The Python/C API
Release 3.13.1

Guido van Rossum and the Python development team

December 03, 2024

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Codingstandards e e 3
1.2 Include Files o e e 3
1.3 Useful macros o i i e e e 4
1.4 Objects, Types and Reference Counts o 0 i i vttt e e 6

1.4.1 Reference Counts i e e e 7

142 TYPES . o o o e e e e e e e e e e e e e 10
1.5 EXxceptions e e 10
1.6 Embedding Python 12
1.7 Debugging Builds e 12
C API Stability 13
2.1 Unstable CAPL e 13
2.2 Stable Application Binary Interface e 13

22.1 Limited CAPL e 13

222 Stable ABL. 14

2.2.3 Limited API Scope and Performance 14

224 Limited API Caveats e 14
2.3 Platform Considerations it e e e e e e e 15
2.4 Contents of Limited API e 15
The Very High Level Layer 41
Reference Counting 45
Exception Handling 49
5.1 Printingandclearing L. e 49
5.2 RaiSing eXCeptions e e e e e 50
5.3 Issuing warningso oL e e e e e e e e e 52
54 Querying the errorindicatoro e e 53
5.5 SignalHandling o e e e e 56
5.6 Exception Classes v v i i i e e e e e e e e e e e e e 57
5.7 Exception ObJECts o i e e e e e e e e e e e 58
5.8 Unicode Exception Objects e 59
5.9 Recursion Control e e e e 60
5.10 Standard EXceptions e e e e e e e e e e e e e e e 60
5.11 Standard Warning Categories v v v v v i e e e e e e e e e e e e e e 62
Utilities 63
6.1 Operating System UtIlities 0 0 i e e e e e e e e e e e 63
6.2 System Functions e e e e e e e e e 66
6.3 Process Control e e e e 67
6.4 Importing Modules e 68
6.5 Datamarshalling support L. e e 71
6.6 Parsing arguments and building values e 72

6.6.1 Parsingarguments vt e 72

6.6.2 Buildingvalues e e e e e e e e 79
6.7 String conversion and formattingo Lo oL 81
6.8 PyHash API e 82
6.9 Reflection L 84
6.10 Codec registry and support functions ool 85
6.10.1 Codeclookup APL. e e e 85
6.10.2 Registry API for Unicode encoding error handlers 86
6.11 PyTime C APL e e e e 87
6.11.1 Types o e 87
6.11.2 Clock Functions o e e 87
6.11.3 Raw Clock Functions e 87
6.11.4 Conversion functions L e e e 88
6.12 Supportfor Perf Maps L e 88
Abstract Objects Layer 91
7.1 ObjectProtocol e e e e e e e e 91
7.2 CallProtocol e 98
7.2.1 Thetp_call Protocol e e e 98
7.2.2 The Vectorcall Protocol e 98
7.2.3 Object Calling APT e e e 100
7.2.4 Call Support APT e e e 102
7.3 Number Protocol e 103
7.4 Sequence Protocol e 106
7.5 Mapping Protocol 107
7.6 Tterator Protocol 109
7.7 Buffer Protocol 110
7.7.1 Bufferstructure e 111
7.77.2 Bufferrequesttypes L e 112
7773 Complex arrays o e e e e e e e e e e e e e e e e e e 114
7.7.4 Buffer-related functions L 115
Concrete Objects Layer 117
8.1 Fundamental Objects e 117
8.1.1 Type ObJects o v i i e e e e e e 117
8.1.2 TheNone Object o o i i i i ittt e e e e 123
8.2 Numeric ObJeCtS o vt i e e e e e e e e e e e e e 123
82.1 Integer Objects e 123
822 Boolean Objects L 130
8.2.3 Floating-Point Objects e 130
8.2.4 Complex Number Objects o i i e e e e e e 132
8.3 Sequence ObJECtS i it e e e e e e e e e e e 134
83.1 BytesObjects e e 134
832 Byte Array Objects 135
8.3.3 Unicode Objectsand Codecs oot ittt 136
834 Tuple ObJects o v e e e e e e e e e e e e e e 153
8.3.5 StructSequence Objectso e e e e e e e e e e e 155
8.3.6 ListObjects i i e e e e e e e e e e 156
8.4 Container Objects L e e 158
8.4.1 Dictionary Objects e e e e e 158
8.4.2 SetODbjects i e e e e 163
8.5 Function ObJects o v i e e e e e e e e e e e e e e e 165
8.5.1 Function Objects o . i e e e e e e e e e 165
8.5.2 Imstance Method Objects 167
853 Method Objects e 167
854 CellObjects v v v v e e e 168
8.5.5 Code ObJeCts . . . v v v i i e e e e e e e e e e e e e e e 168
8.5.6 Extrainformation 171

8.6 Other ODJECtS v v v i e 172
8.6.1 FileObjects e e e e e e e e e e 172

8.6.2 Module Objects e e e e e e e e 173

8.6.3 Tterator Objects e 181

8.6.4 Descriptor Objects e e e e 182

8.6.5 Slice ObJects v i e e e e e 182

8.6.6 MemoryView Objects e e e e e e e e e e e e e 184

8.6.7 Weak Reference Objects o 0 i i e e 184

8.6.8 Capsules e e e e e 186

8.69 FrameObjects L 187
8.6.10 Generator Objects o e e 189

8.6.11 Coroutine ObJects v v v it e e e e e e e e e e e e e e e 190
8.6.12 Context Variables Objects o o v it e e e e e e 190
8.6.13 DateTime Objects e e 192
8.6.14 Objects for Type Hinting o 195

9 Initialization, Finalization, and Threads 197
9.1 Before Python Initialization e 197
9.2 Global configuration variables L. oL 198
9.3 Initializing and finalizing the interpreter oL 201
9.4 Process-wide parameters v . v i e 203
9.5 Thread State and the Global Interpreter Lock 207
9.5.1 Releasing the GIL from extensioncode 207

9.5.2 Non-Pythoncreated threads, 208

9.5.3 Cautions about fork() e e 208

9.54 High-level APT e 209

955 Low-level APL e 211

0.6 Sub-interpreter SUPPOTt v v v v o e 213
9.6.1 APer-Interpreter GIL L 216

9.6.2 Bugsandcaveats e 216

9.7 Asynchronous Notifications L e 217
9.8 Profilingand Tracing L L e e e e e e e e e e e e e 217
9.9 Reference tracing e e e e e e e e e e 219
9.10 Advanced Debugger Support L 220
9.11 Thread Local Storage Support e 220
9.11.1 Thread Specific Storage (TSS) API 220
9.11.2 Thread Local Storage (TLS) APT 221

9.12 Synchronization Primitiveso e e e e e e e 222
9.12.1 Python Critical Section API 223

10 Python Initialization Configuration 225
10.1 Example e e e e e 225
10.2 PyWideStringLList L. e e e 226
10.3 PyStatus o e e e e e 226
10.4 PyPreConfig o e 228
10.5 Preinitialize Python with PyPreConfig 229
10.6 PyConfig o o e e e e e 230
10.7 Inmitialization with PyConfig 241
10.8 Isolated Configuration o L i e e e e e e 243
10.9 Python Configuration L e e 243
10.10 Python Path Configuration e 243
10.11 Py_GetArgcArgv() . . v v o o e 244
10.12 Multi-Phase Initialization Private Provisional APT 245
11 Memory Management 247
T1.1 OVerVIEW o o e e e e e e e e e e 247
11.2 Allocator Domains e e e e 248
11.3 Raw Memory Interface L 248
11.4 Memory Interface 249

12

13

14

15

11.5 Objectallocators v v v v v e e e e e e e e e e e

11.6 Default Memory Allocators o v v v i e e e e e e e e e e e e e e e

11.7 Customize Memory ALlOcators o o v i i e e e e e e e e

11.8 Debug hooks on the Python memory allocators

11.9 The pymalloc allocator e
11.9.1 Customize pymalloc Arena Allocator o

11.10 The mimalloc allocator e e

11.11 tracemalloc C APT o o e

T2 Examples o o e e e e e e e e e e e e e e

Object Implementation Support

12.1 Allocating Objectsonthe Heap i ettt

12.2 Common Object STIUCIUIES« . o vttt e ettt e e e e e e
12.2.1 Baseobject types and macroso e e e
12.2.2 Implementing functionsand methods oL oL
12.2.3 Accessing attributes of exXtension types o e e e e e e e

123 Type ObJects o v v e e e e e e e e e e e e
12.3.1 Quick Reference e e e e e
12.3.2 PyTypeObject Definition e
12.3.3 PyObjectSlots o L e
12.3.4 PyVarObject SIots o o e e e
12.3.5 PyTypeObject SIots« . o o i e e e e e e e e e
12.3.6 Static TYPES .« ¢ v v o e
12377 Heap Types o o o o e e
12.3.8 Number Object Structures v vttt e e e
12.3.9 Mapping Object Structures« v v v v vttt e e e e e
12.3.10 Sequence Object StruCtures v v v v v v et e e e e e e e e
12.3.11 Buffer Object Structures o v it e e e e e e
12.3.12 Async Object Structures e e
12.3.13 Slot Type typedefs o e
12.3.14 Examples oo e e e

12.4 Supporting Cyclic Garbage Collection ittt e
12.4.1 Controlling the Garbage Collector Stateo v ...
12.4.2 Querying Garbage Collector State

API and ABI Versioning

Monitoring C API

Generating Execution Events

15.1 Managing the Monitoring State L e e e

Glossary

About these documents

B.1 Contributors to the Python Documentation

History and License

C.1 Historyof the software it e e e e e e e e e

C.2 Terms and conditions for accessing or otherwise using Python
C.2.1 PSFLICENSE AGREEMENT FORPYTHON3.13.1.
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1
C.24 CWILICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.13.1 DOCUMEN-

TATION e

C.3 Licenses and Acknowledgements for Incorporated Software
C3.1 Mersenne TWISter o o v v ittt e e e e e e
C32 Sockets e e e

257
257
258
258
259
262
266
267
271
272
273
273
292
292
292
295
295
296
297
297
299
301
304
304

307

309

311
312

315

C33
C34
C35
C3.6
C.3.7
C3.38
C3.9
C.3.10
C3.11
C3.12
C3.13
C3.14
C3.15
C3.16
C3.17
C3.18
C3.19
C.3.20
C3.21

D Copyright

Index

ASynchronous SOCKEt SEIVICES v v v v v v v e et e e e e e e e e e e 341
Cookie Mmanagement v v v v e e e e e e e e e e e e e e e e 341
Execution tracing e 341
UUencode and UUdecode functions, 342
XML Remote Procedure Calls, 343
test_epoll e 343
Selectkqueue o e e e e e e 344
SipHash24 o e e e e 344
strtodand dtoa L e e e e e 345
OpenSSL 345
EXPAL .« o o e e e e e e e e e e 348
b . . e e e e e e e 349
ZIHD L e e e e 349
cfuhash e 350
libmpdec e 350
W3C CIANeSt SUIE . . . v v v v e 351
mimalloc e e e e e e e e e e e e e 352
ASYNCIO + v v o e 352
Global Unbounded Sequences (GUS) 352

355

357

Vi

The Python/C API, Release 3.13.1

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion to extending-index, which describes the general principles of extension writing but does
not document the API functions in detail.

CONTENTS 1

The Python/C API, Release 3.13.1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter
at a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension
modules for specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to as embedding Python in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most
applications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to
become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards
If you're writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7.

These guidelines apply regardless of the version of Python you are contributing to. Following these conventions is
not necessary for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#define PY_ SSIZE_T_ CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>, <limits.h>,
<assert.h>and <stdlib.h> (if available).

© Note

Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python . h before any standard headers are included.

It is recommended to always define PY_SSIZzE_T_CLEAN before including Python.h. See Parsing arguments
and building values for a description of this macro.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be
used by extension writers. Structure member names do not have a reserved prefix.

https://peps.python.org/pep-0007/

The Python/C API, Release 3.13.1

© Note

User code should never define names that begin with Py or _py. This confuses the reader, and jeopardizes the
portability of the user code to future Python versions, which may define additional names beginning with one of
these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix are
defined by the corresponding parameters to Python’s configure script and version is '%$d.%d' % sys.
version_info[:2]. On Windows, the headers are installed in prefix/include, where prefix is the installa-
tion directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers
from exec_prefix

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry
points to be extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.

PyMODINIT_FUNC

Declare an extension module PyInit initialization function. The function return type is Pyobject*. The
macro declares any special linkage declarations required by the platform, and for C++ declares the function as
extern "C".

The initialization function must be named PyInit_name, where name is the name of the module, and should
be the only non-static item defined in the module file. Example:

-

static struct PyModuleDef spam_module = {
PyModuleDef HEAD_INIT,
.m_name = "spam",

}i

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spam_module) ;

}

L

Py_ABS (X)
Return the absolute value of x.

Added in version 3.3.

Py ALWAYS_INLINE

Ask the compiler to always inline a static inline function. The compiler can ignore it and decides to not inline
the function.

It can be used to inline performance critical static inline functions when building Python in debug mode with
function inlining disabled. For example, MSC disables function inlining when building in debug mode.

Marking blindly a static inline function with Py_ ALWAYS_INLINE can result in worse performances (due
to increased code size for example). The compiler is usually smarter than the developer for the cost/benefit
analysis.

4 Chapter 1. Introduction

The Python/C API, Release 3.13.1

If Python is built in debug mode (if the py_DEBUG macro is defined), the Py_ALWAYS INLINE macro does
nothing.

It must be specified before the function return type. Usage:

[static inline Py_ALWAYS_INLINE int random(void) { return 4; }]

Added in version 3.11.

Py CHARMASK (C)

Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to

an unsigned char.

Py_DEPRECATED (version)

Use this for deprecated declarations. The macro must be placed before the symbol name.

Example:

[Py_DEPRECATED(B.S) PyAPI_FUNC (int) Py_OldFunction (void) ; J

Changed in version 3.8: MSVC support was added.

Py_GETENV (s)
Like getenv(s), but returns NULL if -E was passed on the command line (see PyConfig.

use_environment).
Py_MAX (X,Y)
Return the maximum value between x and y.

Added in version 3.3.
Py_MEMBER_SIZE (type, member)
Return the size of a structure (t ype) member in bytes.
Added in version 3.6.
Py_MIN (X, y)
Return the minimum value between x and y.

Added in version 3.3.

Py_NO_INLINE

Disable inlining on a function. For example, it reduces the C stack consumption: useful on LTO+PGO builds
which heavily inline code (see bpo-33720).

Usage:

[nyNOfINLINE static int random(void) { return 4; }

Added in version 3.11.

