Python Setup and Usage
Release 3.13.0rc2

Guido van Rossum and the Python development team

September 06, 2024

Python Software Foundation
Email: docs@python.org

1 Command line and environment

1.1 Commandline
1.1.1 Interfaceoptions
1.1.2 Genericoptions
1.1.3 Miscellaneous options
1.1.4 Controllingcolor
1.1.5 Options you shouldn’t use

1.2 Environment variables
1.2.1 Debug-mode variables

2 Using Python on Unix platforms

2.1 Getting and installing the latest version of Python
2.1.1 OnLinux
2.1.2 On FreeBSD and OpenBSD

22 BuildingPython.

2.3 Python-related pathsandfiles

24 Miscellaneous

25 CustomOpenSSL.

3 Configure Python

3.1 BuildRequirements

32 Generatedfiles
3.2.1 configurescript

3.3 Configure Options,
33.1 GeneralOptions
3.3.2 Ccompileroptions
333 Linkeroptions
3.3.4 Options for third-party dependencies
3.3.5 WebAssembly Options
33.6 InstallOptions
3.3.7 Performanceoptions.
3.3.8 PythonDebugBuild
339 Debugoptions,
3.3.10 Linkeroptions
3.3.11 Librariesoptions
3.3.12 SecurityOptions
3.3.13 macOSOptions
33.14 i0OSOptions
3.3.15 Cross Compiling Options

3.4 PythonBuild System
3.4.1 Main files of the build system
342 Mainbuildsteps
34.3 Main Makefile targets
344 Cextensions coovuu e

CONTENTS

...................... 24

...................... 29

3.5 Compilerand linkerflags L e e e e
3.5.1 Preprocessor flags e e e e
352 Compilerflags e e e
353 Linkerflags L e
Using Python on Windows
4.1 Thefullinstaller e e e
4.1.1 Installation StEPS o ot e e e e e e e e e e e e e
4.1.2 Removing the MAX_PATH Limitation
4.1.3 Installing Without UL o e
4.1.4 Installing Without Downloading e
4.1.5 Modifyinganinstall L0
4.1.6 Installing Free-threaded Binaries
4.2 The Microsoft Store package
421 KnownisSueSo i it e e e e e
4.3 Thenuget.org packages o v v v e e e e e e e e e e e e e e e e e e
43.1 Free-threaded packages i i e e
44 Theembeddable package
4.4.1 Python Application e e e
442 EmbeddingPython
4.5 Alternative bundles L e
4.6 Configuring Python e e e e e
4.6.1 Excursus: Setting environment variables o000,
4.6.2 Finding the Python executable
47 UTF-8mode o e e e e e e e e
4.8 Python Launcher for Windows e
4.8.1 Gettingstarted e e e e e e e e e e e e e
482 Shebang Lines e e e e
4.8.3 Argumentsinshebanglines o oL,
4.8.4 Customization vt e e e e e e e e e e e e e e e e e e
4.8.5 Diagnostics e e e
486 DryRun e e e e
4.8.7 Installondemand e
4.8.8 Returncodes
4.9 Findingmodules e
4.10 Additional modules L. e e e
4.10.1 PyWiIn32 e
4102 cox_Freeze
4.11 Compiling Pythonon Windows L
4.12 Other Platforms e e e e e
Using Python on a Mac
5.1 Gettingand Installing Python
5.1.1 HowtorunaPythonscript e
5.1.2 Runningscripts witha GUIL
5.1.3 Configurationl e e e e e e
52 ThelDE . . . e e e
5.3 Installing Additional Python Packages
54 GUIProgramming e e e e e
5.5 Distributing Python Applications e
55.1 AppStore Compliance e e
5.6 Other Resources i i i it e e e
Using Python on iOS
6.1 Pythonatruntime oniOS e
6.1.1 i0S version compatibility L. e
6.1.2 Platformidentification L
6.1.3 Standard library availability L oo
6.1.4 Binaryextensionmodules Lo

43
43
43
45
45
47
47
48
49
49
50
51
51
51
52
52
52
52
53
54
54
54
56
57
58
59
59
59
59
60
61
61
61
61
62

63
63
64
64
64
64
64
65
65
65
65

6.1.5 Compiler stub binaries e 68

6.2 Installing Python oniOS e e e e 69
6.2.1 Tools for building iOS apps« o L e e e e 69
6.2.2 Adding Python toaniOS project L 69
6.3 App Store Compliance L. e e e e 72
7 Editors and IDEs 73
A Glossary 75
B About these documents 91
B.1 Contributors to the Python Documentation, 91
C History and License 93
C.1 Historyof thesoftware e 93
C.2 Terms and conditions for accessing or otherwise using Python 94
C.2.1 PSFLICENSE AGREEMENT FOR PYTHON 3.13.0rc2 94
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 95
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 96
C.24 CWILICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 97
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.13.0rc2 DOCUMEN-
TATION e e 97
C.3 Licenses and Acknowledgements for Incorporated Software 98
C.3.1 Mersenne TWISIET o v v v v i i e e e e e e e e e e e e e e e e 98
C.3.2 Sockets o e e e e e 99
C.3.3 Asynchronous socket Services oo i i e e 99
C3.4 Cookie management ittt e e e e e e e e e e e e 100
C.3.5 EXecution tracing v v v v i i e e e e e e e e e e e e e e e e 100
C.3.6 UUencode and UUdecode functions 101
C.3.7 XML Remote Procedure Calls 101
C3.8 test_epoll e 102
C39 Selectkqueue e e e 102
C.3.10 SipHash24 e 103
C3.11 strtodanddtoa. e 103
C.3.12 OpenSSL o e e e e e 104
C3U3 expat. . . . o o i e e e e e e e 107
C3.14 Lbfli e e 107
C3.05 zlib . . e e 108
C3.16 cfuhash e 108
C3.17 Hbmpdec o e e e e e 109
C3.18 W3CCIANTeSt SUIte v v v v e i e e e e e e e e e e e e e e e e 109
C3.19 mimalloc e e e 110
C.3.20 aSYNCIO . v v v v o e 110
C.3.21 Global Unbounded Sequences (GUS) v it ii e 111
D Copyright 113
Index 115

Python Setup and Usage, Release 3.13.0rc2

This part of the documentation is devoted to general information on the setup of the Python environment on different
platforms, the invocation of the interpreter and things that make working with Python easier.

CONTENTS 1

Python Setup and Usage, Release 3.13.0rc2

2 CONTENTS

CHAPTER
ONE

COMMAND LINE AND ENVIRONMENT

The CPython interpreter scans the command line and the environment for various settings.

CPython implementation detail: Other implementations’ command line schemes may differ. See implementations
for further resources.

1.1 Command line

When invoking Python, you may specify any of these options:

[python [-bBdEhiIOPgRsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

[python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:

¢ When called with standard input connected to a tty device, it prompts for commands and executes them until
an EOF (an end-of-file character, you can produce that with Ctr1-D on UNIX or Ctrl-Z, Enter on
Windows) is read. For more on interactive mode, see tut-interac.

* When called with a file name argument or with a file as standard input, it reads and executes a script from that
file.

¢ When called with a directory name argument, it reads and executes an appropriately named script from that
directory.

* When called with —c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

¢ When called with -m module-name, the given module is located on the Python module path and executed
as a script.

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end
up in sys.argv — note that the first element, subscript zero (sys.argv [01]), is a string reflecting the program’s
source.

—-c <command>
Execute the Python code in command. command can be one or more statements separated by newlines, with
significant leading whitespace as in normal module code.

If this option is given, the first element of sys.argv will be "—~c" and the current directory will be added
to the start of sys.path (allowing modules in that directory to be imported as top level modules).

Python Setup and Usage, Release 3.13.0rc2

Raises an auditing event cpython . run_command with argument command.

-m <module—name>

Search sys.path for the named module and execute its contents as the __main__ module.

Since the argument is a module name, you must not give a file extension (. py). The module name should be
a valid absolute Python module name, but the implementation may not always enforce this (e.g. it may allow
you to use a name that includes a hyphen).

Package names (including namespace packages) are also permitted. When a package name is supplied instead
of a normal module, the interpreter will execute <pkg>.__main___ as the main module. This behaviour
is deliberately similar to the handling of directories and zipfiles that are passed to the interpreter as the script
argument.

© Note

This option cannot be used with built-in modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source
file is not available.

If this option is given, the first element of sys . argv will be the full path to the module file (while the module
file is being located, the first element will be set to "—-m"). As with the —c option, the current directory will
be added to the start of sys.path.

—T option can be used to run the script in isolated mode where sy s . path contains neither the current direc-
tory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python -m timeit -s "setup here" "benchmarked code here"
python —-m timeit -h # for details

Raises an auditing event cpython. run_module with argument module-name.

See also

runpy . run_module ()
Equivalent functionality directly available to Python code

PEP 338 — Executing modules as scripts

Changed in version 3.1: Supply the package name toruna __main__ submodule.

Changed in version 3.4: namespace packages are also supported

Read commands from standard input (sys . stdin). If standard input is a terminal, -1 is implied.

If this option is given, the first element of sys.argv will be "-" and the current directory will be added to
the start of sys.path.

Raises an auditing event cpython. run_stdin with no arguments.

<script>

Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring
to either a Python file, a directory containinga __main__ .py file, or a zipfile containinga __main__ .py
file.

If this option is given, the first element of sys . argv will be the script name as given on the command line.

4 Chapter 1. Command line and environment

https://peps.python.org/pep-0338/

Python Setup and Usage, Release 3.13.0rc2

If the script name refers directly to a Python file, the directory containing that file is added to the start of
sys.path, and the file is executed as the __main__ module.

If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
_ _main__ .py file in that location is executed as the __main__ module.

—TI option can be used to run the script in isolated mode where sy s . path contains neither the script’s direc-
tory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Raises an auditing event cpython.run_file with argument £ilename.

e See also

runpy .run_path ()
Equivalent functionality directly available to Python code

If no interface option is given, —1 is implied, sys.argv [0] is an empty string (" ") and the current directory will
be added to the start of sys.path. Also, tab-completion and history editing is automatically enabled, if available
on your platform (see rlcompleter-config).

> See also

tut-invoking
Changed in version 3.4: Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-7
-h
—-help
Print a short description of all command line options and corresponding environment variables and exit.
—-help-env
Print a short description of Python-specific environment variables and exit.

Added in version 3.11.
——help—xoptions
Print a description of implementation-specific —X options and exit.
Added in version 3.11.
—-help-all
Print complete usage information and exit.
Added in version 3.11.
-V
——version

Print the Python version number and exit. Example output could be:

[Python 3.8.0b2+

When given twice, print more information about the build, like:

Python 3.8.0b2+ (3.8:0c076caaa8, Apr 20 2019, 21:55:00)
[GCC 6.2.0 20161005]

1.1. Command line 5

Python Setup and Usage, Release 3.13.0rc2

Added in version 3.6: The —VV option.

1.1.3 Miscellaneous options

-b

Issue a warning when converting bytes or bytearray to st r without specifying encoding or comparing
bytes or bytearray with str or bytes with int. Issue an error when the option is given twice (-bb).

Changed in version 3.5: Affects also comparisons of bytes with int.

If given, Python won’t try to write .pyc files on the import of source modules. See also PYTHONDON—
TWRITEBYTECODE.

——check-hash-based-pycs default|always|never

Control the validation behavior of hash-based .pyc files. See pyc-invalidation. When set to default,
checked and unchecked hash-based bytecode cache files are validated according to their default semantics.
When set to always, all hash-based . pyc files, whether checked or unchecked, are validated against their
corresponding source file. When set to never, hash-based . pyc files are not validated against their corre-
sponding source files.

The semantics of timestamp-based . pyc files are unaffected by this option.

-d
Turn on parser debugging output (for expert only). See also the PYTHONDEBUG environment variable.
This option requires a debug build of Python, otherwise it’s ignored.

-E
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.
See also the —P and T (isolated) options.

-i
When a script is passed as first argument or the —c option is used, enter interactive mode after executing the
script or the command, even when sys . stdin does not appear to be a terminal. The PYTHONS TARTUP
file is not read.
This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

-I
Run Python in isolated mode. This also implies —E, —P and —s options.
In isolated mode sys.path contains neither the script’s directory nor the user’s site-packages directory. All
PYTHON* environment variables are ignored, too. Further restrictions may be imposed to prevent the user
from injecting malicious code.
Added in version 3.4.

-0
Remove assert statements and any code conditional on the value of __debug__. Augment the filename
for compiled (byfecode) files by adding .opt—1 before the .pyc extension (see PEP 488). See also
PYTHONOPTIMIZE.
Changed in version 3.5: Modify . pyc filenames according to PEP 488.

-00
Do -0 and also discard docstrings. Augment the filename for compiled (byfecode) files by adding . opt -2
before the . pyc extension (see PEP 488).
Changed in version 3.5: Modify . pyc filenames according to PEP 488.

6 Chapter 1. Command line and environment

https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/

Python Setup and Usage, Release 3.13.0rc2

-P
Don’t prepend a potentially unsafe path to sys.path:
* python -m module command line: Don’t prepend the current working directory.
e python script.py command line: Don’t prepend the script’s directory. If it’s a symbolic link,
resolve symbolic links.
e python —-c code and python (REPL) command lines: Don’t prepend an empty string, which means
the current working directory.
See also the PYTHONSAFEPATH environment variable, and —E and —T (isolated) options.
Added in version 3.11.
-q
Don’t display the copyright and version messages even in interactive mode.
Added in version 3.2.
-R
Turn on hash randomization. This option only has an effect if the PYTHONHASHSEED environment variable
is set to 0, since hash randomization is enabled by default.
On previous versions of Python, this option turns on hash randomization, so that the __hash___ () values of
str and bytes objects are “salted” with an unpredictable random value. Although they remain constant within
an individual Python process, they are not predictable between repeated invocations of Python.
Hash randomization is intended to provide protection against a denial-of-service caused by carefully chosen
inputs that exploit the worst case performance of a dict construction, O(n?) complexity. See http://ocert.org/
advisories/ocert-2011-003.html for details.
PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.
Added in version 3.2.3.
Changed in version 3.7: The option is no longer ignored.
-s
Don’t add the user site-packages directorytosys.path.
See also PYTHONNOUSERSITE.
> See also
PEP 370 — Per user site-packages directory
-s
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main () if you want them
to be triggered).
-u
Force the stdout and stderr streams to be unbuffered. This option has no effect on the stdin stream.
See also PYTHONUNBUFFERED.
Changed in version 3.7: The text layer of the stdout and stderr streams now is unbuffered.
-V
Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. When given twice (-vv), print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit.
Changed in version 3.10: The site module reports the site-specific paths and . pth files being processed.
1.1. Command line 7

http://ocert.org/advisories/ocert-2011-003.html
http://ocert.org/advisories/ocert-2011-003.html
https://peps.python.org/pep-0370/

Python Setup and Usage, Release 3.13.0rc2

See also PYTHONVERBOSE.

