imag, and conjugate ().

class numbers.Rational
Subtypes Real and adds numerator and denominator properties, which should be in lowest terms.
With these, it provides a default for f1oat ().

numerator
Abstract.

239

http://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 3.5.0

denominator
Abstract.

class numbers.Integral
Subtypes Rat ional and adds a conversion to int. Provides defaults for f1oat (), numerator, and
denominator. Adds abstract methods for « x and bit-string operations: <<, >>, &, ~, |, ~

9.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may
be subtle if there are two different extensions of the real numbers. For example, fractions.Fraction
implements hash () as follows:

def _ hash_ (self):

if self.denominator == 1:
Get integers right.
return hash (self.numerator)

Expensive check, but definitely correct.

if self == float (self):
return hash (float (self))

else:
Use tuple's hash to avoid a high collision rate on
simple fractions.
return hash ((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the
possibility of adding those. You can add MyFoo between Complex and Real with:

class MyFoo (Complex) :
MyFoo.register (Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation
whose author knew about the types of both arguments, or convert both to the nearest built in type and do the
operation there. For subtypes of Integral, this means that __add__ () and __radd___ () should be defined
as:

class MyIntegral (Integral):

def _ add__ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_stuff(self, other)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_ adding_stuff(self, other)
else:
return NotImplemented

def _ radd__ (self, other):

if isinstance (other, MyIntegral):
return do_my_adding_stuff (other, self)

elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_adding_stuff (other, self)

elif isinstance (other, Integral):
return int (other) + int(self)

elif isinstance (other, Real):

240 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.0

return float (other) + float (self)
elif isinstance (other, Complex):

return complex (other) + complex(self)
else:

return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses of Complex. I'll refer to all of the above
code that doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. a will be an instance

of A, which is a subtype of Complex (a : A <: Complex),andb : B <: Complex. I'll consider
a + b:
1. If A defines an __add___ () which accepts b, all is well.

2. If A falls back to the boilerplate code, and it were to return a value from __add___ (), we’d miss the possi-
bility that B defines a more intelligent __radd___ (), so the boilerplate should return Not Implemented

from __add__ (). (Or A may not implement __add__ () atall.)
3. Then B's __radd__ () gets a chance. If it accepts a, all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default
implementation should live.

5. If B <: A, Python tries B.___radd__ before A.__add__. This is ok, because it was implemented
with knowledge of A, so it can handle those instances before delegating to Complex.

Ifa <: ComplexandB <: Real without sharing any other knowledge, then the appropriate shared oper-
ation is the one involving the built in complex, and both __radd__ () sland there, so a+b == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper function
which generates the forward and reverse instances of any given operator. For example, fractions.Fraction
uses:

def _operator_fallbacks (monomorphic_operator, fallback_operator):
def forward(a, b):

if isinstance (b, (int, Fraction)):
return monomorphic_operator(a, b)

elif isinstance (b, float):
return fallback_operator (float(a), b)

elif isinstance (b, complex):
return fallback_operator (complex(a), b)

else:
return NotImplemented
forward._ _name__ = '__ ' + fallback_operator._ _name__ + '__ '
forward.__doc__ = monomorphic_operator.__doc___

def reverse (b, a):
if isinstance(a, Rational):
Includes ints.
return monomorphic_operator (a, b)
elif isinstance (a, numbers.Real):
return fallback_operator (float(a), float (b))
elif isinstance(a, numbers.Complex) :
return fallback_operator (complex(a), complex (b))

else:
return NotImplemented
reverse.__name__ = '__r' + fallback_operator._ _name__ + '__'
reverse.__doc__ = monomorphic_operator.__doc_

return forward, reverse

def _add(a, b):
"""a + b”""

return Fraction (a.numerator = b.denominator +

9.1. numbers — Numeric abstract base classes 241

The Python Library Reference, Release 3.5.0

b.numerator % a.denominator,
a.denominator * b.denominator)

add

_ p—

__radd__ = _operator_fallbacks(_add, operator.add)

#

9.2 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath
module if you require support for complex numbers. The distinction between functions which support complex
numbers and those which don’t is made since most users do not want to learn quite as much mathematics as
required to understand complex numbers. Receiving an exception instead of a complex result allows earlier
detection of the unexpected complex number used as a parameter, so that the programmer can determine how and
why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values
are floats.