Py_STRINGIFY (X)
Convert x to a C string. E.g. Py_STRINGIFY (123) returns "123".

Added in version 3.4.

Py UNREACHABLE ()
Use this when you have a code path that cannot be reached by design. For example, in the default: clause
in a switch statement for which all possible values are covered in case statements. Use this in places where
you might be tempted to put an assert (0) or abort () call.

In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable
code. For example, the macro is implemented with __builtin_unreachable () on GCC in release mode.

A use for py_UNREACHABLE () is following a call a function that never returns but that is not declared
_Py_NO_RETURN.

1.3. Useful macros 5

https://bugs.python.org/issue?@action=redirect&bpo=33720

The Python/C API, Release 3.13.1

If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used.
For example, under low memory condition or if a system call returns a value out of the expected range. In this
case, it’s better to report the error to the caller. If the error cannot be reported to caller, Py_FatalError ()
can be used.

Added in version 3.7.

Py_UNUSED (arg)

Use this for unused arguments in a function definition to silence compiler warnings. Example: int func (int
a, int Py_UNUSED (b)) { return a; }.

Added in version 3.4.

PyDoc_STRVAR (name, str)

Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the
value will be empty.

Use pPyDoc_STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
/).
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
VYA

PyDoc_STR (str)

Creates a docstring for the given input string or an empty string if docstrings are disabled.

Use PyDoc_STR in specifying docstrings to support building Python without docstrings, as specified in PEP
7.

Example:

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR("Returns the keys of the row.")},
{NULL, NULL}
i

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type Pyobject*. This type
is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated
the same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it
is only fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you
never declare an automatic or static variable of type PyObject, only pointer variables of type PyObject* can be
declared. The sole exception are the type objects; since these must never be deallocated, they are typically static
PyTypeObject objects.

All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind
of object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each
of the well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check (a)
is true if (and only if) the object pointed to by a is a Python list.

6 Chapter 1. Introduction

https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/

The Python/C API, Release 3.13.1

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size;
it counts how many different places there are that have a strong reference to an object. Such a place could be another
object, or a global (or static) C variable, or a local variable in some C function. When the last strong reference to an
object is released (i.e. its reference count becomes zero), the object is deallocated. If it contains references to other
objects, those references are released. Those other objects may be deallocated in turn, if there are no more references
to them, and so on. (There’s an obvious problem with objects that reference each other here; for now, the solution is
“don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py TNCREF () to take a new
reference to an object (i.e. increment its reference count by one), and Py DECREF () to release that reference (i.e.
decrement the reference count by one). The Py _DECREF () macro is considerably more complex than the incref one,
since it must check whether the reference count becomes zero and then cause the object’s deallocator to be called. The
deallocator is a function pointer contained in the object’s type structure. The type-specific deallocator takes care of
releasing references for other objects contained in the object if this is a compound object type, such as a list, as well as
performing any additional finalization that’s needed. There’s no chance that the reference count can overflow; at least
as many bits are used to hold the reference count as there are distinct memory locations in virtual memory (assuming
sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count increment is a simple operation.

It is not necessary to hold a strong reference (i.e. increment the reference count) for every local variable that contains
a pointer to an object. In theory, the object’s reference count goes up by one when the variable is made to point to
it and it goes down by one when the variable goes out of scope. However, these two cancel each other out, so at the
end the reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from
being deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the
object that lives at least as long as our variable, there is no need to take a new strong reference (i.e. increment the
reference count) temporarily. An important situation where this arises is in objects that are passed as arguments to
C functions in an extension module that are called from Python; the call mechanism guarantees to hold a reference
to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without taking a new
reference. Some other operation might conceivably remove the object from the list, releasing that reference, and
possibly deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code which
could do this; there is a code path which allows control to flow back to the user from a Py_DECREF (), so almost any
operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always create a new strong reference (i.e. increment the reference
count) of the object they return. This leaves the caller with the responsibility to call Py_DECREF () when they are
done with the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a
reference” means being responsible for calling Py_ DECREF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually releasing it by calling Py DECREF () or Py_XDECREF () when it’s no longer needed—or passing on this
responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing
needs to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals
a reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that
function assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were
designed to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for
example, the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for
the moment; a better way to code this is shown below):

1.4. Objects, Types and Reference Counts 7

The Python/C API, Release 3.13.1

PyObject *t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

3)i

t, 0, PyLong_FromLong(1lL));
t, 1, PyLong_FromLong(2L));
t

(
(
(
(t, 2, PyUnicode_FromString("three"));

Here, PyLong FromLong () returns a new reference which is immediately stolen by Py Tuple SetItem (). When
you want to keep using an object although the reference to it will be stolen, use Py_INCREF () to grab another
reference before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and PyOb-
ject_SetItem() refuse to do this since tuples are an immutable data type. You should only use PyTu-
ple_SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_BuildvValue (), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject *tuple, *list;

tuple = Py_BuildvValue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
references is much saner, since you don’t have to take a new reference just so you can give that reference away (“have
it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length (target);
if (n < 0)
return -1;
for (i = 0; 1 < n; 1i++) {
PyObject *index = PyLong_ FromSsize_t (i);
if (!index)
return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
}

return 0;

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references,
like PyObject_GetItem() and PySequence_GetItem (), always return a new reference (the caller becomes the
owner of the reference).

8 Chapter 1. Introduction

The Python/C API, Release 3.13.1

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage (the type of the object passed as an argument to the function) doesn 't enter into it! Thus, if you
extract an item from a list using PyList_GetItem(), you don't own the reference — but if you obtain the same
item from the same list using Py Sequence_GetItem () (which happens to take exactly the same arguments), you
do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
using PyList_GetItem (), and once using PySequence_GetItem().

long

sum_list (PyObject *1list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; 1 < n; i++) {
PyList_GetItem(list, 1i); /* Can't fail */
if (!PyLong_Check (item)) continue; /* Skip non-integers */
value = PyLong_AsLong (item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;

item

total += value;

}

return total;

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item PySequence_GetItem(sequence, 1i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong (item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
else {
Py_DECREF (item); /* Discard reference ownership */
}
}
return total;
}

1.4. Objects, Types and Reference Counts 9

The Python/C API, Release 3.13.1

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

type Py_ssize_t
Fart of the Stable ABI. A signed integral type such that sizeof (Py_ssize t) == sizeof(size_t).

C99 doesn’t define such a thing directly (size_t is an unsigned integral type). See PEP 353 for details.
PY_SSIZE_T_MAX is the largest positive value of type Py_ssize_t.

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled excep-
tions are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level
interpreter, where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator.
If not documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few
functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error
indicator or have an ambiguous return value, and require explicit testing for errors with PyErr Occurred (). These
exceptions are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The function PyErr Occurred ()
can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, and NULL otherwise. There are a number of functions to set the exception state: PyErr SetString ()
is the most common (though not the most general) function to set the exception state, and PyErr Clear () clears
the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info();
however, they are not the same: the Python objects represent the last exception being handled by a Python try ...
except statement, while the C level exception state only exists while an exception is being passed on between C
functions until it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.
exc_info () and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code
is to call the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it should not set another exception — that would overwrite the exception
that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above.
It so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent
Python code:

def incr_item(dict, key):
try:
item = dict [key]
(continues on next page)

10 Chapter 1. Introduction

https://peps.python.org/pep-0353/

The Python/C API, Release 3.13.1

(continued from previous page)
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0OL) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item) ;

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of Py-
Err_ExceptionMatches () and PyErr Clear () to handle specific exceptions, and the use of Py XDECREF ()
to dispose of owned references that may be NULL (note the 'X"' in the name; Py DECREF () would crash when
confronted with a NULL reference). It is important that the variables used to hold owned references are initialized to
NULL for this to work; likewise, the proposed return value is initialized to -1 (failure) and only set to success after
the final call made is successful.

1.5. Exceptions 11

The Python/C API, Release 3.13.1

1.6 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Initialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, __main__, and sys. It also initializes the module search path (sys.path).

Py_Initialize () doesnotsetthe “scriptargumentlist” (sys.argv). If this variable is needed by Python code that
will be executed later, setting PyConfig.argv and PyConfig.parse_argv must be set: see Python Initialization
Configuration.

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py_Initialize () calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory named 1ib/pythonX. Y relative to the parent directory
where the executable named python is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in
/usr/local/lib/pythonX. Y. (Infact, this particular path is also the “fallback” location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by setting PyConfig.program name before calling
Py _InitializeFromConfig (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted
in front of the standard path. An application that requires total control has to provide its own implementation of
Py _GetPath(), Py _GetPrefix(), Py GetExecPrefix(),and Py_GetProgramFullPath () (all defined in
Modules/getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another
callto Py_Tnitialize ()) or the application is simply done with its use of Python and wants to free memory allo-
cated by Python. This can be accomplished by calling Py_FinalizeEx (). The function Py_TsTnitialized()
returns true if Python is currently in the initialized state. More information about these functions is given in a later
chapter. Notice that Py _FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory
allocated by extension modules currently cannot be released.

1.7 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These
checks tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
level profiling of the main interpreter loop. Only the most frequently used builds will be described in the remainder
of this section.

Py_DEBUG

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by a debug build of
Python. Py_DEBUG is enabled in the Unix build by adding -~—with-pydebug to the . /configure command. It
is also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the Unix
build, compiler optimization is disabled.

In addition to the reference count debugging described below, extra checks are performed, see Python Debug Build.

Defining Py_ TRACE_REFS enables reference tracing (see the configure ——with-trace-refs option). When
defined, a circular doubly linked list of active objects is maintained by adding two extra fields to every PyObject.
Total allocations are tracked as well. Upon exit, all existing references are printed. (In interactive mode this happens
after every statement run by the interpreter.)

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

12 Chapter 1. Introduction

CHAPTER
TWO

C API STABILITY

Unless documented otherwise, Python’s C API is covered by the Backwards Compatibility Policy, PEP 387. Most
changes to it are source-compatible (typically by only adding new API). Changing existing API or removing API is
only done after a deprecation period or to fix serious issues.

CPython’s Application Binary Interface (ABI) is forward- and backwards-compatible across a minor release (if these
are compiled the same way; see Platform Considerations below). So, code compiled for Python 3.10.0 will work on
3.10.8 and vice versa, but will need to be compiled separately for 3.9.x and 3.11.x.

There are two tiers of C API with different stability expectations:

o Unstable API, may change in minor versions without a deprecation period. It is marked by the PyUnstable
prefix in names.

« Limited API, is compatible across several minor releases. When Py 1.7M1TED_APT is defined, only this subset
is exposed from Python.h.

These are discussed in more detail below.

Names prefixed by an underscore, such as _Py_InternalState, are private API that can change without notice
even in patch releases. If you need to use this API, consider reaching out to CPython developers to discuss adding
public API for your use case.

2.1 Unstable C API

Any API named with the PyUnstable prefix exposes CPython implementation details, and may change in every
minor release (e.g. from 3.9 to 3.10) without any deprecation warnings. However, it will not change in a bugfix
release (e.g. from 3.10.0 to 3.10.1).

It is generally intended for specialized, low-level tools like debuggers.

Projects that use this API are expected to follow CPython development and spend extra effort adjusting to changes.

2.2 Stable Application Binary Interface

For simplicity, this document talks about extensions, but the Limited API and Stable ABI work the same way for all
uses of the API - for example, embedding Python.

2.2.1 Limited C API

Python 3.2 introduced the Limited API, a subset of Python’s C API. Extensions that only use the Limited API can be
compiled once and be loaded on multiple versions of Python. Contents of the Limited API are listed below.

Py_LIMITED_API
Define this macro before including Python . h to opt in to only use the Limited API, and to select the Limited
API version.

Define py_LIMITED_APT to the value of PY_VERSTON_HEX corresponding to the lowest Python version your
extension supports. The extension will be ABI-compatible with all Python 3 releases from the specified one
onward, and can use Limited API introduced up to that version.

13

https://peps.python.org/pep-0387/
https://discuss.python.org/c/core-dev/c-api/30

The Python/C API, Release 3.13.1

Rather than using the PY_VERSION_HEX macro directly, hardcode a minimum minor version (e.g.
0x030a0000 for Python 3.10) for stability when compiling with future Python versions.

You can also define Py_LIMITED_APT to 3. This works the same as 0x03020000 (Python 3.2, the version
that introduced Limited API).

2.2.2 Stable ABI

To enable this, Python provides a Stable ABI: a set of symbols that will remain ABI-compatible across Python 3.x
versions.

© Note

The Stable ABI prevents ABI issues, like linker errors due to missing symbols or data corruption due to changes in
structure layouts or function signatures. However, other changes in Python can change the behavior of extensions.
See Python’s Backwards Compatibility Policy (PEP 387) for details.

The Stable ABI contains symbols exposed in the Limited API, but also other ones — for example, functions necessary
to support older versions of the Limited API.

On Windows, extensions that use the Stable ABI should be linked against pyt hon3.d11 rather than a version-specific
library such as python39.d11.

On some platforms, Python will look for and load shared library files named with the abi3 tag (e.g. mymodule.
abi3.so). It does not check if such extensions conform to a Stable ABI. The user (or their packaging tools) need to
ensure that, for example, extensions built with the 3.10+ Limited API are not installed for lower versions of Python.

All functions in the Stable ABI are present as functions in Python’s shared library, not solely as macros. This makes
them usable from languages that don’t use the C preprocessor.

2.2.3 Limited API Scope and Performance

The goal for the Limited API is to allow everything that is possible with the full C API, but possibly with a perfor-
mance penalty.

For example, while PyList_GetItem() is available, its “unsafe” macro variant Pyr.ist_GET ITEM() is not. The
macro can be faster because it can rely on version-specific implementation details of the list object.

Without py_LIMITED API defined, some C API functions are inlined or replaced by macros. Defining
Py_LIMITED_API disables this inlining, allowing stability as Python’s data structures are improved, but possibly
reducing performance.

By leaving out the py_LIMITED_ API definition, it is possible to compile a Limited API extension with a version-
specific ABI. This can improve performance for that Python version, but will limit compatibility. Compiling with
py_LIMITED_API will then yield an extension that can be distributed where a version-specific one is not available
— for example, for prereleases of an upcoming Python version.

2.2.4 Limited API Caveats

Note that compiling with Py_ LIMITED_APT is not a complete guarantee that code conforms to the Limited API or
the Stable ABI. py_LIMITED_API only covers definitions, but an API also includes other issues, such as expected
semantics.