-W arg

-X

Warning control. Python’s warning machinery by default prints warning messages to sys.stderr.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those
that are otherwise ignored by default):

-

L

-Wdefault # Warn once per call location

—Werror # Convert to exceptions

-Walways # Warn every time

-Wall # Same as —-Walways

—Wmodule # Warn once per calling module

—Wonce # Warn once per Python process
#

-Wignore Never warn

J

The action names can be abbreviated as desired and the interpreter will resolve them to the appropriate action
name. For example, —Wi is the same as -Wignore.

The full form of argument is:

[

action:message:category:module:lineno

Empty fields match all values; trailing empty fields may be omitted. For example -W ig-
nore: :DeprecationWarning ignores all DeprecationWarning warnings.

The action field is as explained above but only applies to warnings that match the remaining fields.
The message field must match the whole warning message; this match is case-insensitive.

The category field matches the warning category (ex: DeprecationWarning). This must be a class name;
the match test whether the actual warning category of the message is a subclass of the specified warning cate-

gory.
The module field matches the (fully qualified) module name; this match is case-sensitive.

The lineno field matches the line number, where zero matches all line numbers and is thus equivalent to an
omitted line number.

Multiple —7 options can be given; when a warning matches more than one option, the action for the last
matching option is performed. Invalid -7 options are ignored (though, a warning message is printed about
invalid options when the first warning is issued).

Warnings can also be controlled using the PY THONWARNINGS environment variable and from within a Python
program using the warnings module. For example, the warnings.filterwarnings () function can
be used to use a regular expression on the warning message.

See warning-filter and describing-warning-filters for more details.

Skip the first line of the source, allowing use of non-Unix forms of # ! cmd. This is intended for a DOS specific
hack only.

Reserved for various implementation-specific options. CPython currently defines the following possible values:
e —X faulthandler toenable faulthandler. See also PYTHONFAULTHANDLER.
Added in version 3.3.

e —-X showrefcount to output the total reference count and number of used memory blocks when the
program finishes or after each statement in the interactive interpreter. This only works on debug builds.

Added in version 3.4.

Chapter 1. Command line and environment

Python Setup and Usage, Release 3.13.0rc2

e —-X tracemalloc to start tracing Python memory allocations using the t racemalloc module.
By default, only the most recent frame is stored in a traceback of a trace. Use -X tracemal-
loc=NFRAME to start tracing with a traceback limit of NFRAME frames. See tracemalloc.
start () and PYTHONTRACEMALLOC for more information.

Added in version 3.4.

e —X int_max_str_digits configures the integer string conversion length limitation. See also
PYTHONINTMAXSTRDIGITS.

Added in version 3.11.

e —-X importtime to show how long each import takes. It shows module name, cumulative time (in-
cluding nested imports) and self time (excluding nested imports). Note that its output may be broken in
multi-threaded application. Typical usage is python3 —-X importtime —-c 'import asyn-—
cio'. See also PYTHONPROFILEIMPORTTIME.

Added in version 3.7.

e —X dev: enable Python Development Mode, introducing additional runtime checks that are too expen-
sive to be enabled by default. See also PYTHONDEVMODE.

Added in version 3.7.

e —X utf8 enables the Python UTF-8 Mode. —X ut £8=0 explicitly disables Python UTF-8 Mode (even
when it would otherwise activate automatically). See also PYTHONUTF 8.

Added in version 3.7.

* —-X pycache_prefix=PATH enables writing . pyc files to a parallel tree rooted at the given directory
instead of to the code tree. See also PYTHONPYCACHEPREFIX.

Added in version 3.8.

e —X warn_default_encodingissues a EncodingWarning when the locale-specific default en-
coding is used for opening files. See also PYTHONWARNDEFAULTENCODING.

Added in version 3.10.

* —-X no_debug_ranges disables the inclusion of the tables mapping extra location information (end
line, start column offset and end column offset) to every instruction in code objects. This is useful when
smaller code objects and pyc files are desired as well as suppressing the extra visual location indicators
when the interpreter displays tracebacks. See also PYTHONNODEBUGRANGES.

Added in version 3.11.

e —X frozen_modules determines whether or not frozen modules are ignored by the import ma-
chinery. A value of on means they get imported and off means they are ignored. The de-
fault is on if this is an installed Python (the normal case). If it's under development (running
from the source tree) then the default is of £. Note that the importlib_bootstrap and im-
portlib_bootstrap_external frozen modules are always used, even if this flag is set to of f.
See also PYTHON_FROZEN_MODULES.

Added in version 3.11.

* —X perf enables support for the Linux perf profiler. When this option is provided, the per £ profiler
will be able to report Python calls. This option is only available on some platforms and will do nothing
if is not supported on the current system. The default value is “off”. See also PYTHONPERFSUPPORT
and perf_profiling.

Added in version 3.12.

e —X perf_jit enables support for the Linux perf profiler with DWARF support. When this option is
provided, the perf profiler will be able to report Python calls using DWARF information. This option
is only available on some platforms and will do nothing if is not supported on the current system. The
default value is “off”. See also PYTHON_PERF _JIT_ SUPPORT and perf_profiling.

Added in version 3.13.

1.1. Command line 9

Python Setup and Usage, Release 3.13.0rc2

¢ —-X cpu_count=n overrides os.cpu_count (), os.process_cpu_count (), and
multiprocessing.cpu_count (). n must be greater than or equal to 1. This option may be use-
ful for users who need to limit CPU resources of a container system. See also PYTHON_CPU_COUNT.
If nis default, nothing is overridden.

Added in version 3.13.

e -X presite=package.module specifies a module that should be imported before the site
module is executed and before the _ _main__ module exists. Therefore, the imported module isn’t
__main__. This can be used to execute code early during Python initialization. Python needs to be
built in debug mode for this option to exist. See also PYTHON_PRESITE.

Added in version 3.13.

e —X gil=0, 1 forces the GIL to be disabled or enabled, respectively. Setting to O is only available in
builds configured with ——~disable-gil. See also PYTHON_GIL and whatsnew313-free-threaded-
cpython.

Added in version 3.13.
It also allows passing arbitrary values and retrieving them through the sys._xoptions dictionary.
Added in version 3.2.
Changed in version 3.9: Removed the -X showalloccount option.

Changed in version 3.10: Removed the -X oldparser option.

1.1.4 Controlling color

The Python interpreter is configured by default to use colors to highlight output in certain situations such as when
displaying tracebacks. This behavior can be controlled by setting different environment variables.

Setting the environment variable TERM to dumb will disable color.

If the FORCE__COLOR environment variable is set, then color will be enabled regardless of the value of TERM. This
is useful on CI systems which aren’t terminals but can still display ANSI escape sequences.

If the NO_COLOR environment variable is set, Python will disable all color in the output. This takes precedence over
FORCE_COLOR.

All these environment variables are used also by other tools to control color output. To control the color output only
in the Python interpreter, the PYTHON_COLORS environment variable can be used. This variable takes precedence
over NO__COLOR, which in turn takes precedence over FORCE_COLOR.

1.1.5 Options you shouldn’t use

-J
Reserved for use by Jython.

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line switches other
than -E or -I. It is customary that command-line switches override environmental variables where there is a conflict.

PYTHONHOME

Change the location of the standard Python libraries. By default, the libraries are searched in prefix/lib/
pythonversion and exec_prefix/lib/pythonversion, where prefix and exec_prefix
are installation-dependent directories, both defaulting to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces both prefix and exec_prefix. To
specify different values for these, set PYTHONHOME to prefix:exec_prefix.

10 Chapter 1. Command line and environment

https://force-color.org/
https://no-color.org/
https://www.jython.org/

Python Setup and Usage, Release 3.13.0rc2

PYTHONPATH

Augment the default search path for module files. The format is the same as the shell’s PATH: one or more
directory pathnames separated by os.pathsep (e.g. colons on Unix or semicolons on Windows). Non-
existent directories are silently ignored.

In addition to normal directories, individual PY THONPA TH entries may refer to zipfiles containing pure Python
modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.

The default search path is installation dependent, but generally begins with prefix/lib/
pythonversion (see PYTHONHOME above). It is always appended to PYTHONPATH.

An additional directory will be inserted in the search path in front of PYTHONPATH as described above under
Interface options. The search path can be manipulated from within a Python program as the variable sys .
path.

PYTHONSAFEPATH

If this is set to a non-empty string, don’t prepend a potentially unsafe path to sys.path: see the —P option
for details.

Added in version 3.11.

PYTHONPLATLIBDIR
If this is set to a non-empty string, it overrides the sys.platlibdir value.
Added in version 3.9.

PYTHONSTARTUP

If this is the name of a readable file, the Python commands in that file are executed before the first prompt is
displayed in interactive mode. The file is executed in the same namespace where interactive commands are
executed so that objects defined or imported in it can be used without qualification in the interactive session.
You can also change the prompts sys.ps1 and sys.ps2 and the hook sys.__interactivehook___
in this file.

Raises an auditing event coython . run_ st artup with the filename as the argument when called on startup.

PYTHONOPTIMIZE

If this is set to a non-empty string it is equivalent to specifying the —O option. If set to an integer, it is equivalent
to specifying —O multiple times.

PYTHONBREAKPOINT

If this is set, it names a callable using dotted-path notation. The module containing the callable will be
imported and then the callable will be run by the default implementation of sys.breakpointhook ()
which itself is called by built-in breakpoint (). If not set, or set to the empty string, it is equiva-
lent to the value “pdb.set_trace”. Setting this to the string “0” causes the default implementation of sys.
breakpointhook () to do nothing but return immediately.

Added in version 3.7.
PYTHONDEBUG

If this is set to a non-empty string it is equivalent to specifying the —d option. If set to an integer, it is equivalent
to specifying —d multiple times.

This environment variable requires a debug build of Python, otherwise it’s ignored.
PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the —1 option.

This variable can also be modified by Python code using os.environ to force inspect mode on program
termination.

Raises an auditing event cpython. run_stdin with no arguments.

Changed in version 3.12.5: (also 3.11.10, 3.10.15, 3.9.20, and 3.8.20) Emits audit events.

1.2. Environment variables 11

Python Setup and Usage, Release 3.13.0rc2

Changed in version 3.13: Uses PyREPL if possible, in which case PYTHONSTARTUP is also executed. Emits
audit events.

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the —u option.

PYTHONVERBOSE

If this is set to a non-empty string it is equivalent to specifying the —v option. If set to an integer, it is equivalent
to specifying —v multiple times.

PYTHONCASEOK

If this is set, Python ignores case in import statements. This only works on Windows and macOS.

PYTHONDONTWRITEBYTECODE

If this is set to a non-empty string, Python won'’t try to write . pyc files on the import of source modules. This
is equivalent to specifying the —B option.

PYTHONPYCACHEPREFIX

If this is set, Python will write . pyc files in a mirror directory tree at this path, instead of in __pycache___
directories within the source tree. This is equivalent to specifying the -X pycache_prefix=PATH option.

Added in version 3.8.

PYTHONHASHSEED
If this variable is not set or set to random, a random value is used to seed the hashes of str and bytes objects.

If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the types
covered by the hash randomization.

Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a cluster of
python processes to share hash values.

The integer must be a decimal number in the range [0,4294967295]. Specifying the value 0 will disable hash
randomization.

Added in version 3.2.3.
PYTHONINTMAXSTRDIGITS

If this variable is set to an integer, it is used to configure the interpreter’s global integer string conversion length
limitation.

Added in version 3.11.

PYTHONIOENCODING

If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in the syn-
tax encodingname:errorhandler. Both the encodingname and the : errorhandler parts are
optional and have the same meaning as in str.encode ().

For stderr, the : errorhandler part is ignored; the handler will always be 'backslashreplace’.
Changed in version 3.4: The encodingname part is now optional.

Changed in version 3.6: On Windows, the encoding specified by this variable is ignored for interactive console
buffers unless PYTHONLEGACYWINDOWSSTDIO is also specified. Files and pipes redirected through the
standard streams are not affected.

PYTHONNOUSERSITE
If this is set, Python won’t add the user site-packages directorytosys.path.

See also

PEP 370 — Per user site-packages directory

12 Chapter 1. Command line and environment

https://peps.python.org/pep-0370/

Python Setup and Usage, Release 3.13.0rc2

PYTHONUSERBASE

Defines the user base directory, which is used to compute the path of the user site-packages

directory and installation paths for python -m pip install --user.

e See also

PEP 370 — Per user site-packages directory

PYTHONEXECUTABLE

If this environment variable is set, sys .argv [0] will be set to its value instead of the value got through the

C runtime. Only works on macOS.

PYTHONWARNINGS

This is equivalent to the —J7 option. If set to a comma separated string, it is equivalent to specifying — 7 multiple

times, with filters later in the list taking precedence over those earlier in the list.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those
that are otherwise ignored by default):

-

PYTH

#
#
#
#
#
#
#

Warn once per call location
Convert to exceptions

Warn every time

Same as PYTHONWARNINGS=always
Warn once per calling module
Warn once per Python process
Never warn

See warning-filter and describing-warning-filters for more details.

PYTHONFAULTHANDLER

If this environment variable is set to a non-empty string, faulthandler.enable () is called at startup:
install a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python
traceback. This is equivalent to —X faulthandler option.

Added in version 3.3.

PYTHONTRACEMALLOC

If this environment variable is set to a non-empty string, start tracing Python memory allocations using the
tracemalloc module. The value of the variable is the maximum number of frames stored in a traceback of a
trace. For example, PYTHONTRACEMALLOC=1 stores only the most recent frame. See the t racemalloc.

start () function for more information. This is equivalent to setting the —X tracemalloc option.

Added in version 3.4.

PYTHONPROFILEIMPORTTIME

If this environment variable is set to a non-empty string, Python will show how long each import takes. This
is equivalent to setting the —X importtime option.

Added in version 3.7.

PYTHONASYNCIODEBUG

If this environment variable is set to a non-empty string, enable the debug mode of the asyncio module.

Added in version 3.4.
PYTHONMALLOC

Set the Python memory allocators and/or install debug hooks.

Set the family of memory allocators used by Python:

e default: use the default memory allocators.

1.2. Environment variables

13

https://peps.python.org/pep-0370/

Python Setup and Usage, Release 3.13.0rc2

e malloc: use the malloc () function of the C library for all domains (PYMEM_DOMAIN_RAW,
PYMEM_DOMAIN_MEM, PYMEM_DOMAIN_OBJ).

e pymalloc: use the pymalloc allocator for PYMEM_DOMAIN_MEM and PYMEM_DOMAIN_OBJ do-
mains and use the malloc () function for the PYMEM_DOMAIN_RAW domain.

e mimalloc: use the mimalloc allocator for PYMEM DOMAIN_MEM and PYMEM_DOMAIN_OBJ do-
mains and use the malloc () function for the PYMEM_DOMAIN_RAW domain.

Install debug hooks:
* debug: install debug hooks on top of the default memory allocators.
* malloc_debug: same as malloc but also install debug hooks.
e pymalloc_debug: same as pymalloc but also install debug hooks.
* mimalloc_debug: same as mimalloc but also install debug hooks.
Added in version 3.6.
Changed in version 3.7: Added the "default" allocator.

PYTHONMALLOCSTATS

If set to a non-empty string, Python will print statistics of the pymalloc memory allocator every time a new
pymalloc object arena is created, and on shutdown.