9.2.1 Number-theoretic and representation functions

math.ceil (x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to
x.__ceil__ (), which should return an ITntegral value.

math.copysign (x, y)
Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed
zeros, copysign (1.0, —0.0) returns -1.0.

math.fabs (x)
Return the absolute value of x.

math. factorial (x)
Return x factorial. Raises ValueError if x is not integral or is negative.

math. floor (x)
Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to
X._ floor__ (), which should return an Integral value.

math. fmod (x, y)

Return fmod (x, vy), as defined by the platform C library. Note that the Python expression x % y may
not return the same result. The intent of the C standard is that fmod (x, y) be exactly (mathematically;
to infinite precision) equal to x — n+y for some integer n such that the result has the same sign as x and
magnitude less than abs (y). Python’s x % y returns a result with the sign of y instead, and may not
be exactly computable for float arguments. For example, fmod (-1e-100, 1e100) is -1e-100, but
the result of Python’s —1e-100 % 1e100is 1e100-1e-100, which cannot be represented exactly as
a float, and rounds to the surprising 1e100. For this reason, function fmod () is generally preferred when
working with floats, while Python’s x % vy is preferred when working with integers.

math. frexp (x)
Return the mantissa and exponent of x as the pair (m, e). mis afloat and e is an integer such that x ==
m * 2+*xe exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs (m) < 1. This is used to
“pick apart” the internal representation of a float in a portable way.

math. £sum (iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

242 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.0

>>> sum((.1, .1, .1, .1, .1, .1, .1, .1, .1, .11])
0.9999999999999999

>>> fsum(([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the round-
ing mode is half-even. On some non-Windows builds, the underlying C library uses extended precision
addition and may occasionally double-round an intermediate sum causing it to be off in its least significant
bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating
point summation.

math.ged (a, b)
Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the value of
gcd(a, b) isthe largest positive integer that divides both @ and b. gcd (0, 0) returns O.

New in version 3.5.

math.isclose (a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative
tolerances.

rel_tol is the relative tolerance — it is the maximum allowed difference between a and b, relative to the
larger absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default
tolerance is 1e—09, which assures that the two values are the same within about 9 decimal digits. rel_tol
must be greater than zero.

abs_tol is the minimum absolute tolerance — useful for comparisons near zero. abs_tol must be at least zero.

If no errors occur, the result will be: abs (a—b) <= max (rel_tol * max(abs(a), abs (b)),
abs_tol).

The IEEE 754 special values of NaN, inf, and —inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and —inf are only considered close to
themselves.

New in version 3.5.
See also:
PEP 485 — A function for testing approximate equality

math.isfinite (x)
Return True if x is neither an infinity nor a NaN, and False otherwise. (Note that 0.0 is considered
finite.)

New in version 3.2.

math.isinf (x)
Return True if x is a positive or negative infinity, and False otherwise.

math.isnan (x)
Return True if x is a NaN (not a number), and False otherwise.

math.ldexp (x, i)
Return x % (2x1i). This is essentially the inverse of function frexp ().

math.modf (x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

math.trunc (x)
Return the Real value x truncated to an Integral (usually an integer). Delegates to x.__trunc__ ().

9.2. math — Mathematical functions 243

http://code.activestate.com/recipes/393090/
http://code.activestate.com/recipes/393090/
http://www.python.org/dev/peps/pep-0485

The Python Library Reference, Release 3.5.0

Note that frexp () and modf () have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

For the ceil (), floor (), and modf () functions, note that all floating-point numbers of sufficiently large
magnitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any float x with abs (x) >= 2*x52 necessarily has no fractional bits.

9.2.2 Power and logarithmic functions
math.exp (x)
Return e * *x.

math.expml (x)
Return ex+x — 1. For small floats x, the subtraction in exp (x) - 1 can result in a significant loss of
precision; the expml () function provides a way to compute this quantity to full precision:

>>> from math import exp, expml

>>> exp(le-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expml (le-5) # result accurate to full precision

1.0000050000166668e—-05

New in version 3.2.

math.log (x[, base])
With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as 1og (x) /1log (base).

math.loglp (x)

Return the natural logarithm of 7+x (base e). The result is calculated in a way which is accurate for x near
Zero.

math.log2 (x)
Return the base-2 logarithm of x. This is usually more accurate than 1og (x, 2).

New in version 3.3.
See also:

int.bit_length () returns the number of bits necessary to represent an integer in binary, excluding the
sign and leading zeros.

math.loglO (x)
Return the base-10 logarithm of x. This is usually more accurate than 1og (x, 10).

math.pow (x, y)
Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible.
In particular, pow (1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN.
If both x and y are finite, x is negative, and y is not an integer then pow (x, y) is undefined, and raises
ValueError.