One issue that Py_LIMITED_APTI does not guard against is calling a function with arguments that are invalid in a
lower Python version. For example, consider a function that starts accepting NULL for an argument. In Python 3.9,
NULL now selects a default behavior, but in Python 3.8, the argument will be used directly, causing a NULL dereference
and crash. A similar argument works for fields of structs.

Another issue is that some struct fields are currently not hidden when py_LIMITED APT is defined, even though
they’re part of the Limited API.

14 Chapter 2. C API Stability

https://peps.python.org/pep-0387/

The Python/C API, Release 3.13.1

For these reasons, we recommend testing an extension with a/l minor Python versions it supports, and preferably to
build with the lowest such version.

We also recommend reviewing documentation of all used API to check if it is explicitly part of the Limited API. Even
with Py_LIMITED_API defined, a few private declarations are exposed for technical reasons (or even unintentionally,
as bugs).

Also note that the Limited API is not necessarily stable: compiling with Py_LIMITED_APT with Python 3.8 means
that the extension will run with Python 3.12, but it will not necessarily compile with Python 3.12. In particular, parts
of the Limited API may be deprecated and removed, provided that the Stable ABI stays stable.

2.3 Platform Considerations

ABI stability depends not only on Python, but also on the compiler used, lower-level libraries and compiler options.
For the purposes of the Stable ABI, these details define a “platform”. They usually depend on the OS type and
processor architecture

It is the responsibility of each particular distributor of Python to ensure that all Python versions on a particular
platform are built in a way that does not break the Stable ABI. This is the case with Windows and macOS releases
from python.org and many third-party distributors.

2.4 Contents of Limited API

Currently, the Limited API includes the following items:

e PY VECTORCALL_ARGUMENTS_OFFSET
e PyAlter_ Check ()

e PyArg Parse()

e PyArg ParseTuple ()

e PyArg ParseTupleAndKeywords ()

e PyArg_UnpackTuple ()

e PyArg VaParse ()

e PyArg VaParseTupleAndKeywords ()
e PyArg ValidateKeywordArguments ()
e PyBaseObject_Type

e PyBool_FromLong()

e PyBool_Type

e PyBuffer FillContiguousStrides()
e PyBuffer FillInfo()

e PyBuffer_ FromContiguous ()

e PyBuffer GetPointer ()

e PyBuffer_ IsContiguous()

e PyBuffer Release ()

e PyBuffer SizeFromFormat ()

e PyBuffer_ToContiguous ()

e PyByteArrayIter Type

e PyByteArray_ AsString()

2.3. Platform Considerations 15

The Python/C API, Release 3.13.1

PyByteArray_Concat ()

PyByteArray_FromObject ()

PyByteArray FromStringAndSize ()

PyByteArray_Resize()
PyByteArray_Size ()
PyByteArray_ Type
PyBytesIter_ Type
PyBytes_AsString()
PyBytes_AsStringAndSize ()
PyBytes_Concat ()
PyBytes_ConcatAndDel ()
PyBytes_DecodeEscape ()
PyBytes_FromFormat ()
PyBytes_FromFormatV ()
PyBytes_FromObject ()
PyBytes_FromString()
PyBytes_FromStringAndSize ()
PyBytes_Repr ()
PyBytes_Size ()
PyBytes_Type

PyCFunction
PyCFunctionFast
PyCFunctionFastWithKeywords
PyCFunctionWithKeywords
PyCFunction_GetFlags ()
PyCFunction_GetFunction ()
PyCFunction_GetSelf ()
PyCFunction_New ()
PyCFunction_NewEx ()
PyCFunction_Type
PyCMethod_New ()
PyCallIter_New()
PyCalllIter_Type
PyCallable_Check ()
PyCapsule_Destructor
PyCapsule_GetContext ()
PyCapsule_GetDestructor ()
PyCapsule_GetName ()

PyCapsule_GetPointer ()

16

Chapter 2. C API Stability

The Python/C API, Release 3.13.1

PyCapsule_Import ()
PyCapsule_IsValid()
PyCapsule_New ()
PyCapsule_SetContext ()
PyCapsule_SetDestructor ()
PyCapsule_SetName ()
PyCapsule_SetPointer ()
PyCapsule_Type
PyClassMethodDescr_Type
PyCodec_BackslashReplaceErrors ()
PyCodec_Decode ()
PyCodec_Decoder ()
PyCodec_Encode ()
PyCodec_Encoder ()
PyCodec_IgnoreErrors ()
PyCodec_IncrementalDecoder ()
PyCodec_IncrementalEncoder ()
PyCodec_KnownEncoding ()
PyCodec_LookupError ()
PyCodec_NameReplaceErrors ()
PyCodec_Register ()
PyCodec_RegisterError ()
PyCodec_ReplaceErrors ()
PyCodec_StreamReader ()
PyCodec_StreamWriter ()
PyCodec_StrictErrors ()
PyCodec_Unregister()
PyCodec_XMLCharRefReplaceErrors ()
PyComplex_FromDoubles ()
PyComplex_ImagAsDouble ()
PyComplex_RealAsDouble ()
PyComplex_Type
PyDescr_NewClassMethod ()
PyDescr_NewGetSet ()
PyDescr_NewMember ()
PyDescr_NewMethod ()
PyDictItems_Type
PyDictIterItem_Type

PyDictIterKey_Type

2.4. Contents of Limited API

17

The Python/C API, Release 3.13.1

PyDictIterValue_Type
PyDictKeys_Type
PyDictProxy_New()
PyDictProxy_Type
PyDictRevIterItem_ Type
PyDictRevIterKey_Type
PyDictRevIterValue_Type
PyDictValues_Type
PyDict_Clear()
PyDict_Contains ()
PyDict_Copy ()
PyDict_DelItem()
PyDict_DelItemString()
PyDict_GetItem()
PyDict_GetItemRef ()
PyDict_GetItemString/()
PyDict_GetItemStringRef ()
PyDict_GetItemWithError ()
PyDict_Items ()
PyDict_Keys ()
PyDict_Merge ()
PyDict_MergeFromSeqZ2 ()
PyDict_New ()
PyDict_Next ()
PyDict_SetItem()
PyDict_SetItemString/()
PyDict_Size()
PyDict_Type
PyDict_Update ()
PyDict_Values ()
PyEllipsis_Type

PyEnum_ Type
PyErr_BadArgument ()
PyErr_BadInternalCall ()
PyErr_CheckSignals ()
PyErr_Clear ()
PyErr_Display ()
PyErr_DisplayException ()

PyErr_ExceptionMatches ()

18

Chapter 2. C API Stability

The Python/C API, Release 3.13.1

e PyErr Fetch()

e PyErr Format ()

e PyErr FormatV()

e PyErr GetExcInfo()

e PyErr GetHandledException ()

e PyErr GetRaisedException ()

e PyErr GivenExceptionMatches ()

e PyErr NewException ()

e PyErr NewExceptionWithDoc ()

e PyErr NoMemory ()

e PyErr NormalizeException ()

e PyErr Occurred()

e PyErr Print ()

e PyErr PrintEx()

e PyErr_ ProgramText ()

e PyErr ResourceWarning()

e PyErr Restore()

e PyErr SetExcFromWindowsErr ()

e PyErr SetExcFromWindowsErrWithFilename ()
e PyErr SetExcFromWindowsErrWithFilenameObject ()
e PyErr SetExcFromWindowsErrWithFilenameObjects ()
e PyErr SetExcInfo()

e PyErr SetFromErrno ()

e PyErr SetFromErrnoWithFilename ()

e PyErr SetFromErrnoWithFilenameObject ()
e PyErr SetFromErrnoWithFilenameObjects ()
e PyErr_ SetFromWindowsErr ()

e PyErr SetFromWindowsErrWithFilename ()

e PyErr SetHandledException ()

e PyErr SetImportError ()

e PyErr SetImportErrorSubclass ()

e PyErr SetInterrupt ()

e PyErr SetInterruptEx()

e PyErr_ SetNone ()

e PyErr SetObject ()

e PyErr SetRaisedException ()

e PyErr SetString()

e PyErr SyntaxLocation ()

e PyErr SyntaxLocationEx ()

2.4. Contents of Limited API 19

The Python/C API, Release 3.13.1

e PyErr WarnEx ()

e PyErr WarnExplicit ()

e PyErr WarnFormat ()

e PyErr WriteUnraisable ()

e PyEval_AcquireThread()

e PyEval_EvalCode ()

e PyEval EvalCodeEx ()

e PyEval_FEvalFrame ()

e PyEval_FEvalFrameEx ()

e PyEval_GetBuiltins ()

e PyEval_ GetFrame ()

e PyEval_GetFrameBuiltins ()
e PyEval_ GetFrameGlobals ()
e PyEval_ GetFrameLocals ()

e PyEval_GetFuncDesc ()

e PyEval_GetFuncName ()

e PyEval_GetGlobals ()

e PyEval_ GetLocals ()

e PyEval_InitThreads ()

e PyEval ReleaseThread()

e PyEval_ RestoreThread()

e PyEval_ SaveThread()

e PyExc_ArithmeticError

e PyExc_AssertionError

e PyExc_AttributeError

e PyExc_BaseException

e PyExc_BaseExceptionGroup
e PyExc_BlockingIOError

e PyExc_BrokenPipeError

e PyExc_BufferError

e PyExc_BytesWarning

e PyExc_ChildProcessError

e PyExc_ConnectionAbortedError
e PyExc_ConnectionError

e PyExc_ConnectionRefusedError
e PyExc_ConnectionResetError
e PyExc_DeprecationWarning
e PyExc_EOFError

e PyExc_EncodingWarning

20 Chapter 2. C API Stability

The Python/C API, Release 3.13.1

e PyExc_EnvironmentError

e PyExc_Exception

e PyExc_FileExistsError

e PyExc_FileNotFoundError
e PyExc_FloatingPointError
e PyExc_FutureWarning

e PyExc_GeneratorExit

e PyExc_IOError

e PyExc_ImportError

e PyExc_ImportWarning

e PyExc_IndentationError

e PyExc_IndexError

e PyExc_InterruptedError

e PyExc_IsADirectoryError
e PyExc_KeyError

e PyExc_KeyboardInterrupt
e PyExc_LookupError

e PyExc_MemoryError

e PyExc_ModuleNotFoundError
e PyExc_NameError

e PyExc_NotADirectoryError
e PyExc_NotImplementedError
e PyExc_OSError

e PyExc_OverflowError

e PyExc_PendingDeprecationWarning
e PyExc_PermissionError

e PyExc_ProcessLookupError
e PyExc_RecursionError

e PyExc_ReferenceError

e PyExc_ResourceWarning

e PyExc_RuntimeError

e PyExc_RuntimeWarning

e PyExc_StopAsynclteration
e PyExc_StoplIteration

e PyExc_SyntaxError

e PyExc_SyntaxWarning

e PyExc_SystemError

e PyExc_SystemExit

e PyExc_TabError

2.4. Contents of Limited API 21

The Python/C API, Release 3.13.1

PyExc_TimeoutError
PyExc_TypeError
PyExc_UnboundLocalError
PyExc_UnicodeDecodeError
PyExc_UnicodeEncodeError

PyExc_UnicodeError

PyExc_UnicodeTranslateError

PyExc_UnicodeWarning
PyExc_UserWarning
PyExc_ValueError
PyExc_Warning
PyExc_WindowsError
PyExc_ZeroDivisionError
PyExceptionClass_Name ()
PyException_GetArgs ()
PyException_GetCause ()

PyException_GetContext ()

PyException_GetTraceback ()

PyException_SetArgs ()
PyException_SetCause ()

PyException_SetContext ()

PyException_SetTraceback ()

PyFile_ FromFd/()
PyFile_GetLine()
PyFile_WriteObject ()
PyFile_WriteString/()
PyFilter_Type
PyFloat_AsDouble ()
PyFloat_FromDouble ()
PyFloat_FromString()
PyFloat_GetInfo/()
PyFloat_GetMax ()
PyFloat_GetMin ()
PyFloat_Type
PyFrameObject
PyFrame_GetCode ()
PyFrame_GetLineNumber ()
PyFrozenSet_New ()

PyFrozenSet_Type

22

Chapter 2. C API Stability

The Python/C API, Release 3.13.1

PyGC_Collect ()

PyGC_Disable()

PyGC_Enable ()

PyGC_IsEnabled()
PyGILState_Ensure ()
PyGILState_GetThisThreadState ()
PyGILState_Release ()
PyGILState_STATE

PyGetSetDef

PyGetSetDescr_Type
PyImport_AddModule ()
PyImport_AddModuleObject ()
PyImport_AddModuleRef ()
PyImport_AppendInittab ()
PyImport_ExecCodeModule ()
PyImport_ExecCodeModuleEx ()
PyImport_ExecCodeModuleObject ()
PyImport_ExecCodeModuleWithPathnames ()
PyImport_GetImporter ()
PyImport_GetMagicNumber ()
PyImport_GetMagicTag ()
PyImport_GetModule ()
PyImport_GetModuleDict ()
PyImport_Import ()
PyImport_ImportFrozenModule ()
PyImport_ImportFrozenModuleObject ()
PyImport_ImportModule ()
PyImport_ImportModuleLevel ()
PyImport_ImportModuleLevelObject ()
PyImport_ImportModuleNoBlock ()
PyImport_ReloadModule ()
PyIndex_Check ()
PyInterpreterState
PyInterpreterState_Clear ()
PyInterpreterState_Delete()
PyInterpreterState_Get ()
PyInterpreterState_GetDict ()
PyInterpreterState_GetID ()

PyInterpreterState_New ()

2.4. Contents of Limited API

23

The Python/C API, Release 3.13.1

e PylIter Check ()

e Pylter_ Next ()

e PyIlter Send()

e PyListIter_Type

e PyListRevIter_ Type

e PyList_Append/()

e PyList_AsTuple()

e PyList_GetItem()

e PyList_GetItemRef ()

e PyList_GetSlice()

e PyList_Insert()

e PyList_New()

e PyList_Reverse()

e PyList_SetItem()

e PyList_SetSlice()

e PyList_Size()

e PyList_Sort ()

e PyList_Type

e PyLongObject

e PyLongRangelIter_ Type

e PyLong AsDouble ()

e PyLong AsInt ()

e PyLong_AsLong()

e PyLong_AsLongAndOverflow ()
e PyLong_ AsLongLong ()

e PyLong AsLongLongAndOverflow()
e PyLong AsSize_t ()

e PyLong AsSsize_t ()

e PyLong_AsUnsignedLong ()

e PyLong_AsUnsignedLongLong ()
e PyLong_AsUnsignedLongLongMask ()
e PyLong_AsUnsignedLongMask ()
e PyLong_AsVoidPtr()

e PyLong_FromDouble ()

e PyLong FromLong ()

e PyLong FromLongLong ()

e PyLong FromSize_t ()

e PyLong FromSsize_t ()

e PyLong_FromString()