This variable is ignored if the P YTHONMALLOC environment variable is used to force themalloc () allocator
of the C library, or if Python is configured without pymalloc support.

Changed in version 3.6: This variable can now also be used on Python compiled in release mode. It now has
no effect if set to an empty string.

PYTHONLEGACYWINDOWSFSENCODING

If set to a non-empty string, the default filesystem encoding and error handler mode will revert to their pre-3.6
values of ‘mbcs’ and ‘replace’, respectively. Otherwise, the new defaults ‘utf-8’ and ‘surrogatepass’ are used.

This may also be enabled at runtime with sys._enablelegacywindowsfsencoding().
Availability: Windows.
Added in version 3.6: See PEP 529 for more details.

PYTHONLEGACYWINDOWSSTDIO

If set to a non-empty string, does not use the new console reader and writer. This means that Unicode characters
will be encoded according to the active console code page, rather than using utf-8.

This variable is ignored if the standard streams are redirected (to files or pipes) rather than referring to console
buffers.

Auvailability: Windows.
Added in version 3.6.
PYTHONCOERCECLOCALE

If set to the value 0, causes the main Python command line application to skip coercing the legacy ASCII-based
C and POSIX locales to a more capable UTF-8 based alternative.

If this variable is not set (or is set to a value other than 0), the L.C_ALL locale override environment variable is
also not set, and the current locale reported for the LC_CTYPE category is either the default C locale, or else
the explicitly ASCII-based POSIX locale, then the Python CLI will attempt to configure the following locales
for the LC_CTYPE category in the order listed before loading the interpreter runtime:

e C.UTF-8
e C.utfs8

e UTF-8

14 Chapter 1. Command line and environment

https://peps.python.org/pep-0529/

Python Setup and Usage, Release 3.13.0rc2

If setting one of these locale categories succeeds, then the LC_CTYPE environment variable will also be set
accordingly in the current process environment before the Python runtime is initialized. This ensures that in
addition to being seen by both the interpreter itself and other locale-aware components running in the same
process (such as the GNU readline library), the updated setting is also seen in subprocesses (regardless
of whether or not those processes are running a Python interpreter), as well as in operations that query the
environment rather than the current C locale (such as Python’s own locale.getdefaultlocale ()).

Configuring one of these locales (either explicitly or via the above implicit locale coercion) automatically en-
ables the surrogateescape error handler for sys.stdinand sys.stdout (sys. stderr continues
touse backslashreplace as it does in any other locale). This stream handling behavior can be overridden
using PYTHONIOENCODING as usual.

For debugging purposes, setting PY THONCOERCECLOCALE=warn will cause Python to emit warning mes-
sages on stderr if either the locale coercion activates, or else if a locale that would have triggered coercion
is still active when the Python runtime is initialized.

Also note that even when locale coercion is disabled, or when it fails to find a suitable target locale,
PYTHONUTF 8 will still activate by default in legacy ASCII-based locales. Both features must be disabled
in order to force the interpreter to use ASCIT instead of UTF -8 for system interfaces.

Availability: Unix.
Added in version 3.7: See PEP 538 for more details.
PYTHONDEVMODE

If this environment variable is set to a non-empty string, enable Python Development Mode, introducing addi-
tional runtime checks that are too expensive to be enabled by default. This is equivalent to setting the —X dev
option.

Added in version 3.7.

PYTHONUTF8
If set to 1, enable the Python UTF-8 Mode.

If set to 0, disable the Python UTF-8 Mode.
Setting any other non-empty string causes an error during interpreter initialisation.
Added in version 3.7.

PYTHONWARNDEFAULTENCODING

If this environment variable is set to a non-empty string, issue a EncodingWarning when the locale-specific
default encoding is used.

See i0-encoding-warning for details.
Added in version 3.10.

PYTHONNODEBUGRANGES

If this variable is set, it disables the inclusion of the tables mapping extra location information (end line, start
column offset and end column offset) to every instruction in code objects. This is useful when smaller code
objects and pyc files are desired as well as suppressing the extra visual location indicators when the interpreter
displays tracebacks.

Added in version 3.11.

PYTHONPERFSUPPORT

If this variable is set to a nonzero value, it enables support for the Linux per £ profiler so Python calls can be
detected by it.

If set to 0, disable Linux perf profiler support.
See also the —~X perf command-line option and perf_profiling.

Added in version 3.12.

1.2. Environment variables 15

https://peps.python.org/pep-0538/

Python Setup and Usage, Release 3.13.0rc2

PYTHON_PERF_JIT_SUPPORT

If this variable is set to a nonzero value, it enables support for the Linux per £ profiler so Python calls can be
detected by it using DWARF information.

If set to 0, disable Linux perf profiler support.
See also the X perf jit command-line option and perf profiling.
Added in version 3.13.

PYTHON_CPU_COUNT

If this variable is set to a positive integer, it overrides the return values of os.cpu_count () and os.
process_cpu_count ().

See also the X cpu_count command-line option.
Added in version 3.13.
PYTHON_FROZEN_MODULES

If this variable is set to on or of £, it determines whether or not frozen modules are ignored by the import
machinery. A value of on means they get imported and of £ means they are ignored. The default is on for
non-debug builds (the normal case) and o f £ for debug builds. Note that the importlib_bootstrap and
importlib_bootstrap_external frozen modules are always used, even if this flag is set to of £.

See also the X frozen_modules command-line option.
Added in version 3.13.

PYTHON_COLORS

If this variable is set to 1, the interpreter will colorize various kinds of output. Setting it to O deactivates this
behavior. See also Controlling color.

Added in version 3.13.
PYTHON_BASIC_REPL

If this variable is set to 1, the interpreter will not attempt to load the Python-based REPL that requires curses
and readline, and will instead use the traditional parser-based REPL.

Added in version 3.13.
PYTHON_HISTORY

This environment variable can be used to set the location of a .python_history file (by default, it is
.python_history in the user’s home directory).

Added in version 3.13.

PYTHON_GIL

If this variable is set to 1, the global interpreter lock (GIL) will be forced on. Setting it to O forces the GIL off
(needs Python configured with the ——disable—gil build option).

See also the -X g1l command-line option, which takes precedence over this variable, and whatsnew313-
free-threaded-cpython.

Added in version 3.13.

16 Chapter 1. Command line and environment

Python Setup and Usage, Release 3.13.0rc2

1.2.1 Debug-mode variables

PYTHONDUMPREF'S

If set, Python will dump objects and reference counts still alive after shutting down the interpreter.
Needs Python configured with the ——with-t race—-refs build option.

PYTHONDUMPREFSFILE

If set, Python will dump objects and reference counts still alive after shutting down the interpreter into a file
under the path given as the value to this environment variable.

Needs Python configured with the ——with—-trace—-refs build option.
Added in version 3.11.

PYTHON_PRESITE

If this variable is set to a module, that module will be imported early in the interpreter lifecycle, before the
site module is executed, and before the __main__ module is created. Therefore, the imported module is
not treated as ___main__ .

This can be used to execute code early during Python initialization.

To import a submodule, use package .module as the value, like in an import statement.
See also the —-X presite command-line option, which takes precedence over this variable.
Needs Python configured with the ——with-pydebug build option.

Added in version 3.13.

1.2. Environment variables 17

Python Setup and Usage, Release 3.13.0rc2

18 Chapter 1. Command line and environment

CHAPTER
TWO

USING PYTHON ON UNIX PLATFORMS

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there
are certain features you might want to use that are not available on your distro’s package. You can easily compile the
latest version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages
for your own distro. Have a look at the following links:

> See also

https://www.debian.org/doc/manuals/maint-guide/first.en.html
for Debian users

https://en.opensuse.org/Portal:Packaging
for OpenSuse users

https://docs.fedoraproject.org/en-US/package-maintainers/Packaging_Tutorial_GNU_Hello/
for Fedora users

https://slackbook.org/html/package-management-making-packages.html
for Slackware users

2.1.2 On FreeBSD and OpenBSD

* FreeBSD users, to add the package use:

[pkg install python3]

* OpenBSD users, to add the package use:

pkg_add -r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your.
—architecture here>/python-<version>.tgz

For example 1386 users get the 2.5.1 version of Python using:

[pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz]

19

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs.fedoraproject.org/en-US/package-maintainers/Packaging_Tutorial_GNU_Hello/
https://slackbook.org/html/package-management-making-packages.html

Python Setup and Usage, Release 3.13.0rc2

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh clone. (If you want to contribute patches, you will need a clone.)

The build process consists of the usual commands:

./configure
make
make install

Configuration options and caveats for specific Unix platforms are extensively documented in the README.rst file in

the root of the Python source tree.

A Warning

make install can overwrite or masquerade the python3 binary. make altinstall is therefore rec-
ommended instead of make install since it only installs exec_prefix/bin/pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix and exec_prefix are
installation-dependent and should be interpreted as for GNU software; they may be the same.

For example, on most Linux systems, the default for both is /usr.

File/directory

Meaning

exec_prefix/bin/python3
prefix/lib/pythonversion,
exec_prefix/lib/
pythonversion
prefix/include/pythonversion,
exec_prefix/include/
pythonversion

Recommended location of the interpreter.
Recommended locations of the directories containing the standard
modules.

Recommended locations of the directories containing the include
files needed for developing Python extensions and embedding the
interpreter.

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

[$ chmod +x script

and put an appropriate Shebang line at the top of the script. A good choice is usually

[#l/usr/bin/env python3

1

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env command,
so you may need to hardcode /usr/bin/python3 as the interpreter path.

To use shell commands in your Python scripts, look at the subprocess module.

20

Chapter 2. Using Python on Unix platforms

https://www.python.org/downloads/source/
https://devguide.python.org/setup/#get-the-source-code
https://github.com/python/cpython/tree/3.13/README.rst

Python Setup and Usage, Release 3.13.0rc2

2.5

Custom OpenSSL

1. To use your vendor’s OpenSSL configuration and system trust store, locate the directory with openssl.cnf
file or symlink in /etc. On most distribution the file is either in /etc/ssl or /etc/pki/tls. The
directory should also contain a cert . pem file and/or a cert s directory.

$ find /etc/ —name openssl.cnf —printf "%h\n"
/etc/ssl

2. Download, build, and install OpenSSL. Make sure you use install_sw and not install. The in-

stall_sw target does not override openssl.cnf.

-

tar xzf openssl-VERSION

pushd openssl-VERSION

./config \
——prefix=/usr/local/custom-openssl \
——libdir=1ib \
——openssldir=/etc/ssl

make -jl1 depend

make -38

make install_sw

popd

v“r » 0

v » »nn

curl -O https://www.openssl.org/source/openssl-VERSION.tar.gz

3.

Build Python with custom OpenSSL (see the
--with-openssl-rpath options)

configure

—--with-openssl

and

$ pushd python-3.x.x

$./configure -C \
——with-openssl=/usr/local/custom-openssl \
——with-openssl-rpath=auto \
——prefix=/usr/local/python-3.x.x

$ make -78

$ make altinstall

© Note

Patch releases of OpenSSL have a backwards compatible ABI. You don’t need to recompile Python to update
OpenSSL. It’s sufficient to replace the custom OpenSSL installation with a newer version.

2.5. Custom OpenSSL

21

Python Setup and Usage, Release 3.13.0rc2

22

Chapter 2. Using Python on Unix platforms

CHAPTER
THREE

CONFIGURE PYTHON

3.1 Build Requirements

Features and minimum versions required to build CPython:
* A C11 compiler. Optional C11 features are not required.
* On Windows, Microsoft Visual Studio 2017 or later is required.
* Support for IEEE 754 floating-point numbers and floating-point Not-a-Number (NaN).
* Support for threads.

e OpenSSL 1.1.1 is the minimum version and OpenSSL 3.0.9 is the recommended minimum version for the
ss1 and hashlib extension modules.

¢ SQLite 3.15.2 for the sglite3 extension module.
* Tcl/Tk 8.5.12 for the tkinter module.
e Autoconf 2.71 and aclocal 1.16.4 are required to regenerate the configure script.
Changed in version 3.1: Tcl/Tk version 8.3.1 is now required.
Changed in version 3.5: On Windows, Visual Studio 2015 or later is now required. Tcl/Tk version 8.4 is now required.

Changed in version 3.6: Selected C99 features are now required, like <stdint.h>and static inline func-
tions.

Changed in version 3.7: Thread support and OpenSSL 1.0.2 are now required.
Changed in version 3.10: OpenSSL 1.1.1 is now required. Require SQLite 3.7.15.

Changed in version 3.11: C11 compiler, IEEE 754 and NaN support are now required. On Windows, Visual Studio
2017 or later is required. Tcl/Tk version 8.5.12 is now required for the tkinter module.

Changed in version 3.13: Autoconf 2.71, aclocal 1.16.4 and SQLite 3.15.2 are now required.
See also PEP 7 “Style Guide for C Code” and PEP 11 “CPython platform support”.

3.2 Generated files

To reduce build dependencies, Python source code contains multiple generated files. Commands to regenerate all
generated files:

make regen-all

make regen-stdlib-module-names
make regen—-limited-abi

make regen-configure

The Makefile.pre.in file documents generated files, their inputs, and tools used to regenerate them. Search
for regen-* make targets.

23

https://en.cppreference.com/w/c/11
https://en.wikipedia.org/wiki/C11_(C_standard_revision)#Optional_features
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/NaN#Floating_point
https://peps.python.org/pep-0007/
https://peps.python.org/pep-0011/

Python Setup and Usage, Release 3.13.0rc2

3.2.1 configure script

The make regen-configure command regenerates the aclocal.m4 file and the configure script using
the Tools/build/regen-configure. sh shell script which uses an Ubuntu container to get the same tools
versions and have a reproducible output.

The container is optional, the following command can be run locally:

[autoreconf —-ivf -Werror }

The generated files can change depending on the exact aut oconf-archive, aclocal and pkg-config ver-
sions.

3.3 Configure Options

List all configure script options using:

[./configure —--help }

See also the Misc/SpecialBuilds. txt in the Python source distribution.

3.3.1 General Options

—-—enable-loadable-sqglite—extensions

Support loadable extensions in the _sglite extension module (default is no) of the sglite3 module.
See the sglite3.Connection.enable_load_extension () method of the sgqlite3 module.
Added in version 3.6.

——disable-ipv6
Disable IPv6 support (enabled by default if supported), see the socket module.

——enable-big-digits=[15]|30]
Define the size in bits of Python int digits: 15 or 30 bits.

By default, the digit size is 30.
Define the PYLONG_BITS_IN_DIGIT to 15 or 30.
See sys.int_info.bits_per_digit.

——with-suffix=SUFFIX
Set the Python executable suffix to SUFFIX.

The default suffix is . exe on Windows and macOS (python . exe executable), . js on Emscripten node, .
html on Emscripten browser, . wasmon WASI, and an empty string on other platforms (pyt hon executable).

Changed in version 3.11: The default suffix on WASM platform is one of . js, .html or .wasm.

——with-tzpath=<list of absolute paths separated by pathsep>

Select the default time zone search path for zoneinfo.TZPATH. See the Compile-time configuration of the
zoneinfo module.