Unlike the built-in x « operator, math.pow () converts both its arguments to type £ loat. Use x* or the
built-in pow () function for computing exact integer powers.

math.sqrt (x)
Return the square root of x.

9.2.3 Trigonometric functions

math.acos (x)
Return the arc cosine of x, in radians.

244 Chapter 9. Numeric and Mathematical Modules

http://en.wikipedia.org/wiki/Loss_of_significance
http://en.wikipedia.org/wiki/Loss_of_significance

The Python Library Reference, Release 3.5.0

math.asin (x)
Return the arc sine of x, in radians.

math.atan (x)
Return the arc tangent of x, in radians.

math.atan2 (y, x)
Return atan (y / x), inradians. The result is between —pi and pi. The vector in the plane from the
origin to point (x, y) makes this angle with the positive X axis. The point of atan?2 () is that the signs
of both inputs are known to it, so it can compute the correct quadrant for the angle. For example, atan (1)
and atan2 (1, 1) arebothpi/4,butatan2 (-1, -1) is-3*pi/4.

math.cos (x)
Return the cosine of x radians.

math.hypot (x, y)
Return the Euclidean norm, sgrt (x+x + y«y). This is the length of the vector from the origin to point
(x, v).

math.sin (x)
Return the sine of x radians.

math.tan (x)
Return the tangent of x radians.

9.2.4 Angular conversion
math.degrees (x)
Convert angle x from radians to degrees.

math.radians (x)
Convert angle x from degrees to radians.

9.2.5 Hyperbolic functions

Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of circles.

math.acosh (x)
Return the inverse hyperbolic cosine of x.

math.asinh (x)
Return the inverse hyperbolic sine of x.

math.atanh (x)
Return the inverse hyperbolic tangent of x.

math.cosh (x)
Return the hyperbolic cosine of x.

math.sinh (x)
Return the hyperbolic sine of x.

math.tanh (x)
Return the hyperbolic tangent of x.

9.2.6 Special functions
math.erf (x)
Return the error function at x.

The erf () function can be used to compute traditional statistical functions such as the cumulative standard
normal distribution:

9.2. math — Mathematical functions 245

http://en.wikipedia.org/wiki/Hyperbolic_function
http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function

The Python Library Reference, Release 3.5.0

def phi (x):
'"Cumulative distribution function for the standard normal distribution'’
return (1.0 + erf(x / sqrt(2.0))) / 2.0

New in version 3.2.

math.erfc (x)
Return the complementary error function at x. The complementary error function is defined as 1.0 -
erf (x). Itis used for large values of x where a subtraction from one would cause a loss of significance.

New in version 3.2.

math.gamma (x)
Return the Gamma function at x.

New in version 3.2.

math.lgamma (x)
Return the natural logarithm of the absolute value of the Gamma function at x.

New in version 3.2.

9.2.7 Constants

math.pi
The mathematical constant 7w = 3.141592..., to available precision.

math.e
The mathematical constant e = 2.71828]1..., to available precision.

math.inf
A floating-point positive infinity. (For negative infinity, use -math.inf.) Equivalent to the output of
float ('inf’").

New in version 3.5.

math.nan
A floating-point “not a number” (NaN) value. Equivalent to the output of f1loat (' nan’).

New in version 3.5.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C
math library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate.
The current implementation will raise ValueError for invalid operations like sgrt (-1.0) or Log (0.0)
(where C99 Annex F recommends signaling invalid operation or divide-by-zero), and OverflowError for
results that overflow (for example, exp (1000.0)). A NaN will not be returned from any of the functions above
unless one or more of the input arguments was a NaN; in that case, most functions will return a NaN, but (again
following C99 Annex F) there are some exceptions to this rule, for example pow (float (' nan’), 0.0) or
hypot (float ('nan’), float(’inf’)).

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling NaNs
remains unspecified. Typical behavior is to treat all NaNs as though they were quiet.

See also:

Module cmath Complex number versions of many of these functions.

9.3 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
in this module accept integers, floating-point numbers or complex numbers as arguments. They will also accept
any Python object that has either a __complex__ () ora__float__ () method: these methods are used to

246 Chapter 9. Numeric and Mathematical Modules

http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Loss_of_significance
http://en.wikipedia.org/wiki/Gamma_function

The Python Library Reference, Release 3.5.0

convert the object to a complex or floating-point number, respectively, and the function is then applied to the result
of the conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch cuts are
continuous on both sides of the branch cut: the sign of the zero distinguishes one side of the branch cut from the

other. On platforms that do not support signed zeros the continuity is as specified below.