24 Chapter 2. C API Stability

The Python/C API, Release 3.13.1

e PyLong_FromUnsignedLong ()

e PyLong_FromUnsignedLongLong ()
e PyLong FromVoidPtr ()

e PyLong GetInfo()

e PyLong Type

e PyMap_Type

e PyMapping_Check ()

e PyMapping_GetItemString()

e PyMapping_GetOptionalIltem()
e PyMapping_GetOptionalltemString()
e PyMapping_HasKey ()

e PyMapping_HasKeyString/()

e PyMapping HasKeyStringWithError ()
e PyMapping_HasKeyWithError ()
e PyMapping_Items ()

e PyMapping_Keys ()

e PyMapping_Length ()

e PyMapping_SetItemString()

e PyMapping_Size ()

e PyMapping_Values ()

e PyMem_ Calloc ()

e PyMem Free ()

e PyMem Malloc ()

e PyMem RawCalloc ()

e PyMem RawFree ()

e PyMem RawMalloc ()

e PyMem RawRealloc ()

e PyMem Realloc ()

e PyMemberDef

e PyMemberDescr_Type

e PyMember_GetOne ()

e PyMember_SetOne ()

e PyMemoryView_FromBuffer ()

e PyMemoryView_FromMemory ()

e PyMemoryView_FromObject ()

e PyMemoryView_GetContiguous ()
e PyMemoryView_Type

e PyMethodDef

e PyMethodDescr_Type

2.4. Contents of Limited API

25

The Python/C API, Release 3.13.1

PyModuleDef
PyModuleDef_Base
PyModuleDef_ _Init ()
PyModuleDef_Type
PyModule_Add ()
PyModule_AddFunctions ()
PyModule_AddIntConstant ()
PyModule_ AddObject ()
PyModule_AddObjectRef ()
PyModule_AddStringConstant ()
PyModule_AddType ()
PyModule_Createl ()

PyModule_ ExecDef ()
PyModule_FromDefAndSpecZ2 ()
PyModule_GetDef ()
PyModule_GetDict ()
PyModule_GetFilename ()
PyModule_GetFilenameObject ()
PyModule_GetName ()
PyModule_GetNameObject ()
PyModule_GetState ()
PyModule_New ()
PyModule_NewObject ()
PyModule_SetDocString ()
PyModule_Type
PyNumber_Absolute ()
PyNumber_Add ()

PyNumber_And ()

PyNumber_ AsSsize_t ()
PyNumber_Check ()
PyNumber_Divmod ()
PyNumber_Float ()
PyNumber_FloorDivide ()
PyNumber_InPlaceAdd()
PyNumber_InPlaceAnd()
PyNumber_InPlaceFloorDivide ()
PyNumber_InPlaceLshift ()
PyNumber InPlaceMatrixMultiply ()

PyNumber_InPlaceMultiply ()

26

Chapter 2. C API Stability

The Python/C API, Release 3.13.1

e PyNumber_InPlaceOr ()

e PyNumber_InPlacePower ()

e PyNumber_InPlaceRemainder ()
e PyNumber_InPlaceRshift ()
e PyNumber_InPlaceSubtract ()
e PyNumber_InPlaceTrueDivide ()
e PyNumber_InPlaceXor ()

e PyNumber_Index ()

e PyNumber_Invert ()

e PyNumber_Long ()

e PyNumber_Lshift ()

e PyNumber_ MatrixMultiply ()
e PyNumber_ Multiply ()

e PyNumber_Negative ()

e PyNumber_Or ()

e PyNumber_Positive()

e PyNumber_Power ()

e PyNumber_Remainder ()

e PyNumber_Rshift ()

e PyNumber_Subtract ()

e PyNumber_ToBase ()

e PyNumber_TrueDivide ()

e PyNumber_Xor ()

e PyOS_AfterFork ()

e PyOS_AfterFork_Child()

e PyOS_AfterFork_Parent ()

e PyOS_BeforeFork()

e PyOS_CheckStack ()

e PyOS_FSPath ()

e PyOS_InputHook

e PyOS_InterruptOccurred()
e PyOS_double_to_string()

e PyOS_getsig()

e PyOS_mystricmp ()

e PyOS_mystrnicmp ()

e PyOS_setsig()

e PyOS_sighandler_t

e PyOS_snprintf ()

e PyOS_string_to_double ()

2.4. Contents of Limited API 27

The Python/C API, Release 3.13.1

PyOS_strtol ()
PyOS_strtoul ()
PyOS_vsnprintf ()

PyObject
PyObject.ob_refcnt
PyObject.ob_type
PyObject_ASCII()
PyObject_AsFileDescriptor()
PyObject_Bytes ()
PyObject_Call ()
PyObject_CallFunction ()
PyObject_CallFunctionObjArgs ()
PyObject_CallMethod ()
PyObject_CallMethodObjArgs ()
PyObject_CallNoArgs ()
PyObject_CallObject ()
PyObject_Calloc()
PyObject_CheckBuffer ()
PyObject_ClearWeakRefs ()
PyObject_CopyData ()
PyObject_DelAttr ()
PyObject_DelAttrString()
PyObject_DelItem()
PyObject_DellItemString()
PyObject_Dir ()
PyObject_Format ()
PyObject_Free()
PyObject_GC_Del ()
PyObject_GC_IsFinalized()
PyObject_GC_IsTracked()
PyObject_GC_Track ()
PyObject_GC_UnTrack ()
PyObject_GenericGetAttr ()
PyObject_GenericGetDict ()
PyObject_GenericSetAttr()
PyObject_GenericSetDict ()
PyObject_GetAlter ()
PyObject_GetAttr ()

PyObject_GetAttrString()

28

Chapter 2. C API Stability

The Python/C API, Release 3.13.1

e PyObject_GetBuffer()

e PyObject_GetItem()

e PyObject_GetIter()

e PyObject_GetOptionalAttr ()
e PyObject_GetOptionalAttrString()
e PyObject_GetTypeData ()

e PyObject_HasAttr ()

e PyObject_HasAttrString()

e PyObject_HasAttrStringWithError ()
e PyObject_HasAttrWithError ()
e PyObject_Hash()

e PyObject_HashNotImplemented ()
e PyObject_Init ()

e PyObject_InitVar()

e PyObject_IsInstance ()

e PyObject_IsSubclass()

e PyObject_IsTrue/()

e PyObject_Length ()

e PyObject_Malloc ()

e PyObject_Not ()

e PyObject_Realloc()

e PyObject_Repr ()

e PyObject_RichCompare ()

e PyObject_RichCompareBool ()
e PyObject_SelfIter()

e PyObject_SetAttr()

e PyObject_SetAttrString()

e PyObject_SetItem()

e PyObject_Size()

e PyObject_Str()

e PyObject_Type ()

e PyObject_Vectorcall ()

e PyObject_VectorcallMethod ()
e PyProperty_ Type

e PyRangelIter_ Type

e PyRange_Type

e PyReversed_Type

e PySeqlter_New/()

e PySeqlter_Type

2.4. Contents of Limited API 29

The Python/C API, Release 3.13.1

PySequence_Check ()
PySequence_Concat ()
PySequence_Contains ()
PySequence_Count ()
PySequence_DelItem()
PySequence_DelSlice ()
PySequence_Fast ()
PySequence_GetItem()
PySequence_GetSlice ()

PySequence_In ()

PySequence_InPlaceConcat ()

PySequence_InPlaceRepeat ()

PySequence_Index ()
PySequence_Length ()
PySequence_List ()
PySequence_Repeat ()
PySequence_SetItem()
PySequence_SetSlice()
PySequence_Size ()
PySequence_Tuple ()
PySetIter_Type
PySet_Add ()
PySet_Clear()
PySet_Contains ()
PySet_Discard()
PySet_New ()
PySet_Pop ()
PySet_Size ()
PySet_Type
PySlice_AdjustIndices ()
PySlice_GetIndices ()
PySlice_GetIndicesEx ()
PySlice New/()
PySlice_Type
PySlice_Unpack()
PyState_AddModule ()
PyState_FindModule ()
PyState_RemoveModule ()

PyStructSequence_Desc

30

Chapter 2. C API Stability

The Python/C API, Release 3.13.1

e PyStructSequence_Field

e PyStructSequence_GetItem()
e PyStructSequence_New ()

e PyStructSequence_NewType ()
e PyStructSequence_SetItem()
e PyStructSequence_UnnamedField
e PySuper_Type

e PySys_Audit ()

e PySys_AuditTuple()

e PySys_FormatStderr ()

e PySys_FormatStdout ()

e PySys_GetObject ()

e PySys_GetXOptions()

e PySys_ResetWarnOptions ()

e PySys_SetArgv ()

e PySys_SetArgvEx()

e PySys_SetObject ()

e PySys_WriteStderr ()

e PySys_WriteStdout ()

e PyThreadState

e PyThreadState_Clear ()

e PyThreadState_Delete()

e PyThreadState_Get ()

e PyThreadState_GetDict ()

e PyThreadState_GetFrame ()

e PyThreadState_GetID()

e PyThreadState_GetInterpreter ()
e PyThreadState_New ()

e PyThreadState_SetAsyncExc ()
e PyThreadState_Swap ()

e PyThread_GetInfo ()

e PyThread ReInitTLS ()

e PyThread_acquire_lock ()

e PyThread_acquire_lock_timed()
e PyThread_allocate_lock()

e PyThread_create_key ()

e PyThread_ _delete_key ()

e PyThread _delete_key_value()

e PyThread_exit_thread()

2.4. Contents of Limited API 31

The Python/C API, Release 3.13.1

PyThread_free_lock ()
PyThread_get_key_value ()
PyThread_get_stacksize ()
PyThread_get_thread_ident ()
PyThread_get_thread_native_id()
PyThread_init_thread()
PyThread_release_lock ()
PyThread_set_key_value ()
PyThread_set_stacksize ()
PyThread_start_new_thread()
PyThread_tss_alloc()
PyThread_tss_create()
PyThread_tss_delete()
PyThread_tss_free ()
PyThread_tss_get ()
PyThread_tss_is_created()
PyThread_tss_set ()
PyTraceBack_Here ()
PyTraceBack_Print ()
PyTraceBack_Type
PyTuplelter_ Type
PyTuple_GetItem()
PyTuple_GetSlice ()
PyTuple_New ()

PyTuple_ Pack ()
PyTuple_SetItem()
PyTuple_Size()

PyTuple_Type

PyTypeObject
PyType_ClearCache ()
PyType_FromMetaclass ()
PyType_FromModuleAndSpec ()
PyType_FromSpec ()

PyType FromSpecWithBases ()
PyType_GenericAlloc ()
PyType_GenericNew ()
PyType_GetFlags ()

PyType GetFullyQualifiedName ()

PyType_GetModule ()

32

Chapter 2. C API Stability

The Python/C API, Release 3.13.1

PyType_GetModuleByDef ()
PyType_GetModuleName ()
PyType_GetModuleState ()
PyType_GetName ()
PyType_GetQualName ()
PyType_GetSlot ()
PyType_GetTypeDataSize ()
PyType_IsSubtype ()
PyType_Modified()

PyType_Ready ()

PyType_Slot

PyType_Spec

PyType_Type
PyUnicodeDecodeError_Create()
PyUnicodeDecodeError_GetEncoding ()
PyUnicodeDecodeError_GetEnd()
PyUnicodeDecodeError_GetObject ()
PyUnicodeDecodeError_GetReason ()
PyUnicodeDecodeError_GetStart ()
PyUnicodeDecodeError_SetEnd()
PyUnicodeDecodeError_SetReason ()
PyUnicodeDecodeError_SetStart ()
PyUnicodeEncodeError_GetEncoding ()
PyUnicodeEncodeError_GetEnd()
PyUnicodeEncodeError_GetObject ()
PyUnicodeEncodeError_GetReason ()
PyUnicodeEncodeError_GetStart ()
PyUnicodeEncodeError_SetEnd()
PyUnicodeEncodeError_SetReason ()
PyUnicodeEncodeError_SetStart ()
PyUnicodelIter_Type
PyUnicodeTranslateError_GetEnd()
PyUnicodeTranslateError_GetObject ()
PyUnicodeTranslateError_GetReason ()
PyUnicodeTranslateError_GetStart ()
PyUnicodeTranslateError_SetEnd()
PyUnicodeTranslateError_SetReason ()
PyUnicodeTranslateError_SetStart ()

PyUnicode_Append ()

2.4. Contents of Limited API

33

The Python/C API, Release 3.13.1

e PyUnicode_AppendAndDel ()

e PyUnicode_AsSASCIIString/()

e PyUnicode_AsCharmapString()

e PyUnicode_AsDecodedObject ()

e PyUnicode_AsDecodedUnicode ()

e PyUnicode_AsEncodedObject ()

e PyUnicode_AsEncodedString/()

e PyUnicode_AsEncodedUnicode ()

e PyUnicode_AsLatinlString()

e PyUnicode_AsMBCSString/()

e PyUnicode_AsRawUnicodeEscapeString /()
e PyUnicode_AsUCS4 ()

e PyUnicode_AsUCS4Copy ()

e PyUnicode_AsUTF16String()

e PyUnicode AsUTF32String()

e PyUnicode_AsUTF8AndSize ()

e PyUnicode_AsUTF8String/()

e PyUnicode_AsUnicodeEscapeString ()
e PyUnicode_AsWideChar ()

e PyUnicode_AsWideCharString ()

e PyUnicode_BuildEncodingMap ()

e PyUnicode_Compare ()

e PyUnicode_CompareWithASCIIString()
e PyUnicode_Concat ()

e PyUnicode_Contains ()

e PyUnicode_Count ()

e PyUnicode_Decode ()

e PyUnicode_DecodeASCII ()

e PyUnicode_DecodeCharmap ()

e PyUnicode_DecodeCodePageStateful ()
e PyUnicode_DecodeFSDefault ()

e PyUnicode_DecodeFSDefaultAndSize ()
e PyUnicode_DecodeLatinl ()

e PyUnicode_DecodeLocale ()

e PyUnicode_DecodeLocaleAndSize ()

e PyUnicode_DecodeMBCS ()

e PyUnicode_DecodeMBCSStateful ()

e PyUnicode_DecodeRawUnicodeEscape ()

e PyUnicode_DecodeUTF16 ()