Default: /usr/share/zoneinfo:/usr/lib/zoneinfo:/usr/share/lib/zoneinfo:/
etc/zoneinfo.

See os.pathsep path separator.

Added in version 3.9.

24 Chapter 3. Configure Python

Python Setup and Usage, Release 3.13.0rc2

——without-decimal-contextvar

Build the _decimal extension module using a thread-local context rather than a coroutine-local context
(default), see the decimal module.

See decimal.HAVE_CONTEXTVAR and the contextvars module.
Added in version 3.9.

——with-dbmliborder=<list of backend names>
Opverride order to check db backends for the dbm module

A valid value is a colon (:) separated string with the backend names:
e ndbm;
e gdbm;
e bdb.

——without-c—-locale-coercion
Disable C locale coercion to a UTF-8 based locale (enabled by default).

Don’t define the PY_COERCE_C_LOCALE macro.
See PYTHONCOERCECLOCALE and the PEP 538.

—--without-freelists
Disable all freelists except the empty tuple singleton.

Added in version 3.11.

—--with-platlibdir=DIRNAME
Python library directory name (default is 1ib).

Fedora and SuSE use 1ib64 on 64-bit platforms.
See sys.platlibdir.
Added in version 3.9.
—--with-wheel-pkg-dir=PATH
Directory of wheel packages used by the ensurepip module (none by default).

Some Linux distribution packaging policies recommend against bundling dependencies. For example, Fe-
dora installs wheel packages in the /usr/share/python-wheels/ directory and don’t install the
ensurepip._bundled package.

Added in version 3.10.

—--with-pkg-config=[check|yes|no]
Whether configure should use pkg—con£fig to detect build dependencies.

¢ check (default): pkg—config is optional

* yes: pkg—config is mandatory

¢ no: configure does not use pkg—config even when present
Added in version 3.11.

——enable-pystats
Turn on internal Python performance statistics gathering.

By default, statistics gathering is off. Use python3 -X pystats command or set PYTHONSTATS=1
environment variable to turn on statistics gathering at Python startup.

At Python exit, dump statistics if statistics gathering was on and not cleared.
Effects:

¢ Add -X pystats command line option.

3.3. Configure Options 25

https://peps.python.org/pep-0538/

Python Setup and Usage, Release 3.13.0rc2

e Add PYTHONSTATS environment variable.

¢ Define the Py_STATS macro.

* Add functions to the sy s module:
— sys._stats_on (): Turns on statistics gathering.
— sys._stats_off (): Turns off statistics gathering.

— sys._stats_clear (): Clears the statistics.

— sys._stats_dump () : Dump statistics to file, and clears the statistics.

The statistics will be dumped to a arbitrary (probably unique) file in /tmp/py_stats/ (Unix) or C:\
temp\py_stats\ (Windows). If that directory does not exist, results will be printed on stderr.

Use Tools/scripts/summarize_stats.py to read the stats.
Statistics:

* Opcode:

— Specialization: success, failure, hit, deferred, miss, deopt, failures;

— Execution count;
— Pair count.

e Call:

Inlined Python calls;

PyEval calls;

Frames pushed;

Frame object created;

method.

* Object:

incref and decref;
— interpreter incref and decref;
— allocations: all, 512 bytes, 4 kiB, big;
— free;
— to/from free lists;
— dictionary materialized/dematerialized;
— type cache;
— optimization attempts;
— optimization traces created/executed;
— uops executed.

» Garbage collector:

— Garbage collections;
— Objects visited;
— Objects collected.

Added in version 3.11.

Eval calls: vector, generator, legacy, function VECTORCALL, build class, slot, function “ex”, API,

26

Chapter 3. Configure Python

Python Setup and Usage, Release 3.13.0rc2

——disable—gil
Enables experimental support for running Python without the global interpreter lock (GIL): free threading
build.

Defines the Py_GIL_DISABLED macro and adds "t " to sys.abiflags.
See whatsnew313-free-threaded-cpython for more detail.
Added in version 3.13.
PKG_CONFIG
Path to pkg—-config utility.
PKG_CONFIG_LIBDIR

PKG_CONFIG_PATH
pkg-config options.

3.3.2 C compiler options

CcC
C compiler command.

CFLAGS
C compiler flags.

CPP
C preprocessor command.

CPPFLAGS
C preprocessor flags, e.g. ~-Iinclude_dir.

3.3.3 Linker options

LDFLAGS
Linker flags, e.g. ~-L1ibrary_directory.

LIBS

Libraries to pass to the linker, e.g. ~11ibrary.

MACHDEP

Name for machine-dependent library files.

3.3.4 Options for third-party dependencies

Added in version 3.11.
BZIP2_CFLAGS
BZIP2_LIBS
C compiler and linker flags to link Python to 1ibbz2, used by bz2 module, overriding pkg-config.

CURSES_CFLAGS

CURSES_LIBS

C compiler and linker flags for 1ibncurses or libncursesw, used by curses module, overriding
pkg-config.

GDBM_CFLAGS

3.3. Configure Options 27

Python Setup and Usage, Release 3.13.0rc2

GDBM_LIBS
C compiler and linker flags for gdbm.

LIBB2_CFLAGS
LIBB2_LIBS

C compiler and linker flags for 1ibb2 (BLAKE?2), used by hash1ib module, overriding pkg-config.
LIBEDIT_CFLAGS
LIBEDIT_LIBS

C compiler and linker flags for 1ibedit, used by readline module, overriding pkg-config.
LIBFFI_CFLAGS
LIBFFI_LIBS

C compiler and linker flags for 1ibffi, used by ctypes module, overriding pkg-config.
LIBMPDEC_CFLAGS

LIBMPDEC_LIBS
C compiler and linker flags for 1 ibmpdec, used by decimal module, overriding pkg-config.

© Note

These environment variables have no effect unless ——with-system—11ibmpdec is specified.

LIBLZMA_CFLAGS
LIBLZMA_LIBS

C compiler and linker flags for 1ib1zma, used by 1zma module, overriding pkg—config.
LIBREADLINE_CFLAGS
LIBREADLINE_LIBS

C compiler and linker flags for Libreadline, used by readline module, overriding pkg—config.
LIBSQLITE3_CFLAGS
LIBSQLITE3_LIBS

C compiler and linker flags for 1ibsglite3, used by sgqlite3 module, overriding pkg—config.
LIBUUID_CFLAGS
LIBUUID_LIBS

C compiler and linker flags for 1ibuuid, used by uuid module, overriding pkg-config.
PANEL_CFLAGS
PANEL_LIBS

C compiler and linker flags for PANEL, overriding pkg-config.

C compiler and linker flags for 1ibpanel or libpanelw, used by curses.panel module, overriding
pkg-config.

TCLTK_CFLAGS
TCLTK_LIBS

C compiler and linker flags for TCLTK, overriding pkg—config.
ZLIB_CFLAGS

ZLIB_LIBS
C compiler and linker flags for 1ibz1ib, used by gz ip module, overriding pkg—config.

28 Chapter 3. Configure Python

Python Setup and Usage, Release 3.13.0rc2

3.3.5 WebAssembly Options

—--with-emscripten-target=[browser|node]

Set build flavor for wasm32-emscripten.
¢ browser (default): preload minimal stdlib, default MEMFS.
* node: NODERAWES and pthread support.

Added in version 3.11.

——enable-wasm—-dynamic-linking

Turn on dynamic linking support for WASM.

Dynamic linking enables d1open. File size of the executable increases due to limited dead code elimination
and additional features.

Added in version 3.11.

——enable-wasm—-pthreads

Turn on pthreads support for WASM.
Added in version 3.11.

3.3.6 Install Options

——prefix=PREFIX
Install architecture-independent files in PREFIX. On Unix, it defaults to /usr/local.

This value can be retrieved at runtime using sys .prefix.
As an example, one can use ——prefix="$HOME/.local/" to install a Python in its home directory.

——exec-prefix=EPREFIX
Install architecture-dependent files in EPREFIX, defaults to ——prefix.

This value can be retrieved at runtime using sys .exec_prefix.

——disable-test—-modules

Don’t build nor install test modules, like the test package or the _testcapi extension module (built and
installed by default).

Added in version 3.10.

——with-ensurepip=[upgrade|install|no]

Select the ensurepip command run on Python installation:
e upgrade (default): run python -m ensurepip --altinstall --upgrade command.
e install:run python -m ensurepip —--altinstall command;
* no: don’t run ensurepip;

Added in version 3.6.

3.3. Configure Options 29

Python Setup and Usage, Release 3.13.0rc2

3.3.7 Performance options

Configuring Python using ~—enable-optimizations —-with-1to (PGO +LTO) is recommended for best
performance. The experimental -—enable-bolt flag can also be used to improve performance.

——enable-optimizations

Enable Profile Guided Optimization (PGO) using PROFILE_TASK (disabled by default).

The C compiler Clang requires 1 1vm—-profdata program for PGO. On macOS, GCC also requires it: GCC
is just an alias to Clang on macOS.

Disable also semantic interposition in libpython if —-enable-shared and GCC is used: add
—-fno-semantic-interposition to the compiler and linker flags.

© Note

During the build, you may encounter compiler warnings about profile data not being available for
some source files. These warnings are harmless, as only a subset of the code is exercised dur-
ing profile data acquisition. To disable these warnings on Clang, manually suppress them by adding
-Wno-profile-instr-unprofiledto CFLAGS.

Added in version 3.6.

Changed in version 3.10: Use —fno-semantic-interposition on GCC.

PROFILE_TASK

Environment variable used in the Makefile: Python command line arguments for the PGO generation task.
Default: -m test --pgo —--—-timeout=$ (TESTTIMEOUT).
Added in version 3.8.

Changed in version 3.13: Task failure is no longer ignored silently.

——with-1lto=[full|thin|no|yes]

Enable Link Time Optimization (LTO) in any build (disabled by default).

The C compiler Clang requires 1 1vm—ar for LTO (ar on macOS), as well as an LTO-aware linker (1d . gold
or 11d).

Added in version 3.6.
Added in version 3.11: To use ThinL. TO feature, use ——with-1to=thin on Clang.

Changed in version 3.12: Use ThinLTO as the default optimization policy on Clang if the compiler accepts the
flag.

——enable-bolt

Enable usage of the BOLT post-link binary optimizer (disabled by default).

BOLT is part of the LLVM project but is not always included in their binary distributions. This flag requires
that 1 1vm-bolt and merge-fdata are available.

BOLT is still a fairly new project so this flag should be considered experimental for now. Because this tool
operates on machine code its success is dependent on a combination of the build environment + the other
optimization configure args + the CPU architecture, and not all combinations are supported. BOLT versions
before LLVM 16 are known to crash BOLT under some scenarios. Use of LLVM 16 or newer for BOLT
optimization is strongly encouraged.

The BOLT_INSTRUMENT_FLAGS and BOLT_APPLY_FLAGS configure variables can be defined to
override the default set of arguments for 11vm—bolt to instrument and apply BOLT data to binaries, respec-
tively.

Added in version 3.12.

30

Chapter 3. Configure Python

https://github.com/llvm/llvm-project/tree/main/bolt

Python Setup and Usage, Release 3.13.0rc2

BOLT_APPLY_FLAGS
Arguments to 11vm—bolt when creating a BOLT optimized binary.

Added in version 3.12.

BOLT_INSTRUMENT_FLAGS
Arguments to 1 1vm-bolt when instrumenting binaries.

Added in version 3.12.

——with—-computed—-gotos

Enable computed gotos in evaluation loop (enabled by default on supported compilers).

——without-mimalloc

Disable the fast mimalloc allocator (enabled by default).
See also PYTHONMALLOC environment variable.

——without-pymalloc
Disable the specialized Python memory allocator pymalloc (enabled by default).

See also PYTHONMALLOC environment variable.

—-without-doc-strings

Disable static documentation strings to reduce the memory footprint (enabled by default). Documentation
strings defined in Python are not affected.

Don’t define the WITH_DOC_STRINGS macro.
See the PyDoc_STRVAR () macro.

——enable-profiling

Enable C-level code profiling with gprof (disabled by default).

——with-strict-overflow

Add -fstrict-overflow to the C compiler flags (by default we add —~fno-strict-overflow in-
stead).

3.3.8 Python Debug Build

A debug build is Python built with the ——with-pydebug configure option.
Effects of a debug build:
* Display all warnings by default: the list of default warning filters is empty in the warnings module.
e Adddto sys.abiflags.
e Add sys.gettotalrefcount () function.
¢ Add -X showrefcount command line option.
¢ Add -d command line option and PYTHONDEBUG environment variable to debug the parser.

e Add support for the __11trace__ variable: enable low-level tracing in the bytecode evaluation loop if the
variable is defined.

¢ Install debug hooks on memory allocators to detect buffer overflow and other memory errors.
¢ Define Py_DEBUG and Py_REF_DEBUG macros.

* Add runtime checks: code surrounded by #ifdef Py_DEBUG and #endif. Enable assert (.
.) and _PyObject_ASSERT (...) assertions: don’t set the NDEBUG macro (see also the
—-—with-assertions configure option). Main runtime checks:

— Add sanity checks on the function arguments.

3.3. Configure Options 31

https://github.com/facebookarchive/BOLT

Python Setup and Usage, Release 3.13.0rc2

— Unicode and int objects are created with their memory filled with a pattern to detect usage of uninitialized
objects.

— Ensure that functions which can clear or replace the current exception are not called with an exception
raised.

— Check that deallocator functions don’t change the current exception.
— The garbage collector (gc.collect () function) runs some basic checks on objects consistency.

— The Py_SAFE_DOWNCAST () macro checks for integer underflow and overflow when downcasting
from wide types to narrow types.

See also the Python Development Mode and the ——with-trace-refs configure option.

Changed in version 3.8: Release builds and debug builds are now ABI compatible: defining the Py_DEBUG macro
no longer implies the Py_ TRACE_REF'S macro (see the ——with-trace-refs option).

3.3.9 Debug options

--with-pydebug
Build Python in debug mode: define the Py_DEBUG macro (disabled by default).

——with-trace-refs

Enable tracing references for debugging purpose (disabled by default).
Effects:

¢ Define the Py_ TRACE_REFS macro.

¢ Add sys.getobjects () function.

* Add PYTHONDUMPREF'S environment variable.

The PYTHONDUMPREF'S environment variable can be used to dump objects and reference counts still alive at
Python exit.

Statically allocated objects are not traced.
Added in version 3.8.
Changed in version 3.13: This build is now ABI compatible with release build and debug build.

——with—-assertions

Build with C assertions enabled (default is no): assert (...); and _PyObject_ASSERT (...) ;.
If set, the NDEBUG macro is not defined in the OP T compiler variable.
See also the ——with-pydebug option (debug build) which also enables assertions.
Added in version 3.6.
—--with-valgrind
Enable Valgrind support (default is no).

—--with-dtrace
Enable DTrace support (default is no).

See Instrumenting CPython with DTrace and SystemTap.
Added in version 3.6.

——with—-address—-sanitizer

Enable AddressSanitizer memory error detector, asan (default is no).

Added in version 3.6.

32 Chapter 3. Configure Python

Python Setup and Usage, Release 3.13.0rc2

——with-memory—-sanitizer

Enable MemorySanitizer allocation error detector, msan (default is no).
Added in version 3.6.