9.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely
determined by its real part z . real and its imaginary part z . imag. In other words:

z == z.real + z.imagx*1l]

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number
z is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the origin, while
the phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that
joins the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and
back.

cmath.phase (x)
Return the phase of x (also known as the argument of x), as a float. phase (x) is equivalent to
math.atan2 (x.imag, x.real). The result lies in the range [-7, 7], and the branch cut for this
operation lies along the negative real axis, continuous from above. On systems with support for signed
zeros (which includes most systems in current use), this means that the sign of the result is the same as the
sign of x . imag, even when x . imag is zero:

>>> phase (complex(-1.0, 0.0))
3.141592653589793
>>> phase (complex (-1.0, -0.0))
-3.141592653589793

Note: The modulus (absolute value) of a complex number x can be computed using the built-in abs () function.
There is no separate cmath module function for this operation.

cmath.polar (x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x
and phi is the phase of x. polar (x) is equivalentto (abs (x), phase(x)).

cmath.rect (r, phi)
Return the complex number x with polar coordinates r and phi. Equivalentto r = (math.cos (phi) +
math.sin(phi)«*17).

9.3.2 Power and logarithmic functions

cmath.exp (x)
Return the exponential value e * » x.

cmath.log (x[, base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of x.
There is one branch cut, from 0 along the negative real axis to -0o, continuous from above.

cmath.loglO (x)
Return the base-10 logarithm of x. This has the same branch cut as 1og ().

cmath.sqgrt (x)
Return the square root of x. This has the same branch cut as 1og ().

9.3. cmath — Mathematical functions for complex numbers 247

The Python Library Reference, Release 3.5.0

9.3.3 Trigonometric functions

cmath.acos (x)
Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to co,
continuous from below. The other extends left from -1 along the real axis to -co, continuous from above.

cmath.asin (x)
Return the arc sine of x. This has the same branch cuts as acos ().

cmath.atan (x)
Return the arc tangent of x. There are two branch cuts: One extends from 1 7j along the imaginary axis to
o0 j, continuous from the right. The other extends from -1 j along the imaginary axis to —oo j, continuous
from the left.

cmath.cos (x)
Return the cosine of x.

cmath.sin (x)
Return the sine of x.

cmath.tan (x)
Return the tangent of x.

9.3.4 Hyperbolic functions

cmath.acosh (x)
Return the inverse hyperbolic cosine of x. There is one branch cut, extending left from 1 along the real axis
to -00, continuous from above.

cmath.asinh (x)
Return the inverse hyperbolic sine of x. There are two branch cuts: One extends from 1 j along the imagi-
nary axis to oo j, continuous from the right. The other extends from —1 j along the imaginary axis to —coj,
continuous from the left.

cmath.atanh (x)
Return the inverse hyperbolic tangent of x. There are two branch cuts: One extends from 1 along the real
axis to oo, continuous from below. The other extends from —1 along the real axis to —co, continuous from
above.

cmath.cosh (x)
Return the hyperbolic cosine of x.

cmath.sinh (x)
Return the hyperbolic sine of x.

cmath.tanh (x)
Return the hyperbolic tangent of x.

9.3.5 Classification functions

cmath.isfinite (x)
Return True if both the real and imaginary parts of x are finite, and False otherwise.
New in version 3.2.

cmath.isinf (x)
Return True if either the real or the imaginary part of x is an infinity, and False otherwise.

cmath.isnan (x)
Return True if either the real or the imaginary part of x is a NaN, and False otherwise.

248 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.0

cmath.isclose (a, b, * rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative
tolerances.

rel_tol is the relative tolerance — it is the maximum allowed difference between a and b, relative to the
larger absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default
tolerance is 1e—09, which assures that the two values are the same within about 9 decimal digits. rel_tol
must be greater than zero.

abs_tol is the minimum absolute tolerance — useful for comparisons near zero. abs_tol must be at least zero.

If no errors occur, the result will be: abs (a-b) <= max(rel_tol x max(abs(a), abs (b)),
abs_tol).

The IEEE 754 special values of NaN, inf, and —inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and —~inf are only considered close to
themselves.