34 Chapter 2. C API Stability

The Python/C API, Release 3.13.1

PyUnicode_DecodeUTFlé6Stateful ()
PyUnicode_DecodeUTF32 ()
PyUnicode_DecodeUTF32Stateful ()
PyUnicode_DecodeUTF7 ()
PyUnicode_DecodeUTF7Stateful ()
PyUnicode_DecodeUTFS8 ()
PyUnicode_DecodeUTF8Stateful ()
PyUnicode_DecodeUnicodeEscape ()
PyUnicode_EncodeCodePage ()
PyUnicode_EncodeFSDefault ()
PyUnicode_EncodeLocale ()
PyUnicode_EqualToUTF8 ()
PyUnicode_EqualToUTF8AndSize ()
PyUnicode_FSConverter ()
PyUnicode_FSDecoder ()
PyUnicode_Find/()
PyUnicode_FindChar ()
PyUnicode_Format ()
PyUnicode_FromEncodedObject ()
PyUnicode_FromFormat ()
PyUnicode_FromFormatV ()
PyUnicode_FromObject ()
PyUnicode_FromOrdinal ()
PyUnicode_FromString ()
PyUnicode_FromStringAndSize ()
PyUnicode_FromWideChar ()
PyUnicode_GetDefaultEncoding ()
PyUnicode_GetLength ()
PyUnicode_InternFromString()
PyUnicode_InternInPlace ()
PyUnicode_IsIdentifier()
PyUnicode_Join ()
PyUnicode_Partition ()
PyUnicode_RPartition ()
PyUnicode_RSplit ()
PyUnicode_ReadChar ()
PyUnicode_Replace ()
PyUnicode_Resize ()

PyUnicode_RichCompare ()

2.4. Contents of Limited API

35

The Python/C API, Release 3.13.1

PyUnicode_Split ()
PyUnicode_Splitlines ()
PyUnicode_Substring()
PyUnicode_Tailmatch ()
PyUnicode_Translate ()
PyUnicode_Type
PyUnicode_WriteChar ()
PyVarObject
PyVarObject.ob_base
PyVarObject.ob_size
PyVectorcall_Call ()
PyVectorcall NARGS ()
PyWeakReference
PyWeakref_GetObject ()
PyWeakref_GetRef ()
PyWeakref NewProxy ()
PyWeakref_ NewRef ()
PyWrapperDescr_Type
PyWrapper_New ()
PyZip_Type

Py _AddPendingCall ()

Py AtExit ()

Py BEGIN_ALLOW_THREADS
Py _BLOCK_THREADS
Py_BuildValue ()

Py _BytesMain ()

Py CompileString()
Py_DecRef ()
Py_DecodeLocale ()

Py END_ALLOW_THREADS
Py_EncodeLocale ()

Py _EndInterpreter()

Py _EnterRecursiveCall ()
Py Exit ()

Py _FatalError ()
Py_FileSystemDefaultEncodeErrors
Py_FileSystemDefaultEncoding
Py Finalize()

Py FinalizeEx()

36

Chapter 2. C API Stability

The Python/C API, Release 3.13.1

e Py GenericAlias ()

e Py GenericAliasType

e Py GetBuildInfo()

e Py GetCompiler ()

e Py GetConstant ()

e Py GetConstantBorrowed ()
e Py GetCopyright ()

e Py GetExecPrefix()

e Py GetPath()

e Py GetPlatform()

e Py GetPrefix()

e Py GetProgramFullPath /()
e Py GetProgramName ()

e Py GetPythonHome ()

e Py _GetRecursionLimit ()
e Py GetVersion()

e Py HasFileSystemDefaultEncoding
e Py _IncRef ()

e Py Initialize()

e Py InitializeEx()

e Py Is()

e Py IsFalse()

e Py IsFinalizing/()

e Py IsInitialized()

e Py _IsNone ()

e Py IsTrue()

e Py LeaveRecursiveCall ()
e Py Main()

e Py _MakePendingCalls ()

e Py NewInterpreter/()

e Py NewRef ()

e Py ReprEnter ()

e Py ReprLeave ()

e Py SetProgramName ()

e Py SetPythonHome ()

e Py_SetRecursionLimit ()
e Py UCS4

e Py UNBLOCK_THREADS

e Py_UTF8Mode

2.4. Contents of Limited API 37

The Python/C API, Release 3.13.1

e Py VaBuildValue ()
e Py Version

e Py XNewRef ()

e Py buffer

e Py _intptr_t

e Py ssize t

e Py uintptr_t

e allocfunc

e binaryfunc

e descrgetfunc

e descrsetfunc

e destructor

e getattrfunc

e getattrofunc

e getbhufferproc

e getiterfunc

e getter

e hashfunc

e initproc

e inquiry

e iternextfunc

e lenfunc

e newfunc

e objobjargproc

e objobjproc

e releasebufferproc
e reprfunc

e richcmpfunc

e setattrfunc

e setattrofunc

e setter

e ssizeargfunc

e ssizeobjargproc

e ssizessizeargfunc
e ssizessizeobjargproc
e symtable

e ternaryfunc

e traverseproc

e unaryfunc

38 Chapter 2. C API Stability

The Python/C API, Release 3.13.1

e vectorcallfunc

e visitproc

2.4. Contents of Limited API

39

The Python/C API, Release 3.13.1

40 Chapter 2. C API Stability

CHAPTER
THREE

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input,and Py_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled
carefully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that
the Python runtime is using.
int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.
int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value of PyRun_InteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys.getfilesystemencoding()). If filename
is NULL, this function uses "?2??" as the filename. If closeit is true, the file is closed before
PyRun_SimpleFileExFlags () returns.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)

Executes the Python source code from command in the __main__ module according to the flags argument.
If __main__ does not already exist, it is created. Returns 0 on success or —1 if an exception was raised. If
there was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the
process, as long as PyConfig. inspect is zero.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimplerileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

41

The Python/C API, Release 3.13.1

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)

Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from filesystem encoding and error
handler. If closeit is true, the file is closed before PyRun_SimpleFileExFlags () returns.

© Note

On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb")). Otherwise, Python
may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)

This is a simplified interface to PyRun_TnteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute a single statement from a file associated with an interactive device according to the flags
argument. The user will be prompted using sys.ps1 and sys.ps2. filename is decoded from the filesystem
encoding and error handler.

Returns 0 when the input was executed successfully, -1 if there was an exception, or an error code from the
errcode.h include file distributed as part of Python if there was a parse error. (Note that errcode . h is not
included by Python.h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)

This is a simplified interface to PyRun_TnteractivelLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.ps1 and sys.ps2. filename is decoded from the filesystem encoding and error
handler. Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook)(void)

Fart of the Stable ABI. Can be set to point to a function with the prototype int func (void). The function
will be called when Python’s interpreter prompt is about to become idle and wait for user input from the
terminal. The return value is ignored. Overriding this hook can be used to integrate the interpreter’s prompt
with other event loops, as done in the Modules/_tkinter.c in the Python source code.

Changed in version 3.12: This function is only called from the main interpreter.

char *(*PyOS_ReadlineFunctionPointer)(FILE*, FILE*, const char*)

Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout, char
*prompt), overriding the default function used to read a single line of input at the interpreter’s prompt. The
function is expected to output the string prompt if it’s not NULL, and then read a line of input from the provided
standard input file, returning the resulting string. For example, The read1line module sets this hook to provide
line-editing and tab-completion features.

The result must be a string allocated by PyMem RawMalloc () or PyMem RawRealloc (), or NULL if an
error occurred.

Changed in version 3.4: The result must be allocated by PyMem RawMalloc () or PyMem_RawRealloc (),
instead of being allocated by PyMem Malloc () or PyMem_Realloc ().

Changed in version 3.12: This function is only called from the main interpreter.

PyObject *PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags
set to NULL.
PyObject *PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompilerFlags
*flags)

Return value: New reference. Execute Python source code from str in the context specified by the objects
globals and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any

42 Chapter 3. The Very High Level Layer

The Python/C API, Release 3.13.1

object that implements the mapping protocol. The parameter start specifies the start token that should be used
to parse the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject *pyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0 and flags set to NULL.

PyObject *PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals, int
closeit)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags
set to NULL.

PyObject *PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *1ocals,
PyCompilerFlags *flags)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to O.

PyObject *PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
int closeit, PyCompilerFlags *flags)

Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read from
fp instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem
encoding and error handler. If closeit is true, the file is closed before PyRun_FileExFlags () returns.

PyObject *Py_CompileString (const char *str, const char *filename, int start)

Return value: ~ New reference. Part of the Stable ABIL This is a simplified interface to
Py _CompileStringFlags () below, leaving flags set to NULL.

PyObject *Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompilerFlags *flags)

Return value: New reference. This is a simplified interface to Py_CompileStringExFlags () below, with
optimize set to —1.

PyObject *Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompilerFlags *flags, int
optimize)

Return value: New reference. Parse and compile the Python source code in str, returning the resulting code
object. The start token is given by start; this can be used to constrain the code which can be compiled and
should be Py _eval input, Py_file_input, or Py_single_input. The filename specified by filename
is used to construct the code object and may appear in tracebacks or SyntaxError exception messages. This
returns NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization
level of the interpreter as given by —0 options. Explicit levels are 0 (no optimization; ___debug___is true), 1
(asserts are removed, __debug___is false) or 2 (docstrings are removed too).

Added in version 3.4.

PyObject *Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompilerFlags *flags,
int optimize)

Return value: New reference. Like Py CompileStringObject (), but filename is a byte string decoded
from the filesystem encoding and error handler.

Added in version 3.2.

PyObject *pyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. Part of the Stable ABI. This is a simplified interface to PyEval_FEvalCodeEx (),
with just the code object, and global and local variables. The other arguments are set to NULL.

PyObject *PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args, int
argcount, PyObject *const *kws, int kwcount, PyObject *const *defs, int
defcount, PyObject *kwdefs, PyObject *closure)

Return value: New reference. Part of the Stable ABL Evaluate a precompiled code object, given a particular

43

The Python/C API, Release 3.13.1

environment for its evaluation. This environment consists of a dictionary of global variables, a mapping object
of local variables, arrays of arguments, keywords and defaults, a dictionary of default values for keyword-only
arguments and a closure tuple of cells.

PyObject *pyEval_EvalFrame (PyFrameObject *f)
Return value: New reference. Part of the Stable ABI. Evaluate an execution frame. This is a simplified interface
to PyEval EvalFrameEx (), for backward compatibility.

PyObject *PyEval_EvalFrameEx (PyFrameObject *{, int throwflag)

Return value: New reference. Part of the Stable ABI. This is the main, unvarnished function of Python in-
terpretation. The code object associated with the execution frame f is executed, interpreting bytecode and
executing calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes
an exception to immediately be thrown; this is used for the throw () methods of generator objects.

Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.
int PyEval_MergeCompilerFlags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.
int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with py_CompileString().
int Py file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source
code.
int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString (). This
is the symbol used for the interactive interpreter loop.
struct PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this
case, from __ future__ import can modify flags.

Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to 0, and any modification
dueto from _ future_ import is discarded.

int c£_flags
Compiler flags.
int cf_feature_version
¢f _feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSION.
The field is ignored by default, it is used if and only if PyCF_ONLY_AST flagis setin cf_flags.
Changed in version 3.8: Added cf_feature_version field.

int CO_FUTURE_DIVISION

This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP
238.

44 Chapter 3. The Very High Level Layer

https://peps.python.org/pep-0238/
https://peps.python.org/pep-0238/

CHAPTER
FOUR

REFERENCE COUNTING

The functions and macros in this section are used for managing reference counts of Python objects.
Py_ssize_t Py_REFCNT (PyObject *0)
Get the reference count of the Python object o.

Note that the returned value may not actually reflect how many references to the object are actually held. For
example, some objects are immortal and have a very high refcount that does not reflect the actual number of
references. Consequently, do not rely on the returned value to be accurate, other than a value of O or 1.

Use the py_seET REFCNT () function to set an object reference count.
Changed in version 3.10: py_REFCNT () is changed to the inline static function.
Changed in version 3.11: The parameter type is no longer const PyObject*.

void Py_SET_REFCNT (PyObject *0, Py_ssize_t refcnt)
Set the object o reference counter to refcnt.

On Python build with Free Threading, if refcnt is larger than UINT32_MAX, the object is made immortal.
This function has no effect on immortal objects.

Added in version 3.9.

Changed in version 3.12: Immortal objects are not modified.

void Py_ INCREF (PyObject *0)
Indicate taking a new strong reference to object o, indicating it is in use and should not be destroyed.

This function has no effect on immortal objects.

This function is usually used to convert a borrowed reference to a strong reference in-place. The Py_NewRef ()
function can be used to create a new strong reference.

When done using the object, release is by calling Py_DECREF ().
The object must not be NULL; if you aren’t sure that it isn't NULL, use Py_XINCREF ().

Do not expect this function to actually modify o in any way. For at least some objects, this function has no
effect.

Changed in version 3.12: Immortal objects are not modified.

void Py_XINCREF (PyObject *0)
Similar to Py_ INCREF (), but the object o can be NULL, in which case this has no effect.
See also Py_XNewRef ().

PyObject *Py_NewRef£ (PyObject *0)

Fart of the Stable ABI since version 3.10. Create a new strong reference to an object: call Py TNCREF () on o
and return the object o.

When the strong reference is no longer needed, py_DECREF () should be called on it to release the reference.

The object o must not be NULL; use Py_xNewRef () if 0 can be NULL.

45

https://peps.python.org/pep-0683/

The Python/C API, Release 3.13.1

For example:

Py_INCREF (obj) ;
self->attr = obj;

can be written as:

[self7>attr = Py_NewRef (obj) ;

See also Py INCREF ().
Added in version 3.10.
PyObject *Py_XNewRef£ (PyObject *0)
Part of the Stable ABI since version 3.10. Similar to Py_NewRef (), but the object o can be NULL.
If the object o is NULL, the function just returns NULL.
Added in version 3.10.
void Py_DECREF (PyObject *0)
Release a strong reference to object o, indicating the reference is no longer used.
This function has no effect on immortal objects.

Once the last strong reference is released (i.e. the object’s reference count reaches 0), the object’s type’s deal-
location function (which must not be NULL) is invoked.

This function is usually used to delete a strong reference before exiting its scope.
The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py_XDECREF ().

Do not expect this function to actually modify o in any way. For at least some objects, this function has no
effect.

A\ Warning

The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance with a
__del__ () method is deallocated). While exceptions in such code are not propagated, the executed code
has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state before Py_DECREF () is invoked. For example, code to delete an
object from a list should copy a reference to the deleted object in a temporary variable, update the list data
structure, and then call Py_DECREF () for the temporary variable.