—-—with-undefined-behavior-sanitizer

Enable UndefinedBehaviorSanitizer undefined behaviour detector, ubsan (default is no).
Added in version 3.6.

——with-thread-sanitizer

Enable ThreadSanitizer data race detector, t san (default is no).

Added in version 3.13.

3.3.10 Linker options

——-enable-shared
Enable building a shared Python library: 1ibpython (default is no).

——without-static-libpython
Do not build 1 ibpythonMAJOR.MINOR. a and do not install python . o (built and enabled by default).

Added in version 3.10.

3.3.11 Libraries options

——with-libs="1ibl ...'
Link against additional libraries (default is no).

--with-system—-expat
Build the pyexpat module using an installed expat library (default is no).

--with-system—-libmpdec
Build the _decimal extension module using an installed mpdecimal library, see the decimal module
(default is yes).

Added in version 3.3.
Changed in version 3.13: Default to using the installed mpdecimal library.

Deprecated since version 3.13, will be removed in version 3.15: A copy of the mpdecimal library sources
will no longer be distributed with Python 3.15.

e See also

LIBMPDEC_CFLAGS and LIBMPDEC_LIBS.

——with-readline=readline|editline

Designate a backend library for the readline module.
¢ readline: Use readline as the backend.
o editline: Use editline as the backend.

Added in version 3.10.

3.3. Configure Options 33

Python Setup and Usage, Release 3.13.0rc2

——without-readline
Don’t build the readl ine module (built by default).

Don’t define the HAVE_LIBREADLINE macro.
Added in version 3.10.

——with-1ibm=STRING
Override 1ibm math library to STRING (default is system-dependent).

——with-1ibc=STRING
Override 1ibc C library to STRING (default is system-dependent).

—--with-openssl=DIR
Root of the OpenSSL directory.
Added in version 3.7.

——with-openssl-rpath=[no|auto|DIR]
Set runtime library directory (rpath) for OpenSSL libraries:

* no (default): don’t set rpath;
e auto: auto-detect rpath from ——with-openssl and pkg-config;
* DIR: set an explicit rpath.

Added in version 3.10.

3.3.12 Security Options

——with-hash—-algorithm=[fnv|siphashl3|siphash24]
Select hash algorithm for use in Python/pyhash.c:

¢ siphash13 (default);
e siphash24;
e fnv.
Added in version 3.4.
Added in version 3.11: siphash13 is added and it is the new default.
——with-builtin-hashlib-hashes=md5, shal, sha256, shab12,sha3,blake2

Built-in hash modules:
e md>5;
e shal;
* sha256;
e shab512;
¢ sha3 (with shake);
* blake2.
Added in version 3.9.

——with-ssl-default-suites=[python|openssl|STRING]
Override the OpenSSL default cipher suites string:

e python (default): use Python’s preferred selection;
e openssl: leave OpenSSL’s defaults untouched;

* STRING: use a custom string

34 Chapter 3. Configure Python

Python Setup and Usage, Release 3.13.0rc2

See the ss1 module.
Added in version 3.7.

Changed in version 3.10: The settings python and STRING also set TLS 1.2 as minimum protocol version.

3.3.13 macOS Options

See Mac/README .rst.
——enable-universalsdk

——enable—-universalsdk=SDKDIR

Create a universal binary build. SDKDIR specifies which macOS SDK should be used to perform the build
(default is no).

——enable-framework

——enable-framework=INSTALLDIR

Create a Python.framework rather than a traditional Unix install. Optional INSTALLDIR specifies the installa-
tion path (default is no).

——with-universal—-archs=ARCH

Specify the kind of universal binary that should be created. This option is only valid when
—-—enable-universalsdk is set.

Options:
e universal?2;
* 32-bit;
e 64-bit;
* 3-way;
e intel;
e intel-32;
e intel-64;
e all.

—-with-framework—name=FRAMEWORK
Specify the name for the python framework on macOS only valid when ——enable-framework is set
(default: Python).

—-with-app-store-compliance

—-with-app-store—-compliance=PATCH-FILE
The Python standard library contains strings that are known to trigger automated inspection tool errors when
submitted for distribution by the macOS and iOS App Stores. If enabled, this option will apply the list of
patches that are known to correct app store compliance. A custom patch file can also be specified. This option
is disabled by default.

Added in version 3.13.

3.3. Configure Options 35

https://github.com/python/cpython/tree/3.13/Mac/README.rst

Python Setup and Usage, Release 3.13.0rc2

3.3.14 iOS Options

See iI0S/README .rst.

——enable-framework=INSTALLDIR

Create a Python.framework. Unlike macOS, the INSTALLDIR argument specifying the installation path is
mandatory.

—-with-framework—name=FRAMEWORK
Specify the name for the framework (default: Python).

3.3.15 Cross Compiling Options

Cross compiling, also known as cross building, can be used to build Python for another CPU architecture or platform.
Cross compiling requires a Python interpreter for the build platform. The version of the build Python must match
the version of the cross compiled host Python.

—-build=BUILD
configure for building on BUILD, usually guessed by config.guess.

——host=HOST

cross-compile to build programs to run on HOST (target platform)

——with-build-python=path/to/python
path to build python binary for cross compiling

Added in version 3.11.

CONFIG_SITE=file
An environment variable that points to a file with configure overrides.

Example config.site file:

config.site—aarché64
ac_cv_buggy_getaddrinfo=no
ac_cv_file_ dev_ptmx=yes
ac_cv_file_ _dev_ptc=no

HOSTRUNNER
Program to run CPython for the host platform for cross-compilation.

Added in version 3.11.

Cross compiling example:

CONFIG_SITE=config.site—-aarch64 ../configure \
——build=x86_64-pc—linux—-gnu \
—-host=aarch64-unknown—-1linux-gnu \
—-with-build-python=../x86_64/python

3.4 Python Build System

3.4.1 Main files of the build system

e configure.ac=>configure;

* Makefile.pre.in=>Makefile (created by configure);

e pyconfig.h (created by configure);

e Modules/Setup: C extensions built by the Makefile using Module/makesetup shell script;

36 Chapter 3. Configure Python

https://github.com/python/cpython/tree/3.13/iOS/README.rst

Python Setup and Usage, Release 3.13.0rc2

3.4.2 Main build steps

e (Cfiles (. c) are built as object files (. 0).
* A static libpython library (. a) is created from objects files.
e python. o and the static 1 ibpython library are linked into the final python program.

¢ C extensions are built by the Makefile (see Modules/Setup).

3.4.3 Main Makefile targets

make

For the most part, when rebuilding after editing some code or refreshing your checkout from upstream, all you need
to do is execute make, which (per Make’s semantics) builds the default target, the first one defined in the Makefile.
By tradition (including in the CPython project) this is usually the a1l target. The configure script expands an
autoconf variable, @DEF_MAKE_ALL_RULEQR to describe precisely which targets make all will build. The
three choices are:

e profile-opt (configured with ——enable-optimizations)
* build_wasm (configured with ——with-emscripten-target)
e build_all (configured without explicitly using either of the others)

Depending on the most recent source file changes, Make will rebuild any targets (object files and executables) deemed
out-of-date, including running conf i gure again if necessary. Source/target dependencies are many and maintained
manually however, so Make sometimes doesn’t have all the information necessary to correctly detect all targets which
need to be rebuilt. Depending on which targets aren’t rebuilt, you might experience a number of problems. If you
have build or test problems which you can’t otherwise explain, make clean && make should work around most
dependency problems, at the expense of longer build times.

make platform
Build the python program, but don’t build the standard library extension modules. This generates a file

named plat form which contains a single line describing the details of the build platform, e.g., macosx-14.
3-arm64-3.120r 1inux-x86_64-3.13.

make profile-opt

Build Python using profile-guided optimization (PGO). You can use the configure ——enable-optimizations
option to make this the default target of the make command (make all or just make).

make clean

Remove built files.

3.4. Python Build System 37

Python Setup and Usage, Release 3.13.0rc2

make distclean

In addition to the work done by make clean, remove files created by the configure script. configure will have
to be run before building again. !

make install

Build the all target and install Python.

make test

Build the a1l target and run the Python test suite with the ——fast—c1i option. Variables:
e TESTOPTS: additional regrtest command-line options.
e TESTPYTHONOPTS: additional Python command-line options.

e TESTTIMEOQUT: timeout in seconds (default: 10 minutes).

make buildbottest

This is similar to make test, but uses the ——slow-ci option and default timeout of 20 minutes, instead of
-—fast-ci option.

make regen-all

Regenerate (almost) all generated files. These include (but are not limited to) bytecode cases, and parser generator file.
make regen-stdlib-module-names and autoconf must be run separately for the remaining generated

files.

3.4.4 C extensions

Some C extensions are built as built-in modules, like the sys module. They are built with the
Py_BUILD_CORE_BUILTIN macro defined. Built-in modules have no __file_ attribute:

>>> import sys

>>> sys
<module 'sys' (built-in)>
>>> sys._ file

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'sys' has no attribute '_ file_ '

Other C extensions are built as dynamic libraries, like the _asyncio module. They are built with the
Py_BUILD_CORE_MODULE macro defined. Example on Linux x86-64:

>>> import _asyncio

>>> _asyncio

<module '_asyncio' from '/usr/lib64/python3.9/1lib-dynload/_asyncio.cpython-39-x86_
—64-1linux—-gnu.so'>

>>> _asyncio._ file
'/usr/1lib64/python3.9/1lib-dynload/_asyncio.cpython-39-x86_64-1inux—-gnu.so'

l git clean -fdx isan even more extreme way to “clean” your checkout. It removes all files not known to Git. When bug hunting using
git bisect, thisis recommended between probes to guarantee a completely clean build. Use with care, as it will delete all files not checked
into Git, including your new, uncommitted work.

38 Chapter 3. Configure Python

https://github.com/python/cpython/issues/114505#issuecomment-1907021718

Python Setup and Usage, Release 3.13.0rc2

Modules/Setup is used to generate Makefile targets to build C extensions. At the beginning of the files, C exten-
sions are built as built-in modules. Extensions defined after the * shared* marker are built as dynamic libraries.

The PyAPI_FUNC (), PyAPI_DATA () and PyMODINIT_FUNC macros of Include/exports.h are de-
fined differently depending if the Py_BUILD_CORE_MODULE macro is defined:

¢ Use Py_EXPORTED_SYMBOL if the Py_BUILD_CORE_MODULE is defined
e Use Py_IMPORTED_SYMBOL otherwise.

If the Py_BUILD_CORE_BUILTIN macro is used by mistake on a C extension built as a shared library, its
PyInit_xxx () function is not exported, causing an ImportError on import.

3.5 Compiler and linker flags

Options set by the . /configure script and environment variables and used by Makefile.

3.5.1 Preprocessor flags

CONFIGURE_CPPFLAGS
Value of CPPFLAGS variable passed to the . /configure script.
Added in version 3.6.

CPPFLAGS

(Objective) C/C++ preprocessor flags, e.g. —I include_dir if you have headers in a nonstandard directory
include_dir.

Both CPPFLAGS and LDFLAGS need to contain the shell’s value to be able to build extension modules using
the directories specified in the environment variables.

BASECPPFLAGS
Added in version 3.4.

PY_CPPFLAGS
Extra preprocessor flags added for building the interpreter object files.

Default: $ (BASECPPFLAGS) -I. -IS$(srcdir)/Include $ (CONFIGURE_CPPFLAGS)
$ (CPPFLAGS).

Added in version 3.2.

3.5.2 Compiler flags

ccC

C compiler command.

Example: gcc —-pthread.
CXX

C++ compiler command.

Example: g++ —-pthread.

CFLAGS
C compiler flags.

3.5. Compiler and linker flags 39

Python Setup and Usage, Release 3.13.0rc2

CFLAGS_NODIST

CFLAGS_NODIST is used for building the interpreter and stdlib C extensions. Use it when a compiler flag
should not be part of CFLAGS once Python is installed (gh-65320).

In particular, CFLAGS should not contain:

* the compiler flag —T (for setting the search path for include files). The —I flags are processed from left
to right, and any flags in CF'LAGS would take precedence over user- and package-supplied — T flags.

* hardening flags such as -Werror because distributions cannot control whether packages installed by
users conform to such heightened standards.

Added in version 3.5.

COMPILEALL_OPTS
Options passed to the compileall command line when building PYC files in make install. Default:

-3j0.
Added in version 3.12.
EXTRA_CFLAGS
Extra C compiler flags.
CONFIGURE_CFLAGS
Value of CFLAGS variable passed to the . /configure script.
Added in version 3.2.
CONFIGURE_CFLAGS_NODIST
Value of CFLAGS_NODIST variable passed to the . /configure script.
Added in version 3.5.
BASECFLAGS
Base compiler flags.
OPT
Optimization flags.
CFLAGS_ALIASING
Strict or non-strict aliasing flags used to compile Python/dtoa.c.
Added in version 3.7.
CCSHARED
Compiler flags used to build a shared library.
For example, —fPIC is used on Linux and on BSD.
CFLAGSFORSHARED
Extra C flags added for building the interpreter object files.
Default: $ (CCSHARED) when ——enable-shared is used, or an empty string otherwise.
PY_CFLAGS
Default: $ (BASECFLAGS) $(OPT) $(CONFIGURE_CFLAGS) $(CFLAGS) $(EXTRA_CFLAGS).

PY_CFLAGS_NODIST
Default: $ (CONFIGURE_CFLAGS_NODIST) $(CFLAGS_NODIST) -IS$(srcdir)/Include/
internal.

Added in version 3.5.

40 Chapter 3. Configure Python

https://github.com/python/cpython/issues/65320

Python Setup and Usage, Release 3.13.0rc2

PY_STDMODULE_CFLAGS
C flags used for building the interpreter object files.

Default: $ (PY_CFLAGS) $(PY_CFLAGS_NODIST) $(PY_CPPFLAGS) $ (CFLAGSFORSHARED).
Added in version 3.7.

PY_CORE_CFLAGS
Default: $ (PY_STDMODULE_CFLAGS) -DPy_BUILD_CORE.

Added in version 3.2.

PY_BUILTIN_MODULE_CFLAGS

Compiler flags to build a standard library extension module as a built-in module, like the posix module.
Default: $ (PY_STDMODULE_CFLAGS) -DPy_BUILD_CORE_BUILTIN.
Added in version 3.8.

PURIFY
Purify command. Purify is a memory debugger program.

Default: empty string (not used).

3.5.3 Linker flags

LINKCC
Linker command used to build programs like python and _testembed.
Default: $ (PURIFY) $(CC).

CONFIGURE_LDFLAGS

Value of LDFLAGS variable passed to the . /configure script.

Avoid assigning CFLAGS, LDFLAGS, etc. so users can use them on the command line to append to these
values without stomping the pre-set values.

Added in version 3.2.

LDFLAGS_NODIST

LDFLAGS_NODIST is used in the same manner as CFLAGS_NODIST. Use it when a linker flag should not
be part of LDFLAGS once Python is installed (gh-65320).