New in version 3.5.
See also:

PEP 485 — A function for testing approximate equality

9.3.6 Constants

cmath.pi
The mathematical constant 7, as a float.

cmath.e
The mathematical constant e, as a float.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having
two modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they
are. They would rather have math.sqgrt (-1) raise an exception than return a complex number. Also note that
the functions defined in cmath always return a complex number, even if the answer can be expressed as a real
number (in which case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlighten-
ment. For information of the proper choice of branch cuts for numerical purposes, a good reference should be the
following:

See also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A.,
and Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

9.4 decimal — Decimal fixed point and floating point arithmetic

Source code: Lib/decimal.py

The decimal module provides support for fast correctly-rounded decimal floating point arithmetic. It offers
several advantages over the £ 1oat datatype:

* Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has
a paramount guiding principle — computers must provide an arithmetic that works in the same way as the
arithmetic that people learn at school.” — excerpt from the decimal arithmetic specification.

9.4. decimal — Decimal fixed point and floating point arithmetic 249

http://www.python.org/dev/peps/pep-0485
https://hg.python.org/cpython/file/3.5/Lib/decimal.py

The Python Library Reference, Release 3.5.0

* Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and 2.2 do not have exact
representations in binary floating point. End users typically would not expect 1.1 + 2.2 to display as
3.3000000000000003 as it does with binary floating point.

* The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 s
exactly equal to zero. In binary floating point, the resultis 5.5511151231257827e—-017. While near
to zero, the differences prevent reliable equality testing and differences can accumulate. For this reason,
decimal is preferred in accounting applications which have strict equality invariants.

* The decimal module incorporates a notion of significant places so that 1.30 + 1.20 is 2.50. The
trailing zero is kept to indicate significance. This is the customary presentation for monetary applications.
For multiplication, the “schoolbook™ approach uses all the figures in the multiplicands. For instance, 1.3
x 1.2 gives1.56whilel1.30 % 1.20 gives 1.5600.

Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting
to 28 places) which can be as large as needed for a given problem:

>>> from decimal import =

>>> getcontext () .prec = 6

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857")

>>> getcontext () .prec = 28

>>> Decimal (1) / Decimal (7)

Decimal ('0.1428571428571428571428571429")

* Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts
of the standard. When needed, the programmer has full control over rounding and signal handling. This
includes an option to enforce exact arithmetic by using exceptions to block any inexact operations.

* The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic
(sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” — excerpt from the decimal
arithmetic specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance,
the coefficient digits do not truncate trailing zeros. Decimals also include special values such as Infinity,
-Infinity, and NaN. The standard also differentiates —0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags
indicating the results of operations, and trap enablers which determine whether signals are treated as excep-
tions. Rounding options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF_DOWN,
ROUND_HALF_EVEN, ROUND_HALF_UP, ROUND_UP, and ROUND_05UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals
in the decimal module are: Clamped, InvalidOperation, DivisionByZero, Inexact, Rounded,
Subnormal, Overflow, Underflowand FloatOperation.

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the
trap enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring
a calculation.

See also:
* IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

¢ IEEE standard 854-1987, Unofficial IEEE 854 Text.

9.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with get context () and,
if necessary, setting new values for precision, rounding, or enabled traps:

250 Chapter 9. Numeric and Mathematical Modules

http://speleotrove.com/decimal/decarith.html
http://754r.ucbtest.org/standards/854.pdf

The Python Library Reference, Release 3.5.0

>>> from decimal import =

>>> getcontext ()

Context (prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])

>>> getcontext () .prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, floats, or tuples. Construction from an integer or a
float performs an exact conversion of the value of that integer or float. Decimal numbers include special values
such as NaN which stands for “Not a number”, positive and negative Infinity, and -0:

>>> getcontext () .prec = 28

>>> Decimal (10)

Decimal ('10")

>>> Decimal ('3.14")

Decimal ('3.14")

>>> Decimal (3.14)

Decimal ('3.140000000000000124344978758017532527446746826171875")
>>> Decimal ((0, (3, 1, 4), -2))

Decimal ('3.14")

>>> Decimal (str (2.0 *+ 0.5))

Decimal ('1.4142135623730951")

>>> Decimal (2) =+ Decimal('0.5")

Decimal ('1.414213562373095048801688724")
>>> Decimal ('NaN'")

Decimal ('NaN"'")

>>> Decimal ("-Infinity")

Decimal ('"-Infinity")

If the FloatOperation signal is trapped, accidental mixing of decimals and floats in constructors or ordering
comparisons raises an exception:

>>> ¢ = getcontext ()
>>> c.traps[FloatOperation] = True
>>> Decimal (3.14)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal ('3.5") < 3.7
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal ('3.5") == 3.5
True

New in version 3.3.