Changed in version 3.12: Immortal objects are not modified.

void Py_XDECREF (PyObject *0)
Similar to Py_DECREF (), but the object o can be NULL, in which case this has no effect. The same warning
from Py_DECREF () applies here as well.

void Py_CLEAR (PyObject *0)

Release a strong reference for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF (), except that the argument is also set to NULL. The
warning for Py_DECREF () does not apply with respect to the object passed because the macro carefully uses
a temporary variable and sets the argument to NULL before releasing the reference.

It is a good idea to use this macro whenever releasing a reference to an object that might be traversed during
garbage collection.

Changed in version 3.12: The macro argument is now only evaluated once. If the argument has side effects,
these are no longer duplicated.

46 Chapter 4. Reference Counting

https://peps.python.org/pep-0683/

The Python/C API, Release 3.13.1

void Py_IncRef (PyObject *0)

Part of the Stable ABIL Indicate taking a new strong reference to object o. A function version of
Py_XINCREF (). It can be used for runtime dynamic embedding of Python.

void Py_DecRef (PyObject *0)

Fart of the Stable ABIL Release a strong reference to object o. A function version of Py_XDECREF (). It can
be used for runtime dynamic embedding of Python.

Py_SETREF (dst, src)

Macro safely releasing a strong reference to object dst and setting dst to src.

Asin case of Py_CLEAR (), “the obvious” code can be deadly:

Py_DECREF (dst) ;
dst = src;

The safe way is:

[Py_SETREF(dst, src); }

That arranges to set dst to src _before_ releasing the reference to the old value of dst, so that any code triggered
as a side-effect of dst getting torn down no longer believes dst points to a valid object.

Added in version 3.6.

Changed in version 3.12: The macro arguments are now only evaluated once. If an argument has side effects,
these are no longer duplicated.

Py_XSETREF (dst, src)
Variant of Py SETREF macro that uses Py XDECREF () instead of Py DECREF ().

Added in version 3.6.

Changed in version 3.12: The macro arguments are now only evaluated once. If an argument has side effects,
these are no longer duplicated.

47

The Python/C API, Release 3.13.1

48 Chapter 4. Reference Counting

CHAPTER
FIVE

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a
global indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will
set it to indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL
if they are supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* functions return 1
for success and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for
example you can’t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); it should rot continue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

© Note

The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not yet
caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

5.1 Printing and clearing

void PyErr_Clear ()
Part of the Stable ABI. Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)

Part of the Stable ABI. Print a standard traceback to sys.stderr and clear the error indicator. Unless the
error is a SystemExit, in that case no traceback is printed and the Python process will exit with the error
code specified by the SystemExit instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last_vars is nonzero, the variable sys.last_exc is set to the printed exception. For backwards
compatibility, the deprecated variables sys.last_type, sys.last_value and sys.last_traceback
are also set to the type, value and traceback of this exception, respectively.

Changed in version 3.12: The setting of sys.last_exc was added.

void PyErr_Print ()
Fart of the Stable ABI. Alias for PyErr_PrintEx (1).

49

The Python/C API, Release 3.13.1

void PyErr_WriteUnraisable (PyObject *obj)
Fart of the Stable ABI. Call sys.unraisablehook () using the current exception and obj argument.
This utility function prints a warning message to sys.stderr when an exception has been set but it is im-

possible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs
inan __del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message. If obj is NULL, only the traceback
is printed.

An exception must be set when calling this function.
Changed in version 3.4: Print a traceback. Print only traceback if obj is NULL.
Changed in version 3.8: Use sys.unraisablehook ().

void PyErr_FormatUnraisable (const char *format, ...)

Similar to PyErr writeUnraisable (), but the format and subsequent parameters help format the
warning message; they have the same meaning and values as in PyUnicode FromFormat (). Py-
Err_WriteUnraisable (obj) is roughly equivalent to PyErr_FormatUnraisable ("Exception ig-
nored in: $%R", obj). If format is NULL, only the traceback is printed.

Added in version 3.13.

void PyErr_DisplayException (PyObject *exc)
Part of the Stable ABI since version 3.12. Print the standard traceback display of exc to sys.stderr, in-
cluding chained exceptions and notes.

Added in version 3.12.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always

return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
Fart of the Stable ABI. This is the most common way to set the error indicator. The first argument specifies
the exception type; it is normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not
create a new strong reference to it (e.g. with py_1TNCREF ()). The second argument is an error message; it is
decoded from 'utf-8'.

void PyErr_SetObject (PyObject *type, PyObject *value)
Fart of the Stable ABI. This function is similar to PyErr SetString () but lets you specify an arbitrary
Python object for the “value” of the exception.

PyObject *pyErr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. Part of the Stable ABI. This function sets the error indicator and returns NULL.
exception should be a Python exception class. The format and subsequent parameters help format the error
message; they have the same meaning and values as in PyUnicode FromFormat (). format is an ASCII-
encoded string.

PyObject *PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Part of the Stable ABI since version 3.5. Same as PyErr Format (), but taking
ava_list argument rather than a variable number of arguments.
Added in version 3.5.

void PyErr_SetNone (PyObject *type)
Part of the Stable ABI. This is a shorthand for PyErr_SetObject (type, Py_None).

50 Chapter 5. Exception Handling

The Python/C API, Release 3.13.1

int PyErr_BadArgument ()

Part of the Stable ABI. This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where
message indicates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject *PyErr_NoMemory ()
Return value: Always NULL. Part of the Stable ABI This is a shorthand for Py-

Err_SetNone (PyExc_MemoryError); it returns NULL so an object allocation function can write
return PyErr_NoMemory () ; when it runs out of memory.

PyObject *PyErr_SetFromErrno (PyObject *type)

Return value: Always NULL. Part of the Stable ABI. This is a convenience function to raise an exception when
a C library function has returned an error and set the C variable errno. It constructs a tuple object whose
first item is the integer errno value and whose second item is the corresponding error message (gotten from
strerror ()), and then calls PyErr_SetObject (type, object). On Unix, when the errno value is
EINTR, indicating an interrupted system call, this calls PyErr CheckSignals (), and if that set the error
indicator, leaves it set to that. The function always returns NULL, so a wrapper function around a system call
can write return PyErr_SetFromErrno (type); when the system call returns an error.

PyObject *PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)

Return value: Always NULL. Part of the Stable ABI. Similar to PyErr SetFromErrno (), with the additional
behavior that if filenameObject is not NULL, it is passed to the constructor of fype as a third parameter. In the
case of OSError exception, this is used to define the £ilename attribute of the exception instance.

PyObject *PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)
Return value: Always NULL. Part of the Stable ABI since version 3.7. Similar to Py-

Err_SetFromErrnolithFilenameObject (), but takes a second filename object, for raising errors
when a function that takes two filenames fails.

Added in version 3.4.

PyObject *PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)

Return value: Always NULL. Part of the Stable ABIL Similar to Py-
Err_SetFromErrnolWithFilenameObject (), but the filename is given as a C string. filename is
decoded from the filesystem encoding and error handler.

PyObject *PyErr_SetFromWindowsErr (int ierr)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. This is a convenience
function to raise OSError. If called with ierr of 0, the error code returned by a call to GetLastError () is
used instead. It calls the Win32 function FormatMessage () to retrieve the Windows description of error code
given by ierr or GetLastError (), then it constructs a OSError object with the winerror attribute set to the
error code, the st rerror attribute set to the corresponding error message (gotten from FormatMessage ()),
and then calls PyErr_SetObject (PyExc_OSError, object). This function always returns NULL.

Availability: Windows.

PyObject *PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to py-
Err_SetFromWindowsErr (), with an additional parameter specifying the exception type to be raised.
Availability: Windows.

PyObject *PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to pPy-
Err_SetFromWindowsErr (), with the additional behavior that if filename is not NULL, it is decoded from
the filesystem encoding (os . fsdecode ()) and passed to the constructor of OSError as a third parameter to
be used to define the filename attribute of the exception instance.

Auvailability: Windows.

PyObject *PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyObject
*filename)

5.2. Raising exceptions 51

The Python/C API, Release 3.13.1

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to py-
Err_SetExcFromWindowsErr (), with the additional behavior that if filename is not NULL, it is passed to
the constructor of OSError as a third parameter to be used to define the f£ilename attribute of the exception
instance.

Availability: Windows.
PyObject *PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyObject
*filename, PyObject *filename?2)
Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to py-
Err_SetExcFromWindowsErriWithFilenameObject (), butaccepts a second filename object.
Availability: Windows.
Added in version 3.4.

PyObject *PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *filename)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to py-
Err_SetFromWindowsErrWithFilename (), with an additional parameter specifying the exception type
to be raised.

Availability: Windows.

PyObject *PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
Return value: Always NULL. Part of the Stable ABI since version 3.7. This is a convenience function to raise

ImportError. msg will be set as the exception’s message string. name and path, both of which can be NULL,
will be set as the ImportError’s respective name and path attributes.

Added in version 3.3.
PyObject *PyErr_SetImportErrorSubclass (PyObject *exception, PyObject *msg, PyObject *name, PyObject
*path)
Return value: Always NULL. Part of the Stable ABI since version 3.6. Muchlike PyErr_Set ImportError ()
but this function allows for specifying a subclass of ImportError to raise.
Added in version 3.6.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)

Set file, line, and offset information for the current exception. If the current exception is not a SyntaxEr—
ror, then it sets additional attributes, which make the exception printing subsystem think the exception is a
SyntaxError.

Added in version 3.4.

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Part of the Stable ABI since version 3.7. Like PyErr SyntaxLocationObject (), but filename is a byte
string decoded from the filesystem encoding and error handler.

Added in version 3.2.

void PyErr_SyntaxLocation (const char *filename, int lineno)

Fart of the Stable ABI. Like pyErr SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()

Part of the Stable ABI. This is a shorthand for PyErr_SetString (PyExc_SystemError, message),
where message indicates that an internal operation (e.g. a Python/C API function) was invoked with an illegal
argument. It is mostly for internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified

52 Chapter 5. Exception Handling

The Python/C API, Release 3.13.1

that warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the
functions raise an exception because of a problem with the warning machinery. The return value is 0 if no exception
israised, or —1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed,
nor what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for example, Py DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)

Part of the Stable ABI. Issue a warning message. The cafegory argument is a warning category (see below)
or NULL; the message argument is a UTF-8 encoded string. stack_level is a positive number giving a number
of stack frames; the warning will be issued from the currently executing line of code in that stack frame. A
stack_level of 1 is the function calling PyErr_WarnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc _Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_RuntimeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at Standard Warning Categories.

For information about warning control, see the documentation for the warnings module and the —w option in
the command line documentation. There is no C API for warning control.

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python function warnings.warn_explicit ();see there for more information. The module and
registry arguments may be set to NULL to get the default effect described there.

Added in version 3.4.

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const char

*module, PyObject *registry)

Part of the Stable ABIL. Similar to PyErr warnExplicitObject () except that message and module are
UTF-8 encoded strings, and filename is decoded from the filesystem encoding and error handler.

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Part of the Stable ABI. Function similar to PyErr_WarnEx (),butuse PyUnicode FromFormat () to format
the warning message. format is an ASCII-encoded string.

Added in version 3.2.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Part of the Stable ABI since version 3.6. Function similar to PyErr_warnFormat (), but category is Re—
sourceWarning and it passes source t0 warnings.WarningMessage.

Added in version 3.6.

5.4 Querying the error indicator

PyObject *PyErr_Occurred ()

Return value: Borrowed reference. Part of the Stable ABIL Test whether the error indicator is set. If set,
return the exception type (the first argument to the last call to one of the PyErr_Set* functions or to Py -
Err_Restore ()). If not set, return NULL. You do not own a reference to the return value, so you do not need
to Py_DECREF () it.

The caller must hold the GIL.

© Note

Do not compare the return value to a specific exception; use PyErr ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class,
in the case of a class exception, or it may be a subclass of the expected exception.)

5.4. Querying the error indicator 53

The Python/C API, Release 3.13.1

int PyErr_ExceptionMatches (PyObject *exc)
Fart of the Stable ABI. Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred(), exc).
This should only be called when an exception is actually set; a memory access violation will occur if no ex-
ception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Part of the Stable ABI. Return true if the given exception matches the exception type in exc. If exc is a class
object, this also returns true when given is an instance of a subclass. If exc is a tuple, all exception types in the
tuple (and recursively in subtuples) are searched for a match.

PyObject *PyErr_GetRaisedException (void)
Return value: New reference. Part of the Stable ABI since version 3.12. Return the exception currently being
raised, clearing the error indicator at the same time. Return NULL if the error indicator is not set.

This function is used by code that needs to catch exceptions, or code that needs to save and restore the error
indicator temporarily.

For example:

-

{
PyObject *exc = PyErr_GetRaisedException();

/* ... code that might produce other errors ... */

PyErr_SetRaisedException (exc);

e See also

PyErr GetHandledException (), to save the exception currently being handled.

Added in version 3.12.

void PyErr_SetRaisedException (PyObject *exc)

Fart of the Stable ABI since version 3.12. Set exc as the exception currently being raised, clearing the existing
exception if one is set.

A\ Warning

This call steals a reference to exc, which must be a valid exception.

Added in version 3.12.
void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Fart of the Stable ABI. Deprecated since version 3.12: Use PyErr GetRaisedException () instead.

Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set,
set all three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved.
The value and traceback object may be NULL even when the type object is not.

© Note

This function is normally only used by legacy code that needs to catch exceptions or save and restore the
error indicator temporarily.

For example:

54 Chapter 5. Exception Handling

The Python/C API, Release 3.13.1

PyObject *type, *value, *traceback;
PyErr_Fetch (&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Fart of the Stable ABI. Deprecated since version 3.12: Use PyErr SetRaisedException () instead.

Set the error indicator from the three objects, type, value, and traceback, clearing the existing exception if one
is set. If the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or
traceback. The exception type should be a class. Do not pass an invalid exception type or value. (Violating
these rules will cause subtle problems later.) This call takes away a reference to each object: you must own
a reference to each object before the call and after the call you no longer own these references. (If you don’t
understand this, don’t use this function. I warned you.)

© Note

This function is normally only used by legacy code that needs to save and restore the error indicator tem-
porarily. Use PyErr Fetch () to save the current error indicator.

void PyErr_NormalizeException (PyObject **exc, PyObject **val, PyObject **tb)

Fart of the Stable ABI. Deprecated since version 3.12: Use PyErr GetRaisedException () instead, to
avoid any possible de-normalization.