In particular, LDF'LAGS should not contain:

e the compiler flag —L (for setting the search path for libraries). The —L flags are processed from left to
right, and any flags in LDFLAGS would take precedence over user- and package-supplied —L flags.

CONFIGURE_LDFLAGS_NODIST
Value of LDFLAGS_NODIST variable passed to the . /configure script.
Added in version 3.8.
LDFLAGS
Linker flags, e.g. ~-L1ib_dir if you have libraries in a nonstandard directory /ib_dir.

Both CPPFLAGS and LDFLAGS need to contain the shell’s value to be able to build extension modules using
the directories specified in the environment variables.

LIBS

Linker flags to pass libraries to the linker when linking the Python executable.

Example: —1rt.

3.5. Compiler and linker flags 41

https://github.com/python/cpython/issues/65320

Python Setup and Usage, Release 3.13.0rc2

LDSHARED
Command to build a shared library.

Default: QRLDSHARED@ $ (PY_LDFLAGS).

BLDSHARED
Command to build 1ibpython shared library.

Default: @BLDSHAREDQ@ $ (PY_CORE_LDFLAGS).

PY_LDFLAGS
Default: $ (CONFIGURE_LDFLAGS) $ (LDFLAGS).

PY_LDFLAGS_NODIST
Default: $ (CONFIGURE_LDFLAGS_NODIST) $ (LDFLAGS_NODIST).

Added in version 3.8.

PY_CORE_LDFLAGS
Linker flags used for building the interpreter object files.

Added in version 3.8.

42 Chapter 3. Configure Python

CHAPTER
FOUR

USING PYTHON ON WINDOWS

This document aims to give an overview of Windows-specific behaviour you should know about when using Python
on Microsoft Windows.

Unlike most Unix systems and services, Windows does not include a system supported installation of Python. To
make Python available, the CPython team has compiled Windows installers with every release for many years. These
installers are primarily intended to add a per-user installation of Python, with the core interpreter and library being
used by a single user. The installer is also able to install for all users of a single machine, and a separate ZIP file is
available for application-local distributions.

As specified in PEP 11, a Python release only supports a Windows platform while Microsoft considers the platform
under extended support. This means that Python 3.13 supports Windows 8.1 and newer. If you require Windows 7
support, please install Python 3.8.

There are a number of different installers available for Windows, each with certain benefits and downsides.
The full installer contains all components and is the best option for developers using Python for any kind of project.

The Microsoft Store package is a simple installation of Python that is suitable for running scripts and packages, and
using IDLE or other development environments. It requires Windows 10 and above, but can be safely installed without
corrupting other programs. It also provides many convenient commands for launching Python and its tools.

The nuget.org packages are lightweight installations intended for continuous integration systems. It can be used to
build Python packages or run scripts, but is not updateable and has no user interface tools.

The embeddable package is a minimal package of Python suitable for embedding into a larger application.

4.1 The full installer

4.1.1 Installation steps

Four Python 3.13 installers are available for download - two each for the 32-bit and 64-bit versions of the interpreter.
The web installer is a small initial download, and it will automatically download the required components as neces-
sary. The offline installer includes the components necessary for a default installation and only requires an internet
connection for optional features. See Installing Without Downloading for other ways to avoid downloading during
installation.

After starting the installer, one of two options may be selected:

43

https://www.python.org/downloads/
https://peps.python.org/pep-0011/

Python Setup and Usage, Release 3.13.0rc2

&5 Python 2.8.0 (64-bit) Setup — 4

pgthfqn

Wiﬂd()WS [] Add Python 3.8 to PATH Trred

Install Python 3.8.0 (64-bit)

Select Install Mow to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
Ch\Users' ol AppData\Local\Programs\Python'\Python38

Includes IDLE, pip and decumentaticn
Creates shortcuts and file associations

— Customize installation
Choose location and features

Install launcher for all users (recommended)

If you select “Install Now”:

You will not need to be an administrator (unless a system update for the C Runtime Library is required or you
install the Python Launcher for Windows for all users)

Python will be installed into your user directory

The Python Launcher for Windows will be installed according to the option at the bottom of the first page
The standard library, test suite, launcher and pip will be installed

If selected, the install directory will be added to your PATH

Shortcuts will only be visible for the current user

Selecting “Customize installation” will allow you to select the features to install, the installation location and other
options or post-install actions. To install debugging symbols or binaries, you will need to use this option.

To perform an all-users installation, you should select “Customize installation”. In this case:

You may be required to provide administrative credentials or approval

Python will be installed into the Program Files directory

The Python Launcher for Windows will be installed into the Windows directory
Optional features may be selected during installation

The standard library can be pre-compiled to bytecode

If selected, the install directory will be added to the system PATH

Shortcuts are available for all users

44

Chapter 4. Using Python on Windows

Python Setup and Usage, Release 3.13.0rc2

4.1.2 Removing the MAX_PATH Limitation

Windows historically has limited path lengths to 260 characters. This meant that paths longer than this would not
resolve and errors would result.

In the latest versions of Windows, this limitation can be expanded to approximately 32,000 characters. Your admin-
istrator will need to activate the “Enable Win32 long paths” group policy, or set LongPathsEnabled to 1 in the
registry key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystemn.

This allows the open () function, the os module and most other path functionality to accept and return paths longer
than 260 characters.

After changing the above option, no further configuration is required.

Changed in version 3.6: Support for long paths was enabled in Python.

4.1.3 Installing Without Ul

All of the options available in the installer UI can also be specified from the command line, allowing scripted in-
stallers to replicate an installation on many machines without user interaction. These options may also be set without
suppressing the Ul in order to change some of the defaults.

The following options (found by executing the installer with / ?) can be passed into the installer:

Name Description

/passive to display progress without requiring user interaction
/quiet to install/uninstall without displaying any UI

/simple to prevent user customization

/uninstall to remove Python (without confirmation)

Mayout [directory] to pre-download all components

/log [filename] to specify log files location

All other options are passed as name=value, where the value is usually 0 to disable a feature, 1 to enable a feature,
or a path. The full list of available options is shown below.

4.1. The full installer 45

Python Setup and Usage, Release 3.13.0rc2

will override most other options.

Name Description Default
Instal- Perform a system-wide installa- 0
1Al- tion.
1Users
Target- The installation directory Selected based on InstallAllUsers
Dir
Default- The default installation directory $ProgramFiles$%\Python X.Y or
AllUser- for all-user installs $ProgramFiles (x86) $\Python X.Y
sTarget-
Dir
De- The default install directory for $LocalAppData%\Programs\Python\PythonXY or
faultJust- just-for-me installs %$LocalAppData%\Programs\Python\PythonXY-32
ForMeTar- or %$LocalAppData%$\Programs\Python\
getDir PythonXY-64
Default- The default custom install direc- (empty)
Custom- tory displayed in the UI
Target-
Dir
Associ- Create file associations if the 1
ateFiles launcher is also installed.
Com- Compile all . py filesto .pyc. 0
pileAll
Prepend- Prepend install and Scripts di- 0
Path rectories to PATH and add .PY
to PATHEXT
Append- Append install and Scripts direc- 0
Path tories to PATH and add .PY to
PATHEXT
Short- Create shortcuts for the inter- 1
cuts preter, documentation and IDLE
if installed.
In- Install Python manual 1
clude_doc
In- Install debug binaries 0
clude_debt
In- Install developer headers and li- 1
clude_dev braries. Omitting this may lead
to an unusable installation.
In- Install python.exe and re- 1
clude_exe lated files. Omitting this may
lead to an unusable installation.
In- Install Python Launcher for Win- 1
clude laun dows.
Install- Installs the launcher for all 1
Launcher- users. Also requires In-
AllUsers clude_launcher to be set
to 1
In- Install standard library and ex- 1
clude_lib tension modules. Omitting this
may lead to an unusable installa-
tion.
In- Install bundled pip and setup- 1
clude_pip tools
In- Install debugging symbols (*. 0
clude_sym pdb)
In- Install Tcl/Tk support and IDLE 1
clude_tcltk
In- Install standard library test suite 1
Tude_test
4% T Tnstall utility scripts 1 Chapter 4. Using Python on Windows
clude_tool:
LauncherC Only installs the launcher. This 0

Python Setup and Usage, Release 3.13.0rc2

For example, to silently install a default, system-wide Python installation, you could use the following command (from

an elevated command prompt):

[pythonf3.9.0.exe /quiet InstallAllUsers=1 PrependPath=1 Include_test=0

1

To allow users to easily install a personal copy of Python without the test suite, you could provide a shortcut with the

following command. This will display a simplified initial page and disallow customization:

‘python—3.9.0.exe InstallAllUsers=0 Include_launcher=0 Include_test=0

SimpleInstall=1 SimplelInstallDescription="Just for me, no test suite."

(Note that omitting the launcher also omits file associations, and is only recommended for per-user installs when there

is also a system-wide installation that included the launcher.)

The options listed above can also be provided in a file named unattend.xml alongside the executable. This file
specifies a list of options and values. When a value is provided as an attribute, it will be converted to a number if
possible. Values provided as element text are always left as strings. This example file sets the same options as the

previous example:

<Options>
<Option Name="InstallAllUsers" Value="no" />
<Option Name="Include_launcher" Value="0" />
<Option Name="Include_test" Value="no" />
<Option Name="SimpleInstall" Value="yes" />

</Options>

<Option Name="SimpleInstallDescription">Just for me, no test suite</Option>

4.1.4 Installing Without Downloading

As some features of Python are not included in the initial installer download, selecting those features may require an
internet connection. To avoid this need, all possible components may be downloaded on-demand to create a complete
layout that will no longer require an internet connection regardless of the selected features. Note that this download
may be bigger than required, but where a large number of installations are going to be performed it is very useful to

have a locally cached copy.

Execute the following command from Command Prompt to download all possible required files. Remember to
substitute python-3. 9. 0. exe for the actual name of your installer, and to create layouts in their own directories

to avoid collisions between files with the same name.

[python—3.9.0.exe /layout [optional target directory]

You may also specify the /quiet option to hide the progress display.

4.1.5 Modifying an install

Once Python has been installed, you can add or remove features through the Programs and Features tool that is part

of Windows. Select the Python entry and choose “Uninstall/Change” to open the installer in maintenance mode.

“Modify” allows you to add or remove features by modifying the checkboxes - unchanged checkboxes will not install
or remove anything. Some options cannot be changed in this mode, such as the install directory; to modify these, you

will need to remove and then reinstall Python completely.

“Repair” will verify all the files that should be installed using the current settings and replace any that have been

removed or modified.

“Uninstall” will remove Python entirely, with the exception of the Python Launcher for Windows, which has its own

entry in Programs and Features.

4.1. The full installer

47

Python Setup and Usage, Release 3.13.0rc2

4.1.6 Installing Free-threaded Binaries

Added in version 3.13: (Experimental)

© Note

Everything described in this section is considered experimental, and should be expected to change in future
releases.

To install pre-built binaries with free-threading enabled (see PEP 703), you should select “Customize installation”.
The second page of options includes the “Download free-threaded binaries” checkbox.

M Python 3.13.0 (64-bit) Setup

Advanced Options

(J Install Python 3.13 for all users

B Associate files with Python (requires the ‘py’ launcher)
B Create shortcuts for installed applications

(] Add Python to environment variables

() Precompile standard library

() Download debugging symbols

ires VS 2017 or later)

0) Download free-threaded binaries

Customize Tnsia ;
C:\UsersWlll AppData\Local\Programs\Python\Python: Browse

pL;lth()r] You will require write permissions for the selected location.

f. W

windows

Back Install Cancel

Selecting this option will download and install additional binaries to the same location as the main Python install.
The main executable is called python3. 13t . exe, and other binaries either receive a t suffix or a full ABI suffix.
Python source files and bundled third-party dependencies are shared with the main install.

The free-threaded version is registered as a regular Python install with the tag 3. 13t (witha —32 or —arm64 suffix
as normal for those platforms). This allows tools to discover it, and for the Python Launcher for Windows to support
py.exe —3.13t. Note that the launcher will interpret py . exe -3 (or a python3 shebang) as “the latest 3.x
install”, which will prefer the free-threaded binaries over the regular ones, while py .exe -3.13 will not. If you
use the short style of option, you may prefer to not install the free-threaded binaries at this time.

To specify the install option at the command line, use Include_freethreaded=1. See Installing Without
Downloading for instructions on pre-emptively downloading the additional binaries for offline install. The options to
include debug symbols and binaries also apply to the free-threaded builds.

Free-threaded binaries are also available on nuget.org.

48 Chapter 4. Using Python on Windows

https://peps.python.org/pep-0703/

Python Setup and Usage, Release 3.13.0rc2

4.2 The Microsoft Store package

Added in version 3.7.2.

The Microsoft Store package is an easily installable Python interpreter that is intended mainly for interactive use, for
example, by students.

To install the package, ensure you have the latest Windows 10 updates and search the Microsoft Store app for “Python
3.13”. Ensure that the app you select is published by the Python Software Foundation, and install it.

A\ Warning

Python will always be available for free on the Microsoft Store. If you are asked to pay for it, you have not selected
the correct package.

After installation, Python may be launched by finding it in Start. Alternatively, it will be available from any Command
Prompt or PowerShell session by typing python. Further, pip and IDLE may be used by typingpip or idle. IDLE
can also be found in Start.

All three commands are also available with version number suffixes, for example, as python3.exe and python3.
x.exeaswellas python.exe (where 3. x is the specific version you want to launch, such as 3.13). Open “Manage
App Execution Aliases” through Start to select which version of Python is associated with each command. It is
recommended to make sure that pip and idle are consistent with whichever version of python is selected.

Virtual environments can be created with python —-m venv and activated and used as normal.

If you have installed another version of Python and added it to your PATH variable, it will be available as python.
exe rather than the one from the Microsoft Store. To access the new installation, use python3.exe orpython3.
X.exe.

The py . exe launcher will detect this Python installation, but will prefer installations from the traditional installer.

To remove Python, open Settings and use Apps and Features, or else find Python in Start and right-click to select
Uninstall. Uninstalling will remove all packages you installed directly into this Python installation, but will not remove
any virtual environments

4.2.1 Known issues

Redirection of local data, registry, and temporary paths

Because of restrictions on Microsoft Store apps, Python scripts may not have full write access to shared locations such
as TEMP and the registry. Instead, it will write to a private copy. If your scripts must modify the shared locations,
you will need to install the full installer.

At runtime, Python will use a private copy of well-known Windows folders and the registry. For example,
if the environment variable $APPDATA% is c:\Users\<user>\AppData\, then when writing to C:\
Users\<user>\AppData\Local will write to C:\Users\<user>\AppData\Local\Packages\
PythonSoftwareFoundation.Python.3.8_gbz5n2kfra8p0\LocalCache\Local\.

When reading files, Windows will return the file from the private folder, or if that does not exist, the real Windows
directory. For example reading C: \Windows\System32 returns the contents of C: \Windows\System32
plus the contents of C: \Program Files\WindowsApps\package_name\VFS\SystemX86.