The significance of a new Decimal is determined solely by the number of digits input. Context precision and
rounding only come into play during arithmetic operations.

>>> getcontext () .prec = 6

>>> Decimal ('3.0")

Decimal ('3.0")

>>> Decimal ('3.1415926535")

Decimal ('3.1415926535")

>>> Decimal ('3.1415926535") + Decimal('2.7182818285")
Decimal ('5.85987")

>>> getcontext () .rounding = ROUND_UP

>>> Decimal ('3.1415926535") + Decimal ('2.7182818285")
Decimal ('5.85988")

9.4. decimal — Decimal fixed point and floating point arithmetic 251

The Python Library Reference, Release 3.5.0

If the internal limits of the C version are exceeded, constructing a decimal raises InvalidOperation:

>>> Decimal ("1e9999999999999999999")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]

Changed in version 3.3.
Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = list (map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25".split()))
>>> max (data)

Decimal ('9.25")

>>> min (data)

Decimal ('0.03")

>>> sorted(data)

[Decimal ('0.03'), Decimal ('1.00'), Decimal('1.34"),
Decimal ('2.35"), Decimal('3.45"), Decimal('9.25")]
>>> sum(data)

Decimal ('19.29")

>>> a,b,c = datal[:3]

>>> str(a)

'1.34"

>>> float (a)

1.34

>>> round(a, 1)

Decimal ('1.3")
>>> int (a)

1

>>> g « 5
Decimal ('6.70")
>>> a *« b
Decimal ('2.5058")
>>> c % a
Decimal ('0.77")

Decimal('1.87"),

And some mathematical functions are also available to Decimal:

>>> getcontext () .prec = 28

>>> Decimal (2) .sqrt ()

Decimal ('1.414213562373095048801688724")
>>> Decimal (1) .exp ()

Decimal ('2.718281828459045235360287471")
>>> Decimal ("10'") .1n ()

Decimal ('2.302585092994045684017991455")
>>> Decimal ("10") .1ogl0 ()

Decimal ('1l")

The quantize () method rounds a number to a fixed exponent. This method is useful for monetary applications
that often round results to a fixed number of places:

>>> Decimal ('7.325") .quantize (Decimal ('.01"), rounding=ROUND_DOWN)
Decimal ('7.32")

>>> Decimal ('7.325") .quantize (Decimal ('1l."'), rounding=ROUND_UP)
Decimal ('8")

As shown above, the get context () function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make
an alternate active, use the set context () function.

252 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.0

In accordance with the standard, the decimal module provides two ready to use standard contexts,
BasicContext and ExtendedContext. The former is especially useful for debugging because many of
the traps are enabled:

>>> myothercontext = Context (prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext (myothercontext)

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857142857142857142857142857142857142857142857142857142857")

>>> ExtendedContext

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[])

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857143")

>>> Decimal (42) / Decimal (0)

Decimal ("Infinity")

>>> sgetcontext (BasicContext)
>>> Decimal (42) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal (42) / Decimal (0)
DivisionByZero: x / O

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by
using the clear_flags () method.

>>> setcontext (ExtendedContext)

>>> getcontext () .clear_flags|()

>>> Decimal (355) / Decimal (113)

Decimal ('3.14159292")

>>> getcontext ()

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])

The flags entry shows that the rational approximation to P 1 was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the t raps field of a context:

>>> setcontext (ExtendedContext)
>>> Decimal (1) / Decimal (0)
Decimal ('Infinity")
>>> getcontext () .traps|[DivisionByZero] = 1
>>> Decimal (1) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#112>", 1line 1, in -toplevel-
Decimal (1) / Decimal (0)
DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted to Decimal with a single cast inside a loop. With context set and decimals created, the bulk of
the program manipulates the data no differently than with other Python numeric types.

9.4.2 Decimal objects

class decimal .Decimal (value="0", context=None)
Construct a new Decimal object based from value.

9.4. decimal — Decimal fixed point and floating point arithmetic 253

The Python Library Reference, Release 3.5.0

value can be an integer, string, tuple, f1oat, or another Decimal object. If no value is given, returns
Decimal (* 0'). If value is a string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters are removed:

sign te= T4 Tt

digit I O L B L R L A L A B
indicator t:= 'e' | 'E'

digits ::= digit [digit]...

decimal-part ::= digits '.' [digits] | ['.'] digits

exponent-part ::= 1indicator [sign] digits

infinity ::= !'Infinity' | 'Inf'

nan ::= 'NaN' [digits] | 'sNaN' [digits]

numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

Other Unicode decimal digits are also permitted where digit appears above. These include decimal digits
from various other alphabets (for example, Arabic-Indic and Devanagari digits) along with the fullwidth
digits * \uf£10’ through " \uff19’.