Under certain circumstances, the values returned by PyErr Fetch () below can be “unnormalized”, meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is
implemented to improve performance.

© Note

This function does not implicitly set the __traceback___ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);

PyObject *PyErr_GetHandledException (void)

Fart of the Stable ABI since version 3.11. Retrieve the active exception instance, as would be returned by
sys.exception (). This refers to an exception that was already caught, not to an exception that was freshly
raised. Returns a new reference to the exception or NULL. Does not modify the interpreter’s exception state.

O Note
This function is not normally used by code that wants to handle exceptions. Rather, it can be used when

code needs to save and restore the exception state temporarily. Use PyErr SetHandledException ()
to restore or clear the exception state.

Added in version 3.11.

5.4. Querying the error indicator 55

The Python/C API, Release 3.13.1

void PyErr_SetHandledException (PyObject *exc)

Fart of the Stable ABI since version 3.11. Set the active exception, as known from sys.exception (). This
refers to an exception that was already caught, not to an exception that was freshly raised. To clear the exception
state, pass NULL.

© Note

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr GetHandledException ()
to get the exception state.

Added in version 3.11.

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Part of the Stable ABI since version 3.7. Retrieve the old-style representation of the exception info, as
known from sys.exc_info (). This refers to an exception that was already caught, not to an exception
that was freshly raised. Returns new references for the three objects, any of which may be NULL. Does
not modify the exception info state. This function is kept for backwards compatibility. Prefer using ry—
Err_GetHandledException ().

© Note

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr SetExcInfo () to restore or
clear the exception state.

Added in version 3.3.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)

Part of the Stable ABI since version 3.7. Set the exception info, as known from sys.exc_info (). This refers
to an exception that was already caught, not to an exception that was freshly raised. This function steals the
references of the arguments. To clear the exception state, pass NULL for all three arguments. This function is
kept for backwards compatibility. Prefer using PyErr SetHandledException ().

© Note

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr GetExcInfo () to read the
exception state.

Added in version 3.3.

Changed in version 3.11: The type and traceback arguments are no longer used and can be NULL. The
interpreter now derives them from the exception instance (the value argument). The function still steals
references of all three arguments.

5.5 Signal Handling

int PyErr_CheckSignals ()

Fart of the Stable ABI. This function interacts with Python’s signal handling.

If the function is called from the main thread and under the main Python interpreter, it checks whether a signal
has been sent to the processes and if so, invokes the corresponding signal handler. If the signal module is
supported, this can invoke a signal handler written in Python.

56

Chapter 5. Exception Handling

The Python/C API, Release 3.13.1

The function attempts to handle all pending signals, and then returns 0. However, if a Python signal handler
raises an exception, the error indicator is set and the function returns -1 immediately (such that other pending
signals may not have been handled yet: they will be on the next PyErr CheckSignals () invocation).

If the function is called from a non-main thread, or under a non-main Python interpreter, it does nothing and
returns 0.

This function can be called by long-running C code that wants to be interruptible by user requests (such as by
pressing Ctrl-C).

© Note

The default Python signal handler for SIGINT raises the KeyboardInterrupt exception.

void PyErr_SetInterrupt ()

Part of the Stable ABI. Simulate the effect of a SIGINT signal arriving. This is equivalent to Py—
Err_SetInterruptEx (SIGINT).

© Note

This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

int PyErr_SetInterruptEx (int signum)

Part of the Stable ABI since version 3.10. Simulate the effect of a signal arriving. The next time Py -
Err_CheckSignals () is called, the Python signal handler for the given signal number will be called.

This function can be called by C code that sets up its own signal handling and wants Python signal handlers
to be invoked as expected when an interruption is requested (for example when the user presses Ctrl-C to
interrupt an operation).

If the given signal isn’t handled by Python (it was set to signal.SIG_DFL or signal.SIG_IGN), it will be
ignored.

If signum is outside of the allowed range of signal numbers, -1 is returned. Otherwise, 0 is returned. The
error indicator is never changed by this function.

© Note

This function is async-signal-safe. It can be called without the G/L and from a C signal handler.

Added in version 3.10.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever
a signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_fd ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be
called from the main thread.

Changed in version 3.5: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject *PyErr_NewException (const char *name, PyObject *base, PyObject *dict)

Return value: New reference. Part of the Stable ABI. This utility function creates and returns a new exception
class. The name argument must be the name of the new exception, a C string of the form module.classname.

5.6. Exception Classes 57

The Python/C API, Release 3.13.1

The base and dict arguments are normally NULL. This creates a class object derived from Exception (acces-
sible in C as PyExc_Exception).

The __module__ attribute of the new class is set to the first part (up to the last dot) of the name argument,
and the class name is set to the last part (after the last dot). The base argument can be used to specify alternate
base classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a
dictionary of class variables and methods.

PyObject *PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyObject *dict)

Return value: New reference. Part of the Stable ABI. Same as PyErr NewException (), except that the new
exception class can easily be given a docstring: If doc is non-NULL, it will be used as the docstring for the
exception class.

Added in version 3.2.

5.7 Exception Objects

PyObject *PyException_GetTraceback (PyObject *ex)
Return value: New reference. Part of the Stable ABIL Return the traceback associated with the exception as
a new reference, as accessible from Python through the _ traceback__ attribute. If there is no traceback
associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Fart of the Stable ABI. Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject *PyException_GetContext (PyObject *ex)
Return value: New reference. Part of the Stable ABI. Return the context (another exception instance during
whose handling ex was raised) associated with the exception as a new reference, as accessible from Python
through the _ context__ attribute. If there is no context associated, this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Fart of the Stable ABI. Set the context associated with the exception to ctx. Use NULL to clear it. There is no
type check to make sure that ctx is an exception instance. This steals a reference to ctx.

PyObject *PyException_GetCause (PyObject *ex)

Return value: New reference. Part of the Stable ABI. Return the cause (either an exception instance, or None,
setby raise ... from ...)associated with the exception as a new reference, as accessible from Python
through the __cause__ attribute.

void PyException_SetCause (PyObject *ex, PyObject *cause)

Fart of the Stable ABI. Set the cause associated with the exception to cause. Use NULL to clear it. There is no
type check to make sure that cause is either an exception instance or None. This steals a reference to cause.

The __ suppress_context___ attribute is implicitly set to True by this function.

PyObject *PyException_GetArgs (PyObject *ex)

Return value: New reference. Part of the Stable ABI since version 3.12. Return args of exception ex.

void PyException_SetArgs (PyObject *ex, PyObject *args)

Part of the Stable ABI since version 3.12. Set args of exception ex to args.

PyObject *PyUnstable_Exc_PrepReraiseStar (PyObject *orig, PyObject *excs)

This is Unstable API. It may change without warning in minor releases.

Implement part of the interpreter’s implementation of except *. orig is the original exception that was caught,
and excs is the list of the exceptions that need to be raised. This list contains the unhandled part of orig, if any,
as well as the exceptions that were raised from the except * clauses (so they have a different traceback from

58 Chapter 5. Exception Handling

The Python/C API, Release 3.13.1

orig) and those that were reraised (and have the same traceback as orig). Return the ExceptionGroup that
needs to be reraised in the end, or None if there is nothing to reraise.

Added in version 3.12.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.
PyObject *PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *reason)
Return value: New reference. Part of the Stable ABI. Create a UnicodeDecodeError object with the at-
tributes encoding, object, length, start, end and reason. encoding and reason are UTF-8 encoded strings.
PyObject *PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject *PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return value: New reference. Part of the Stable ABIL Return the encoding attribute of the given exception
object.
PyObject *PyUnicodeDecodeError_GetObject (PyObject *exc)
PyObject *PyUnicodeEncodeError_GetObject (PyObject *exc)
PyObject *PyUnicodeTranslateError_GetObject (PyObject *exc)
Return value: New reference. Part of the Stable ABI. Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Fart of the Stable ABI. Get the start attribute of the given exception object and place it into *start. start must
not be NULL. Return 0 on success, -1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Fart of the Stable ABI. Set the start attribute of the given exception object to start. Return 0 on success, -1 on
failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Part of the Stable ABI. Get the end attribute of the given exception object and place it into *end. end must not
be NULL. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)

int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)

int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Fart of the Stable ABL Set the end attribute of the given exception object to end. Return 0 on success, -1 on
failure.

PyObject *PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeTranslateError_GetReason (PyObject *exc)
Return value: New reference. Part of the Stable ABI Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)

Fart of the Stable ABI. Set the reason attribute of the given exception object to reason. Return 0 on success,
-1 on failure.

5.8. Unicode Exception Objects 59

The Python/C API, Release 3.13.1

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension
modules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion
depth automatically). They are also not needed for #p_call implementations because the call protocol takes care of
recursion handling.
int Py_EnterRecursiveCall (const char *where)

Fart of the Stable ABI since version 3.9. Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using Py0S_CheckStack ().
If this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a UTF-8 encoded string such as " in instance check" to be concatenated to the Re-
cursionError message caused by the recursion depth limit.

Changed in version 3.9: This function is now also available in the /imited API.

void Py_LeaveRecursiveCall (void)
Fart of the Stable ABI since version 3.9. Ends a Py_EnterRecursiveCall (). Must be called once for each
successful invocation of Py_EnterRecursiveCall ().

Changed in version 3.9: This function is now also available in the /imited API.

Properly implementing t p_repr for container types requires special recursion handling. In addition to protecting the
stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().
int Py_ReprEnter (PyObject *object)

Fart of the Stable ABI. Called at the beginning of the tp_repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_repr

implementation should return a string object indicating a cycle. As examples, dict objects return { . ..} and
list objectsreturn [...].

The function will return a negative integer if the recursion limit is reached. In that case the tp_repr imple-
mentation should typically return NULL.

Otherwise, the function returns zero and the tp_repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)

Part of the Stable ABL Ends a Py ReprEnter (). Must be called once for each invocation of
Py_ReprEnter () that returns zero.

5.10 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyoObject*; they are all class objects. For completeness, here are all the
variables:

C Name Python Name Notes
PyExc_BaseException BaseException !
PyExc_Exception Exception @,
PyExc_ArithmeticError ArithmeticError el |
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError

continues on next page

60 Chapter 5. Exception Handling

The Python/C API, Release 3.13.1

Table 1 - continued from previous page

C Name

Python Name Notes

PyExc_BufferError
PyExc_ChildProcessError
PyExc_ConnectionAbortedErrc
PyExc_ConnectionError
PyExc_ConnectionRefusedErrc
PyExc_ConnectionResetError
PyExc_EOFError
PyExc_FileExistsError
PyExc_FileNotFoundError
PyExc_FloatingPointError
PyExc_GeneratorExit
PyExc_ImportError
PyExc_IndentationError
PyExc_IndexError
PyExc_InterruptedError
PyExc_IsADirectoryError
PyExc_KeyError
PyExc_KeyboardInterrupt
PyExc_LookupError
PyExc_MemoryError
PyExc_ModuleNotFoundError
PyExc_NameError
PyExc_NotADirectoryError
PyExc_NotImplementedError
PyExc_OSError
PyExc_OverflowError
PyExc_PermissionError
PyExc_ProcessLookupError
PyExc_PythonFinalizationErr
PyExc_RecursionError
PyExc_ReferenceError
PyExc_RuntimeError
PyExc_StopAsynclIteration
PyExc_StopIlteration
PyExc_SyntaxError
PyExc_SystemError
PyExc_SystemExit
PyExc_TabError
PyExc_TimeoutError
PyExc_TypeError
PyExc_UnboundLocalError
PyExc_UnicodeDecodeError
PyExc_UnicodeEncodeError
PyExc_UnicodeError
PyExc_UnicodeTranslateError
PyExc_ValueError
PyExc_ZeroDivisionError

BufferError
ChildProcessError
ConnectionAbortedError
ConnectionError
ConnectionRefusedError
ConnectionResetError
EOFError
FileExistsError
FileNotFoundError
FloatingPointError
GeneratorExit
ImportError
IndentationError
IndexError
InterruptedError
IsADirectoryError
KeyError
KeyboardInterrupt
LookupError
MemoryError
ModuleNotFoundError
NameError
NotADirectoryError
NotImplementedError
OSError
OverflowError
PermissionError
ProcessLookupError
PythonFinalizationError
RecursionError
ReferenceError
RuntimeError
StopAsyncIteration
StopIteration
SyntaxError
SystemError
SystemExit

TabError
TimeoutError
TypeError
UnboundLocalError
UnicodeDecodeError
UnicodeEncodeError
UnicodeError
UnicodeTranslateError
ValueError
ZeroDivisionError

Added in version 3.3: PyExc_BlockingIOError, PyExc_BrokenPipeError, PyExc_ChildProcessError,

PyExc_ConnectionError, PyExc_ConnectionAbortedError, PyExc_ConnectionRefusedError,

PyExc_ConnectionResetError, PyExc_FileExistsError, PyExc_FileNotFoundError,

PyExc_InterruptedError, PyExc_IsADirectoryError, PyExc_NotADirectoryError,
PyExc_PermissionError, PyExc_ProcessLookupError and PyExc_TimeoutError were introduced

following PEP 3151.

! This is a base class for other standard exceptions.

5.10. Standard Exceptions 61

https://peps.python.org/pep-3151/

The Python/C API, Release 3.13.1

Added in version 3.5: PyExc_StopAsyncIteration and PyExc_RecursionError

Added in version 3.6: PyExc_ModuleNotFoundError

These are compatibility aliases to PyExc_OSError:

C Name

Notes

PyExc_EnvironmentError

PyExc_IOError

PyExc_WindowsError

Changed in version 3.3: These aliases used to be separate exception types.

Notes:

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the
Python exception name. These have the type PyObject*; they are all class objects. For completeness, here are all

the variables:

C Name

Python Name Notes

PyExc_Warning
PyExc_BytesWarning
PyExc_DeprecationWarning
PyExc_FutureWarning
PyExc_ImportWarning
PyExc_PendingDeprecationWarning
PyExc_ResourceWarning
PyExc_RuntimeWarning
PyExc_SyntaxWarning
PyExc_UnicodeWarning
PyExc_UserWarning

Warning
BytesWarning
DeprecationWarning
FutureWarning
ImportWarning
PendingDeprecationWarning
ResourceWarning
RuntimeWarning
SyntaxWarning
UnicodeWarning
UserWarning

Added in version 3.2: PyExc_ResourceWarning.

Notes:

2 Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is defined.