You can find the real path of any existing file using os .path.realpath ():

>>> import os

>>> test_file = 'C:\\Users\\example\\AppData\\Local\\test.txt"

>>> os.path.realpath(test_file)
'C:\\Users\\example\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.8_
—gbz5n2kfra8p0\\LocalCache\\Local\\test.txt"

4.2. The Microsoft Store package 49

Python Setup and Usage, Release 3.13.0rc2

When writing to the Windows Registry, the following behaviors exist:

¢ Reading from HKLM\ \Software is allowed and results are merged with the registry.dat file in the
package.

e Writing to HKLM\ \Software is not allowed if the corresponding key/value exists, i.e. modifying existing
keys.

e Writing to HKLM\ \Software is allowed as long as a corresponding key/value does not exist in the package
and the user has the correct access permissions.

For more detail on the technical basis for these limitations, please consult Microsoft’s documentation on packaged
full-trust apps, currently available at docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-
scenes

4.3 The nuget.org packages

Added in version 3.5.2.

The nuget.org package is a reduced size Python environment intended for use on continuous integration and build
systems that do not have a system-wide install of Python. While nuget is “the package manager for .NET”, it also
works perfectly fine for packages containing build-time tools.

Visit nuget.org for the most up-to-date information on using nuget. What follows is a summary that is sufficient for
Python developers.

The nuget . exe command line tool may be downloaded directly from https://aka.ms/nugetclidl, for
example, using curl or PowerShell. With the tool, the latest version of Python for 64-bit or 32-bit machines is installed
using:

nuget.exe install python -ExcludeVersion -OutputDirectory .
nuget.exe install pythonx86 -ExcludeVersion -OutputDirectory .

To select a particular version, add a ~Version 3.x.y. The output directory may be changed from ., and the
package will be installed into a subdirectory. By default, the subdirectory is named the same as the package, and
without the ~-ExcludeVersion option this name will include the specific version installed. Inside the subdirectory
is a tools directory that contains the Python installation:

Without -ExcludeVersion
> .\python.3.5.2\tools\python.exe -V
Python 3.5.2

With -ExcludeVersion
> .\python\tools\python.exe -V
Python 3.5.2

In general, nuget packages are not upgradeable, and newer versions should be installed side-by-side and referenced
using the full path. Alternatively, delete the package directory manually and install it again. Many CI systems will do
this automatically if they do not preserve files between builds.

Alongside the t ools directory is a build\native directory. This contains a MSBuild properties file python.
props that can be used in a C++ project to reference the Python install. Including the settings will automatically
use the headers and import libraries in your build.

The package information pages on nuget.org are www.nuget.org/packages/python for the 64-bit version,
www.nuget.org/packages/pythonx86 for the 32-bit version, and www.nuget.org/packages/pythonarm64 for the
ARMO64 version

50 Chapter 4. Using Python on Windows

https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://www.nuget.org/
https://www.nuget.org/packages/python
https://www.nuget.org/packages/pythonx86
https://www.nuget.org/packages/pythonarm64

Python Setup and Usage, Release 3.13.0rc2

4.3.1 Free-threaded packages

Added in version 3.13: (Experimental)

© Note

Everything described in this section is considered experimental, and should be expected to change in future
releases.

Packages containing free-threaded binaries are named python-freethreaded for the 64-bit version, pythonx86-
freethreaded for the 32-bit version, and pythonarm64-freethreaded for the ARM64 version. These packages contain
both the python3.13t.exe and python. exe entry points, both of which run free threaded.

4.4 The embeddable package

Added in version 3.5.

The embedded distribution is a ZIP file containing a minimal Python environment. It is intended for acting as part
of another application, rather than being directly accessed by end-users.

When extracted, the embedded distribution is (almost) fully isolated from the user’s system, including environment
variables, system registry settings, and installed packages. The standard library is included as pre-compiled and
optimized . pyc files in a ZIP, and python3.d11, python37.d1l1, python.exe and pythonw.exe are
all provided. Tcl/tk (including all dependents, such as Idle), pip and the Python documentation are not included.

O Note

The embedded distribution does not include the Microsoft C Runtime and it is the responsibility of the appli-
cation installer to provide this. The runtime may have already been installed on a user’s system previously or
automatically via Windows Update, and can be detected by finding ucrtbase.d11 in the system directory.

Third-party packages should be installed by the application installer alongside the embedded distribution. Using pip
to manage dependencies as for a regular Python installation is not supported with this distribution, though with some
care it may be possible to include and use pip for automatic updates. In general, third-party packages should be
treated as part of the application (“vendoring”) so that the developer can ensure compatibility with newer versions
before providing updates to users.

The two recommended use cases for this distribution are described below.

4.4.1 Python Application

An application written in Python does not necessarily require users to be aware of that fact. The embedded distribution
may be used in this case to include a private version of Python in an install package. Depending on how transparent
it should be (or conversely, how professional it should appear), there are two options.

Using a specialized executable as a launcher requires some coding, but provides the most transparent experience for
users. With a customized launcher, there are no obvious indications that the program is running on Python: icons
can be customized, company and version information can be specified, and file associations behave properly. In most
cases, a custom launcher should simply be able to call Py_Main with a hard-coded command line.

The simpler approach is to provide a batch file or generated shortcut that directly calls the python.exe or
pythonw.exe with the required command-line arguments. In this case, the application will appear to be Python
and not its actual name, and users may have trouble distinguishing it from other running Python processes or file
associations.

4.4. The embeddable package 51

https://www.nuget.org/packages/python-freethreaded
https://www.nuget.org/packages/pythonx86-freethreaded
https://www.nuget.org/packages/pythonx86-freethreaded
https://www.nuget.org/packages/pythonarm64-freethreaded
https://docs.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist#visual-studio-2015-2017-2019-and-2022

Python Setup and Usage, Release 3.13.0rc2

With the latter approach, packages should be installed as directories alongside the Python executable to ensure they
are available on the path. With the specialized launcher, packages can be located in other locations as there is an
opportunity to specify the search path before launching the application.

4.4.2 Embedding Python

Applications written in native code often require some form of scripting language, and the embedded Python distri-
bution can be used for this purpose. In general, the majority of the application is in native code, and some part will
either invoke python . exe or directly use python3.d11. For either case, extracting the embedded distribution
to a subdirectory of the application installation is sufficient to provide a loadable Python interpreter.

As with the application use, packages can be installed to any location as there is an opportunity to specify search
paths before initializing the interpreter. Otherwise, there is no fundamental differences between using the embedded
distribution and a regular installation.

4.5 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality. The fol-
lowing is a list of popular versions and their key features:

ActivePython
Installer with multi-platform compatibility, documentation, PyWin32

Anaconda
Popular scientific modules (such as numpy, scipy and pandas) and the conda package manager.

Enthought Deployment Manager
“The Next Generation Python Environment and Package Manager”.

Previously Enthought provided Canopy, but it reached end of life in 2016.

WinPython
Windows-specific distribution with prebuilt scientific packages and tools for building packages.

Note that these packages may not include the latest versions of Python or other libraries, and are not maintained or
supported by the core Python team.

4.6 Configuring Python

To run Python conveniently from a command prompt, you might consider changing some default environment vari-
ables in Windows. While the installer provides an option to configure the PATH and PATHEXT variables for you,
this is only reliable for a single, system-wide installation. If you regularly use multiple versions of Python, consider
using the Python Launcher for Windows.

4.6.1 Excursus: Setting environment variables

Windows allows environment variables to be configured permanently at both the User level and the System level, or
temporarily in a command prompt.

To temporarily set environment variables, open Command Prompt and use the set command:

C:\>set PATH=C:\Program Files\Python 3.9;%PATH%
C:\>set PYTHONPATH=%PYTHONPATHS;C:\My_python_lib
C:\>python

52 Chapter 4. Using Python on Windows

https://www.activestate.com/products/python/
https://www.anaconda.com/download/
https://www.enthought.com/edm/
https://support.enthought.com/hc/en-us/articles/360038600051-Canopy-GUI-end-of-life-transition-to-the-Enthought-Deployment-Manager-EDM-and-Visual-Studio-Code
https://winpython.github.io/

Python Setup and Usage, Release 3.13.0rc2

These changes will apply to any further commands executed in that console, and will be inherited by any applications
started from the console.

Including the variable name within percent signs will expand to the existing value, allowing you to add your new value
at either the start or the end. Modifying PATH by adding the directory containing python . exe to the start is a
common way to ensure the correct version of Python is launched.

To permanently modify the default environment variables, click Start and search for ‘edit environment variables’, or
open System properties, Advanced system settings and click the Environment Variables button. In this dialog, you
can add or modify User and System variables. To change System variables, you need non-restricted access to your
machine (i.e. Administrator rights).

© Note

Windows will concatenate User variables affer System variables, which may cause unexpected results when mod-
ifying PATH.

The PYTHONPATH variable is used by all versions of Python, so you should not permanently configure it unless
the listed paths only include code that is compatible with all of your installed Python versions.

> See also

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables
Overview of environment variables on Windows

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
The set command, for temporarily modifying environment variables

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
The setx command, for permanently modifying environment variables

4.6.2 Finding the Python executable

Changed in version 3.5.

Besides using the automatically created start menu entry for the Python interpreter, you might want to start Python
in the command prompt. The installer has an option to set that up for you.

On the first page of the installer, an option labelled “Add Python to PATH” may be selected to have the installer
add the install location into the PATH. The location of the Scripts\ folder is also added. This allows you to type
python to run the interpreter, and pip for the package installer. Thus, you can also execute your scripts with
command line options, see Command line documentation.

If you don’t enable this option at install time, you can always re-run the installer, select Modify, and enable it. Alterna-
tively, you can manually modify the PATH using the directions in Excursus: Setting environment variables. You need
to set your PATH environment variable to include the directory of your Python installation, delimited by a semicolon
from other entries. An example variable could look like this (assuming the first two entries already existed):

[C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Python 3.9

4.6. Configuring Python 53

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx

Python Setup and Usage, Release 3.13.0rc2

4.7 UTF-8 mode

Added in version 3.7.

Windows still uses legacy encodings for the system encoding (the ANSI Code Page). Python uses it for the default
encoding of text files (e.g. locale.getencoding()).

This may cause issues because UTF-8 is widely used on the internet and most Unix systems, including WSL (Windows
Subsystem for Linux).

You can use the Python UTF-8 Mode to change the default text encoding to UTF-8. You can enable the Python UTF-
8 Mode via the —-X ut £8 command line option, or the PYTHONUTF 8=1 environment variable. See PYTHONUTF'8
for enabling UTF-8 mode, and Excursus: Setting environment variables for how to modify environment variables.

When the Python UTF-8 Mode is enabled, you can still use the system encoding (the ANSI Code Page) via the
“mbcs” codec.

Note that adding PYTHONUTF 8=1 to the default environment variables will affect all Python 3.7+ applications on
your system. If you have any Python 3.7+ applications which rely on the legacy system encoding, it is recommended
to set the environment variable temporarily or use the —X ut £8 command line option.

© Note

Even when UTF-8 mode is disabled, Python uses UTF-8 by default on Windows for:
¢ Console I/0 including standard I/O (see PEP 528 for details).
e The filesystem encoding (see PEP 529 for details).

4.8 Python Launcher for Windows

Added in version 3.3.

The Python launcher for Windows is a utility which aids in locating and executing of different Python versions. It
allows scripts (or the command-line) to indicate a preference for a specific Python version, and will locate and execute
that version.

Unlike the PATH variable, the launcher will correctly select the most appropriate version of Python. It will prefer per-
user installations over system-wide ones, and orders by language version rather than using the most recently installed
version.

The launcher was originally specified in PEP 397.

4.8.1 Getting started
From the command-line

Changed in version 3.6.

System-wide installations of Python 3.3 and later will put the launcher on your PATH. The launcher is compatible
with all available versions of Python, so it does not matter which version is installed. To check that the launcher is
available, execute the following command in Command Prompt:

&)

You should find that the latest version of Python you have installed is started - it can be exited as normal, and any
additional command-line arguments specified will be sent directly to Python.

If you have multiple versions of Python installed (e.g., 3.7 and 3.13) you will have noticed that Python 3.13 was
started - to launch Python 3.7, try the command:

54 Chapter 4. Using Python on Windows

https://peps.python.org/pep-0528/
https://peps.python.org/pep-0529/
https://peps.python.org/pep-0397/

Python Setup and Usage, Release 3.13.0rc2

[py -3.7

If you want the latest version of Python 2 you have installed, try the command:

[py =2

If you see the following error, you do not have the launcher installed:

'py' is not recognized as an internal or external command,
operable program or batch file.

The command:

[py --list

displays the currently installed version(s) of Python.

The —x . y argument is the short form of the -V : Company/Tag argument, which allows selecting a specific Python
runtime, including those that may have come from somewhere other than python.org. Any runtime registered by
following PEP 514 will be discoverable. The ——11st command lists all available runtimes using the -~V : format.

When using the —V: argument, specifying the Company will limit selection to runtimes from that provider, while
specifying only the Tag will select from all providers. Note that omitting the slash implies a tag:

Select any '3.*' tagged runtime
py —V:3

Select any 'PythonCore' released runtime
py -V:PythonCore/

Select PythonCore's latest Python 3 runtime
py -V:PythonCore/3

The short form of the argument (- 3) only ever selects from core Python releases, and not other distributions. However,
the longer form (—V : 3) will select from any.

The Company is matched on the full string, case-insenitive. The Tag is matched oneither the full string, or a prefix,
provided the next character is a dot or a hyphen. This allows -V :3.1 to match 3.1-32, but not 3.10. Tags are
sorted using numerical ordering (3. 10 is newer than 3. 1), but are compared using text (-V: 3. 01 does not match
3.1).

4.8. Python Launcher for Windows 55

https://peps.python.org/pep-0514/

Python Setup and Usage, Release 3.13.0rc2

Virtual environments

Added in version 3.5.

If the launcher is run with no explicit Python version specification, and a virtual environment (created with the standard
library venv module or the external virtualenv tool) active, the launcher will run the virtual environment’s
interpreter rather than the global one. To run the global interpreter, either deactivate the virtual environment, or
explicitly specify the global Python version.

From a script

Let’s create a test Python script - create a file called hello . py with the following contents

#! python
import sys
sys.stdout.write("hello from Python \n" % (sys.version,))

From the directory in which hello.py lives, execute the command:

[py hello.py }

You should notice the version number of your latest Python 2.x installation is printed. Now try changing the first line
to be:

[#/ python3 }

Re-executing the command should now print the latest Python 3.x information. As with the above command-line
examples, you can specify a more explicit version qualifier. Assuming you have Python 3.7 installed, try changing
the first line to #! python3. 7 and you should find the 3.7 version information printed.

Note that unlike interactive use, a bare “python” will use the latest version of Python 2.x that you have installed.
This is for backward compatibility and for compatibility with Unix, where the command python typically refers to
Python 2.

From file associations

The launcher should have been associated with Python files (i.e. .py, .pyw, .pyc files) when it was installed.
This means that when you double-click on one of these files from Windows explorer the launcher will be used, and
therefore you can use the same facilities described above to have the script specify the version which should be used.

The key benefit of this is that a single launcher can support multiple Python versions at the same time depending on
the contents of the first line.