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a tuple
of digits, and an integer exponent. For example, Decimal ((0, (1, 4, 1, 4), -3)) returns
Decimal (’1.414").

If value is a float, the binary floating point value 1is losslessly converted to
its exact decimal equivalent. This conversion can often require 53 or more
digits of precision. For example, Decimal (float ("1.17)) converts to
Decimal ("1.100000000000000088817841970012523233890533447265625").

The context precision does not affect how many digits are stored. That is determined exclusively by the
number of digits in value. For example, Decimal (3.00000") records all five zeros even if the context
precision is only three.

The purpose of the context argument is determining what to do if value is a malformed string. If the context
traps InvalidOperation, an exception is raised; otherwise, the constructor returns a new Decimal with
the value of NaN.

Once constructed, Decimal objects are immutable.
Changed in version 3.2: The argument to the constructor is now permitted to be a £1oat instance.

Changed in version 3.3: float arguments raise an exception if the FloatOperation trap is set. By
default the trap is off.

Decimal floating point objects share many properties with the other built-in numeric types such as float
and int. All of the usual math operations and special methods apply. Likewise, decimal objects can be
copied, pickled, printed, used as dictionary keys, used as set elements, compared, sorted, and coerced to
another type (such as f1oat or int).

There are some small differences between arithmetic on Decimal objects and arithmetic on integers and
floats. When the remainder operator % is applied to Decimal objects, the sign of the result is the sign of the
dividend rather than the sign of the divisor:

>>> (=7) % 4

1

>>> Decimal (-7) % Decimal (4)
Decimal ('-3")

The integer division operator // behaves analogously, returning the integer part of the true quotient (trun-
cating towards zero) rather than its floor, so as to preserve the usual identity x == (x // y) * y + X

o)

% v

>>> -7 // 4
-2

254

Chapter 9. Numeric and Mathematical Modules

19|

The Python Library Reference, Release 3.5.0

>>> Decimal (-7) // Decimal (4)
Decimal ('-1")

The % and // operators implement the remainder and divide-integer operations (respectively) as
described in the specification.

Decimal objects cannot generally be combined with floats or instances of fractions.Fraction in
arithmetic operations: an attempt to add a Decimal to a f1loat, for example, will raise a TypeError.
However, it is possible to use Python’s comparison operators to compare a Decimal instance x with
another number y. This avoids confusing results when doing equality comparisons between numbers of
different types.

Changed in version 3.2: Mixed-type comparisons between Decimal instances and other numeric types are
now fully supported.

In addition to the standard numeric properties, decimal floating point objects also have a number of special-
ized methods:

adjusted ()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit
remains: Decimal (' 321e+5’) .adjusted () returns seven. Used for determining the position
of the most significant digit with respect to the decimal point.

as_tuple()
Return a named tuple representation of the number: DecimalTuple (sign, digits,
exponent).

canonical ()
Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is
always canonical, so this operation returns its argument unchanged.

compare (other, context=None)
Compare the values of two Decimal instances. compare () returns a Decimal instance, and if either
operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal ('NaN'")
a < b ==> Decimal ('-1")
a ==>,b ==> Decimal ('0")
a>>b ==> Decimal ('1l")

compare_signal (other, context=None)
This operation is identical to the compare () method, except that all NaNs signal. That is, if neither
operand is a signaling NaN then any quiet NaN operand is treated as though it were a signaling NaN.

compare_total (other, context=None)
Compare two operands using their abstract representation rather than their numerical value. Similar to
the compare () method, but the result gives a total ordering on Decimal instances. Two Decimal
instances with the same numeric value but different representations compare unequal in this ordering:

>>> Decimal ('12.0") .compare_total (Decimal ('12"))
Decimal ('-1")

Quiet and signaling NaNs are also included in the total ordering. The result of this function is
Decimal (' 0’) if both operands have the same representation, Decimal (/-1) if the first
operand is lower in the total order than the second, and Decimal (’ 1’) if the first operand is higher
in the total order than the second operand. See the specification for details of the total order.