3 This is a base class for other standard warning categories.

62

Chapter 5. Exception Handling

CHAPTER
SIX

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

6.1 Operating System Utilities

PyObject *Py0S_FSPath (PyObject *path)

Return value: New reference. Part of the Stable ABI since version 3.6. Return the file system representation for
path. If the object is a st r or bytes object, then a new strong reference is returned. If the object implements
the os.PathLike interface, then _ fspath__ () isreturned aslongasitisa st r or bytes object. Otherwise
TypeError is raised and NULL is returned.

Added in version 3.6.

int Py_FdIsInteractive (FILE *fp, const char *filename)

Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for
files for which isatty (fileno (fp)) is true. If the PyConfig. interactive is non-zero, this function

also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"' or
TR,

This function must not be called before Python is initialized.

void PyOS_BeforeFork ()

Fart of the Stable ABI on platforms with fork() since version 3.7. Function to prepare some internal state
before a process fork. This should be called before calling fork () or any similar function that clones the
current process. Only available on systems where fork () is defined.

A Warning

The C fork () call should only be made from the “main” thread (of the “main” interpreter). The same is
true for PyOS_BeforeFork ().

Added in version 3.7.

void PyOS_AfterFork_Parent ()

Part of the Stable ABI on platforms with fork() since version 3.7. Function to update some internal state after
a process fork. This should be called from the parent process after calling fork () or any similar function that
clones the current process, regardless of whether process cloning was successful. Only available on systems
where fork () is defined.

A Warning

The C fork () call should only be made from the “main” thread (of the “main” interpreter). The same is
true for PyOS_AfterFork_Parent ().

63

The Python/C API, Release 3.13.1

Added in version 3.7.

void PyOS_AfterFork_Child ()

Fart of the Stable ABI on platforms with fork() since version 3.7. Function to update internal interpreter state
after a process fork. This must be called from the child process after calling fork (), or any similar function
that clones the current process, if there is any chance the process will call back into the Python interpreter.
Only available on systems where fork () is defined.

A\ Warning

The C fork () call should only be made from the “main” thread (of the “main” interpreter). The same is
true for PyOS_AfterFork_Child().

Added in version 3.7.

e See also

os.register_at_fork() allows registering custom Python functions to be called by
Py0S_BeforeFork (), PyOS_AfterFork_Parent () and PyOS_AfterFork_Child().

void PyOS_AfterFork ()

Fart of the Stable ABI on platforms with fork(). Function to update some internal state after a process fork;
this should be called in the new process if the Python interpreter will continue to be used. If a new executable
is loaded into the new process, this function does not need to be called.

Deprecated since version 3.7: This function is superseded by Py0S_AfterFork _Child().

int PyOS_CheckStack ()

Part of the Stable ABI on platforms with USE_STACKCHECK since version 3.7. Return true when the interpreter
runs out of stack space. This is a reliable check, but is only available when USE_STACKCHECK is defined
(currently on certain versions of Windows using the Microsoft Visual C++ compiler). USE_STACKCHECK will
be defined automatically; you should never change the definition in your own code.

typedef void (*Py0OS_sighandler_t)(int)
Part of the Stable ABIL.

PyOS_sighandler_t PyOS_getsig (int1i)
Fart of the Stable ABIL Return the current signal handler for signal i. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly!

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t h)
Part of the Stable ABI. Set the signal handler for signal i to be A; return the old signal handler. This is a thin
wrapper around either sigaction () or signal (). Do not call those functions directly!

wchar_t *Py_DecodeLocale (const char *arg, size_t *size)
Part of the Stable ABI since version 3.7.

A\ Warning

This function should not be called directly: use the Pyconfig API with the PycCon-
fig_SetBytesString () function which ensures that Python is preinitialized.

This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py Preinitialize () function.

Decode a byte string from the filesystem encoding and error handler. If the error handler is surrogateescape er-
ror handler, undecodable bytes are decoded as characters in range U+DC80..U+DCFF; and if a byte sequence

64 Chapter 6. Utilities

The Python/C API, Release 3.13.1

can be decoded as a surrogate character, the bytes are escaped using the surrogateescape error handler instead
of decoding them.

Return a pointer to a newly allocated wide character string, use PyMem RawFree () to free the memory. If
size is not NULL, write the number of wide characters excluding the null character into *size

Return NULL on decoding error or memory allocation error. If size is not NULL, *size issetto (size_t)-1
on memory error or set to (size_t) -2 on decoding error.

The filesystem encoding and error handler are selected by PyConfig Read(): see filesystem _encoding
and filesystem errors members of PyConfig.

Decoding errors should never happen, unless there is a bug in the C library.

Use the Py_EncodeLocale () function to encode the character string back to a byte string.

e See also

The PyUnicode _DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize () func-
tions.

Added in version 3.5.
Changed in version 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

Changed in version 3.8: The function now uses the UTF-8 encoding on Windows if PyPreConfig.
legacy_windows_fs_encoding is Z€10;
char *Py_EncodeLocale (const wchar_t *text, size_t *error_pos)

Part of the Stable ABI since version 3.7. Encode a wide character string to the filesystem encoding and
error handler. If the error handler is surrogateescape error handler, surrogate characters in the range
U+DC80..U+DCFF are converted to bytes 0x80..0xFF.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error.

If error_pos is not NULL, *error_pos is set to (size_t) -1 on success, or set to the index of the invalid
character on encoding error.

The filesystem encoding and error handler are selected by PyConfig Read(): see filesystem _encoding
and filesystem errors members of PyConfig.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.

'\ Warning

This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py _Preinitialize () function.

e See also

The PyUnicode_EncodeFSDefault () and PyUnicode_EncodeLocale () functions.

Added in version 3.5.
Changed in version 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

Changed in version 3.8: The function now uses the UTF-8 encoding on Windows if PyPreConfig.
legacy_windows_fs_encoding is zero.

6.1. Operating System Utilities 65

The Python/C API, Release 3.13.1

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with
the current interpreter thread’s sys module’s dict, which is contained in the internal thread state structure.
PyObject *PySys_GetObject (const char *name)
Return value: Borrowed reference. Part of the Stable ABIL Return the object name from the sys module or
NULL if it does not exist, without setting an exception.
int PySys_SetObject (const char *name, PyObject *v)
Part of the Stable ABI. Set name in the sys module to v unless v is NULL, in which case name is deleted from
the sys module. Returns 0 on success, —1 on error.
void PySys_ResetWarnOptions ()
Fart of the Stable ABIL Reset sys.warnoptions to an empty list. This function may be called prior to

Py Initialize().

Deprecated since version 3.13, will be removed in version 3.15: Clear sys.warnoptions and warnings.
filters instead.

void PySys_WriteStdout (const char *format, ...)
Fart of the Stable ABI. Write the output string described by format to sys . stdout. No exceptions are raised,
even if truncation occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should
be limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits
for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.
void PySys_WriteStderr (const char *format, ...)
Part of the Stable ABI. As PySys_writeStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)

Part of the Stable ABI. Function similar to PySys_WriteStdout() but format the message using PyUni-
code_FromFormatV () and don’t truncate the message to an arbitrary length.

Added in version 3.2.

void PySys_FormatStderr (const char *format, ...)

Fart of the Stable ABI. As PySys FormatStdout (), but write to sys . stderr or stderr instead.
Added in version 3.2.
PyObject *PySys_GetXOptions ()

Return value: Borrowed reference. Part of the Stable ABI since version 3.7. Return the current dictionary of
-X options, similarly to sys._xoptions. On error, NULL is returned and an exception is set.

Added in version 3.2.

int PySys_Audit (const char *event, const char *format, ...)
Part of the Stable ABI since version 3.13. Raise an auditing event with any active hooks. Return zero for
success and non-zero with an exception set on failure.

The event string argument must not be NULL.

If any hooks have been added, format and other arguments will be used to construct a tuple to pass. Apart
from N, the same format characters as used in Py_BuildValue () are available. If the built value is not a
tuple, it will be added into a single-element tuple.

The N format option must not be used. It consumes a reference, but since there is no way to know whether
arguments to this function will be consumed, using it may cause reference leaks.

66 Chapter 6. Utilities

The Python/C API, Release 3.13.1

Note that # format characters should always be treated as Py ssize t, regardless of whether
PY_SSIZE_T_CLEAN was defined.

sys.audit () performs the same function from Python code.
See also PySys_AuditTuple ().
Added in version 3.8.

Changed in version 3.8.2: Require Py_ssize_t for # format characters. Previously, an unavoidable depre-
cation warning was raised.

int PySys_AuditTuple (const char *event, PyObject *args)
Fart of the Stable ABI since version 3.13. Similar to PySys_Audit (), but pass arguments as a Python object.
args must be a tuple. To pass no arguments, args can be NULL.

Added in version 3.13.

int PySys_AddAuditHook (Py_AuditHookFunction hook, void *userData)

Append the callable hook to the list of active auditing hooks. Return zero on success and non-zero on failure.
If the runtime has been initialized, also set an error on failure. Hooks added through this API are called for all
interpreters created by the runtime.

The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.

This function is safe to call before Py_1nitialize (). When called after runtime initialization, existing audit
hooks are notified and may silently abort the operation by raising an error subclassed from Exception (other
errors will not be silenced).

The hook function is always called with the GIL held by the Python interpreter that raised the event.

See PEP 578 for a detailed description of auditing. Functions in the runtime and standard library that raise
events are listed in the audit events table. Details are in each function’s documentation.

If the interpreter is initialized, this function raises an auditing event sys .addaudithook with no arguments.
If any existing hooks raise an exception derived from Exception, the new hook will not be added and the
exception is cleared. As a result, callers cannot assume that their hook has been added unless they control all
existing hooks.

typedef int (¥*Py_AuditHookFunction)(const char *event, PyObject *args, void *userData)

The type of the hook function. event is the C string event argument passed to PySys_Audit () Or
PySys_AuditTuple (). argsis guaranteed to be a PyTupleObject. userData is the argument passed
to PySys_AddAuditHook().

Added in version 3.8.

6.3 Process Control

void Py_FatalError (const char *message)

Part of the Stable ABI. Print a fatal error message and kill the process. No cleanup is performed. This function
should only be invoked when a condition is detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be corrupted. On Unix, the standard C library
function abort () is called which will attempt to produce a core file.

The py_FatalError () function is replaced with a macro which logs automatically the name of the current
function, unless the Py_TLIMITED_APTI macro is defined.

Changed in version 3.9: Log the function name automatically.

6.3. Process Control 67

https://peps.python.org/pep-0578/

The Python/C API, Release 3.13.1

void Py_Exit (int status)
Fart of the Stable ABI. Exit the current process. This calls Py_FinalizeEx () and then calls the standard C
library function exit (status). If Py_FinalizeEx () indicates an error, the exit status is set to 120.

Changed in version 3.6: Errors from finalization no longer ignored.

int Py_AtExit (void (*func)())

Part of the Stable ABI. Register a cleanup function to be called by Py_FinalizeEx (). The cleanup function
will be called with no arguments and should return no value. At most 32 cleanup functions can be registered.
When the registration is successful, Py_AtExit () returns 0; on failure, it returns —1. The cleanup func-
tion registered last is called first. Each cleanup function will be called at most once. Since Python’s internal
finalization will have completed before the cleanup function, no Python APIs should be called by func.

6.4 Importing Modules

PyObject *PyImport_ImportModule (const char *name)
Return value: New reference. Part of the Stable ABI. This is a wrapper around Py Import_Import () which
takes a const char* as an argument instead of a PyObjectx*.

PyObject *PyImport_ImportModuleNoBlock (const char ¥*name)
Return value: New reference. Part of the Stable ABIL This function is a deprecated alias of Py Im-
port_ImportModule ().

Changed in version 3.3: This function used to fail immediately when the import lock was held by another
thread. In Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this
function’s special behaviour isn’t needed anymore.

Deprecated since version 3.13, will be removed in version 3.15: Use Py Import_TImportModule () instead.
PyObject *PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)

Return value: New reference. Import a module. This is best described by referring to the built-in Python
function __import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Import_ImportModule ().
PyObject *PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyObject *locals,
PyObject *fromlist, int level)

Return value: New reference. Part of the Stable ABI since version 3.7. Import a module. This is best described
by referring to the built-in Python function __import__ (), as the standard __import__ () function calls
this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for _ import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Added in version 3.3.

PyObject *PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist, int level)

Return value: New reference. Part of the Stable ABI. Similar to Py Tmport_ImportModulelLevelObject (),
but the name is a UTF-8 encoded string instead of a Unicode object.

Changed in version 3.3: Negative values for level are no longer accepted.

PyObject *PyImport_Import (PyObject *name)
Return value: New reference. Part of the Stable ABI. This is a higher-level interface that calls the current
“import hook function” (with an explicit level of 0, meaning absolute import). It invokes the __import__ ()

68 Chapter 6. Utilities

The Python/C API, Release 3.13.1

function from the __builtins__ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment.

This function always uses absolute imports.

PyObject *PyImport_ReloadModule (PyObject *m)
Return value: New reference. Part of the Stable ABI. Reload a module. Return a new reference to the reloaded
module, or NULL with an exception set on failure (the module still exists in this case).

PyObject *PyImport_AddModuleRef (const char *name)
Return value: New reference. Part of the Stable ABI since version 3.13. Return the module object corresponding

to a module name.

The name argument may be of the form package.module. First check the modules dictionary if there’s one
there, and if not, create a new one and insert it in the modules dictionary.

Return a strong reference to the module on success. Return NULL with an exception set on failure.
The module name name is decoded from UTF-8.

This function does not load or import the module; if the module wasn’t already loaded, you will get an empty
module object. Use Py Import_TImportModule () or one of its variants to import a module. Package struc-
tures implied by a dotted name for name are not created if not already present.

Added in version 3.13.

PyObject *PyImport_AddModuleObject (PyObject ¥name)
Return value: Borrowed reference. Part of the Stable ABI since version 3.7. Similar to PyIm-
port_AddModuleRef (), but return a borrowed reference and name is a Python st r object.

Added in version 3.3.

PyObject *PyImport_AddModule (const char *name)

Return value: Borrowed reference. Part of the Stable ABIL Similar to PyImport_AddModuleRef (), but
return a borrowed reference.

PyObject *PyImport_ExecCodeModule (const char *name, PyObject *co)

Return value: New reference. Part of the Stable ABI. Given a module name (possibly of the form package.
module)and a code object read from a Python bytecode file or obtained from the built-in function compile (),
load the module. Return a new reference to the module object, or NULL with an exception set if an error
occurred. name is removed from sys.modules in error cases, even if name was already in sys.modules
on entry to PyImport_ExecCodeModule (). Leaving incompletely initialized modules in sys.modules
is dangerous, as imports of such modules have no way to know that the module object is an unknown (a