This operation is unaffected by context and is quiet: no flags are changed and no rounding is per-
formed. As an exception, the C version may raise InvalidOperation if the second operand cannot be
converted exactly.

compare_total_mag (other, context=None)
Compare two operands using their abstract representation rather than their value as in

9.4. decimal — Decimal fixed point and floating point arithmetic 255

The Python Library Reference, Release 3.5.0

compare_total (), but ignoring the sign of each operand. x.compare_total_mag(y) is
equivalent to x . copy_abs () .compare_total (y.copy_abs ()).

This operation is unaffected by context and is quiet: no flags are changed and no rounding is per-
formed. As an exception, the C version may raise InvalidOperation if the second operand cannot be
converted exactly.

conjugate ()
Just returns self, this method is only to comply with the Decimal Specification.

copy_abs ()
Return the absolute value of the argument. This operation is unaffected by the context and is quiet: no
flags are changed and no rounding is performed.

copy_negate ()
Return the negation of the argument. This operation is unaffected by the context and is quiet: no flags
are changed and no rounding is performed.

copy_sign (other, context=None)
Return a copy of the first operand with the sign set to be the same as the sign of the second operand.
For example:

>>> Decimal ('2.3") .copy_sign(Decimal ('-1.5"))
Decimal ('-2.3")

This operation is unaffected by context and is quiet: no flags are changed and no rounding is per-
formed. As an exception, the C version may raise InvalidOperation if the second operand cannot be
converted exactly.

exp (context=None)
Return the value of the (natural) exponential function e x x at the given number. The result is correctly
rounded using the ROUND__HALF_EVEN rounding mode.

>>> Decimal (1) .exp ()

Decimal ('2.718281828459045235360287471")

>>> Decimal (321) .exp ()

Decimal ('2.561702493119680037517373933E+139")

from float (f)
Classmethod that converts a float to a decimal number, exactly.

Note Decimal.from_float(0.1) is not the same as Decimal(‘0.1°). Since 0.1 is not ex-
actly representable in binary floating point, the value is stored as the nearest repre-
sentable value which is 0x1.999999999999ap-4. That equivalent value in decimal is
0.1000000000000000055511151231257827021181583404541015625.

Note: From Python 3.2 onwards, a Decimal instance can also be constructed directly from a
float.

>>> Decimal.from_float (0.1)

Decimal ('0.1000000000000000055511151231257827021181583404541015625")
>>> Decimal.from_float (float ('nan'))

Decimal ('NaN"'")

>>> Decimal.from_float (float ('inf'))

Decimal ('Infinity")

>>> Decimal.from_float (float ('-inf'))

Decimal ('-Infinity")

New in version 3.1.

256

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.5.0

fma (other, third, context=None)
Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other.

>>> Decimal (2) .fma (3, 5)
Decimal ('11l")

is_canonical ()
Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is
always canonical, so this operation always returns True.

is finite ()
Return True if the argument is a finite number, and False if the argument is an infinity or a NaN.

is_infinite ()
Return True if the argument is either positive or negative infinity and False otherwise.

is_nan()
Return True if the argument is a (quiet or signaling) NaN and False otherwise.

is_normal (context=None)
Return True if the argument is a normal finite number. Return False if the argument is zero,
subnormal, infinite or a NaN.

is_qgnan()
Return True if the argument is a quiet NaN, and Fa 1 se otherwise.

is_signed()
Return True if the argument has a negative sign and Fa 1 se otherwise. Note that zeros and NaNs can
both carry signs.

is_snan()
Return True if the argument is a signaling NaN and Fa 1 se otherwise.

is_subnormal (context=None)
Return True if the argument is subnormal, and False otherwise.

is_zero()
Return True if the argument is a (positive or negative) zero and False otherwise.

1n (context=None)
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

1ogl0 (context=None)
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

logb (context=None)
For a nonzero number, return the adjusted exponent of its operand as a Decimal instance. If the
operand is a zero then Decimal (—Infinity’) is returned and the DivisionByZero flag is
raised. If the operand is an infinity then Decimal (Infinity’) is returned.

logical_and (other, context=None)
logical_and() is a logical operation which takes two logical operands (see Logical operands).
The result is the digit-wise and of the two operands.

logical_invert (context=None)
logical_invert () is alogical operation. The result is the digit-wise inversion of the operand.

logical_or (other, context=None)
logical_or () is alogical operation which takes two logical operands (see Logical operands). The
result is the digit-wise or of the two operands.

logical_xor (other, context=None)
logical_xo