4.8.2 Shebang Lines

If the first line of a script file starts with # !, it is known as a “shebang” line. Linux and other Unix like operating
systems have native support for such lines and they are commonly used on such systems to indicate how a script should
be executed. This launcher allows the same facilities to be used with Python scripts on Windows and the examples
above demonstrate their use.

To allow shebang lines in Python scripts to be portable between Unix and Windows, this launcher supports a number
of ‘virtual’ commands to specify which interpreter to use. The supported virtual commands are:

e /usr/bin/env
e /usr/bin/python
e /usr/local/bin/python

* python

56 Chapter 4. Using Python on Windows

Python Setup and Usage, Release 3.13.0rc2

For example, if the first line of your script starts with

[#l /usr/bin/python

The default Python or an active virtual environment will be located and used. As many Python scripts written to work
on Unix will already have this line, you should find these scripts can be used by the launcher without modification. If
you are writing a new script on Windows which you hope will be useful on Unix, you should use one of the shebang
lines starting with /usr.

Any of the above virtual commands can be suffixed with an explicit version (either just the major version, or the
major and minor version). Furthermore the 32-bit version can be requested by adding “-32” after the minor version.
Le. /usr/bin/python3.7-32 will request usage of the 32-bit Python 3.7. If a virtual environment is active,
the version will be ignored and the environment will be used.

Added in version 3.7: Beginning with python launcher 3.7 it is possible to request 64-bit version by the “-64” suffix.
Furthermore it is possible to specify a major and architecture without minor (i.e. /usr/bin/python3-64).

Changed in version 3.11: The “-64” suffix is deprecated, and now implies “any architecture that is not provably
1386/32-bit”. To request a specific environment, use the new —V : TAG argument with the complete tag.

Changed in version 3.13: Virtual commands referencing python now prefer an active virtual environment rather
than searching PATH. This handles cases where the shebang specifies /usr/bin/env python3butpython3.
exe is not present in the active environment.

The /usr/bin/env form of shebang line has one further special property. Before looking for installed Python
interpreters, this form will search the executable PATH for a Python executable matching the name provided as
the first argument. This corresponds to the behaviour of the Unix env program, which performs a PATH search.
If an executable matching the first argument after the env command cannot be found, but the argument starts
with python, it will be handled as described for the other virtual commands. The environment variable PY—
LAUNCHER_NO_SEARCH_PATH may be set (to any value) to skip this search of PATH.

Shebang lines that do not match any of these patterns are looked up in the [commands] section of the launcher’s
.INI file. This may be used to handle certain commands in a way that makes sense for your system. The name of the
command must be a single argument (no spaces in the shebang executable), and the value substituted is the full path
to the executable (additional arguments specified in the .INI will be quoted as part of the filename).

[commands]
/bin/xpython=C:\Program Files\XPython\python.exe

Any commands not found in the .INI file are treated as Windows executable paths that are absolute or relative to the
directory containing the script file. This is a convenience for Windows-only scripts, such as those generated by an
installer, since the behavior is not compatible with Unix-style shells. These paths may be quoted, and may include
multiple arguments, after which the path to the script and any additional arguments will be appended.

4.8.3 Arguments in shebang lines

The shebang lines can also specify additional options to be passed to the Python interpreter. For example, if you have
a shebang line:

[#/ /usr/bin/python -v

Then Python will be started with the —v option

4.8. Python Launcher for Windows 57

Python Setup and Usage, Release 3.13.0rc2

4.8.4 Customization
Customization via INI files

Two .ini files will be searched by the launcher - py.ini in the current user’s application data directory
($LOCALAPPDATAS or $env:LocalAppData)and py. ini in the same directory as the launcher. The same
.ini files are used for both the ‘console’ version of the launcher (i.e. py.exe) and for the ‘windows’ version (i.e.
pyw.exe).

Customization specified in the “application directory” will have precedence over the one next to the executable, so a
user, who may not have write access to the .ini file next to the launcher, can override commands in that global .ini
file.

Customizing default Python versions

In some cases, a version qualifier can be included in a command to dictate which version of Python will be used by
the command. A version qualifier starts with a major version number and can optionally be followed by a period (*.")
and a minor version specifier. Furthermore it is possible to specify if a 32 or 64 bit implementation shall be requested
by adding “-32” or “-64”.

For example, a shebang line of # ! python has no version qualifier, while # ! pyt hon3 has a version qualifier which
specifies only a major version.

If no version qualifiers are found in a command, the environment variable PY_PYTHON can be set to specify the
default version qualifier. If it is not set, the default is “3”. The variable can specify any value that may be passed on
the command line, such as “3”, “3.7”, “3.7-32” or “3.7-64”. (Note that the “-64” option is only available with the
launcher included with Python 3.7 or newer.)

If no minor version qualifiers are found, the environment variable PY_PYTHON{major} (where {major} is the
current major version qualifier as determined above) can be set to specify the full version. If no such option is found,
the launcher will enumerate the installed Python versions and use the latest minor release found for the major version,
which is likely, although not guaranteed, to be the most recently installed version in that family.

On 64-bit Windows with both 32-bit and 64-bit implementations of the same (major.minor) Python version installed,
the 64-bit version will always be preferred. This will be true for both 32-bit and 64-bit implementations of the
launcher - a 32-bit launcher will prefer to execute a 64-bit Python installation of the specified version if available.
This is so the behavior of the launcher can be predicted knowing only what versions are installed on the PC and
without regard to the order in which they were installed (i.e., without knowing whether a 32 or 64-bit version of
Python and corresponding launcher was installed last). As noted above, an optional “-32” or “-64” suffix can be used
on a version specifier to change this behaviour.

Examples:

* If no relevant options are set, the commands python and python2 will use the latest Python 2.x version
installed and the command python3 will use the latest Python 3.x installed.

e The command python3. 7 will not consult any options at all as the versions are fully specified.
e If PY_PYTHON=3, the commands python and python3 will both use the latest installed Python 3 version.

e If PY_PYTHON=3.7-32, the command python will use the 32-bit implementation of 3.7 whereas the
command python3 will use the latest installed Python (PY_PYTHON was not considered at all as a major
version was specified.)

e If PY_PYTHON=3 and PY_PYTHON3=3. 7, the commands python and python3 will both use specifi-
cally 3.7

In addition to environment variables, the same settings can be configured in the .INI file used by the launcher. The
section in the INI file is called [defaults] and the key name will be the same as the environment variables
without the leading PY__ prefix (and note that the key names in the INI file are case insensitive.) The contents of an
environment variable will override things specified in the INI file.

For example:

58 Chapter 4. Using Python on Windows

Python Setup and Usage, Release 3.13.0rc2

 Setting PY_PYTHON=3. 7 is equivalent to the INI file containing:

[defaults]
python=3.7

 Setting PY_PYTHON=3 and PY_PYTHON3=3. 7 is equivalent to the INI file containing:

[defaults]
python=3
python3=3.7

4.8.5 Diagnostics

If an environment variable PYLAUNCHER_DEBUG is set (to any value), the launcher will print diagnostic information
to stderr (i.e. to the console). While this information manages to be simultaneously verbose and terse, it should allow
you to see what versions of Python were located, why a particular version was chosen and the exact command-line
used to execute the target Python. It is primarily intended for testing and debugging.

4.8.6 Dry Run

If an environment variable PYLAUNCHER_DRYRUN is set (to any value), the launcher will output the command it
would have run, but will not actually launch Python. This may be useful for tools that want to use the launcher to
detect and then launch Python directly. Note that the command written to standard output is always encoded using
UTF-8, and may not render correctly in the console.

4.8.7 Install on demand

If an environment variable PYLAUNCHER_ALLOW_INSTALL is set (to any value), and the requested Python version
is not installed but is available on the Microsoft Store, the launcher will attempt to install it. This may require user
interaction to complete, and you may need to run the command again.

An additional PYLAUNCHER_ALWAYS_ INSTALL variable causes the launcher to always try to install Python, even
if it is detected. This is mainly intended for testing (and should be used with PYLAUNCHER_DRYRUN).

4.8.8 Return codes
The following exit codes may be returned by the Python launcher. Unfortunately, there is no way to distinguish these
from the exit code of Python itself.

The names of codes are as used in the sources, and are only for reference. There is no way to access or resolve them
apart from reading this page. Entries are listed in alphabetical order of names.

Name Value Description

RC_BAD_VENV_CFG 107 A pyvenv.cfg was found but is corrupt.

RC_CREATE_PROCESS 101 Failed to launch Python.

RC_INSTALLING 111 An install was started, but the command will need to be re-run after it com-
pletes.

RC_INTERNAL_ERROR 109 Unexpected error. Please report a bug.

RC_NO_COMMANDLINI 108 Unable to obtain command line from the operating system.

RC_NO_PYTHON 103 Unable to locate the requested version.

RC_NO_VENV_CFG 106 A pyvenv . cfg was required but not found.

4.8. Python Launcher for Windows 59

Python Setup and Usage, Release 3.13.0rc2

4.9

Finding modules

These notes supplement the description at sys-path-init with detailed Windows notes.

When no ._pth file is found, this is how sys.path is populated on Windows:

An empty entry is added at the start, which corresponds to the current directory.

If the environment variable PYTHONPA TH exists, as described in Environment variables, its entries are added
next. Note that on Windows, paths in this variable must be separated by semicolons, to distinguish them from
the colon used in drive identifiers (C: \ etc.).

Additional “application paths” can be added in the registry as subkeys of \SOFTWARE\
Python\PythonCore{version}\PythonPath under both the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE hives. Subkeys which have semicolon-delimited path strings as their default value
will cause each path to be added to sys . path. (Note that all known installers only use HKLM, so HKCU is
typically empty.)

If the environment variable PYTHONHOME is set, it is assumed as “Python Home”. Otherwise, the path of
the main Python executable is used to locate a “landmark file” (either Lib\os.py or pythonXY.zip) to
deduce the “Python Home”. If a Python home is found, the relevant sub-directories added to sys.path
(Lib, plat-win, etc) are based on that folder. Otherwise, the core Python path is constructed from the
PythonPath stored in the registry.

If the Python Home cannot be located, no PYTHONPATH is specified in the environment, and no registry
entries can be found, a default path with relative entries is used (e.g. . \Lib; . \plat-win, etc).

If apyvenv. cfg file is found alongside the main executable or in the directory one level above the executable, the
following variations apply:

If home is an absolute path and PYTHONHOME is not set, this path is used instead of the path to the main
executable when deducing the home location.

The end result of all this is:

When running python . exe, or any other .exe in the main Python directory (either an installed version, or
directly from the PCbuild directory), the core path is deduced, and the core paths in the registry are ignored.
Other “application paths” in the registry are always read.

When Python is hosted in another .exe (different directory, embedded via COM, etc), the “Python Home” will
not be deduced, so the core path from the registry is used. Other “application paths” in the registry are always
read.

If Python can’t find its home and there are no registry value (frozen .exe, some very strange installation setup)
you get a path with some default, but relative, paths.

For those who want to bundle Python into their application or distribution, the following advice will prevent conflicts
with other installations:

Include a . _pth file alongside your executable containing the directories to include. This will ignore paths
listed in the registry and environment variables, and also ignore site unless import site is listed.

If you are loading python3.d11 or python37.d11 in your own executable, explicitly set PyConfig.
module_search_paths before Py_TInitializeFromConfig().

Clear and/or overwrite PYTHONPATH and set PYTHONHOME before launching python.exe from your
application.

If you cannot use the previous suggestions (for example, you are a distribution that allows people to run
python.exe directly), ensure that the landmark file (Lib\os.py) exists in your install directory. (Note
that it will not be detected inside a ZIP file, but a correctly named ZIP file will be detected instead.)

These will ensure that the files in a system-wide installation will not take precedence over the copy of the standard
library bundled with your application. Otherwise, your users may experience problems using your application. Note
that the first suggestion is the best, as the others may still be susceptible to non-standard paths in the registry and user
site-packages.

60

Chapter 4. Using Python on Windows

Python Setup and Usage, Release 3.13.0rc2

Changed in version 3.6: Add ._pth file support and removes applocal option from pyvenv.cfg.
Changed in version 3.6: Add pythonXX. zip as a potential landmark when directly adjacent to the executable.

Deprecated since version 3.6: Modules specified in the registry under Modules (not PythonPath) may be im-
ported by importlib.machinery.WindowsRegistryFinder. Thisfinder is enabled on Windows in 3.6.0
and earlier, but may need to be explicitly added to sys .meta_path in the future.

4.10 Additional modules

Even though Python aims to be portable among all platforms, there are features that are unique to Windows. A couple
of modules, both in the standard library and external, and snippets exist to use these features.

The Windows-specific standard modules are documented in mswin-specific-services.

4.10.1 PyWin32

The PyWin32 module by Mark Hammond is a collection of modules for advanced Windows-specific support. This
includes utilities for:

* Component Object Model (COM)

e Win32 API calls

* Registry

* Event log

¢ Microsoft Foundation Classes (MFC) user interfaces

PythonWin is a sample MFC application shipped with PyWin32. It is an embeddable IDE with a built-in debugger.

> See also

Win32 How Do I...?
by Tim Golden

Python and COM
by David and Paul Boddie

4.10.2 cx_Freeze

cx_Freeze wraps Python scripts into executable Windows programs (*. exe files). When you have done this, you
can distribute your application without requiring your users to install Python.

4.11 Compiling Python on Windows

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh checkout.

The source tree contains a build solution and project files for Microsoft Visual Studio, which is the compiler used to
build the official Python releases. These files are in the PCbui 1d directory.

Check PCbuild/readme. txt for general information on the build process.

For extension modules, consult building-on-windows.

4.10. Additional modules 61

https://pypi.org/project/PyWin32/
https://docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications
https://web.archive.org/web/20060524042422/https://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
https://www.boddie.org.uk/python/COM.html
https://cx-freeze.readthedocs.io/en/latest/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#get-the-source-code

Python Setup and Usage, Release 3.13.0rc2

4.12 Other Platforms

With ongoing development of Python, some platforms that used to be supported earlier are no longer supported (due
to the lack of users or developers). Check PEP 11 for details on all unsupported platforms.

¢ Windows CE is no longer supported since Python 3 (if it ever was).
* The Cygwin installer offers to install the Python interpreter as well

See Python for Windows for detailed information about platforms with pre-compiled installers.

62 Chapter 4. Using Python on Windows

https://peps.python.org/pep-0011/
https://pythonce.sourceforge.net/
https://github.com/python/cpython/issues/71542
https://cygwin.com/
https://cygwin.com/packages/summary/python3.html
https://www.python.org/downloads/windows/

CHAPTER
FIVE

USING PYTHON ON A MAC

Author
Bob Savage <bobsavage @mac.com>

Python on a Mac running macOS is in principle very similar to Python on any other Unix platform, but there are a
number of additional features such as the integrated development environment (IDE) and the Package Manager that
are worth pointing out.

5.1 Getting and Installing Python

macOS used to come with Python 2.7 pre-installed between versions 10.8 and 12.3. You are invited to install the
most recent version of Python 3 from the Python website. A current “universal2 binary” build of Python, which runs
natively on the Mac’s new Apple Silicon and legacy Intel processors, is available there.

What you get after installing is a number of things:

* APython 3.13 folder in your Applications folder. In here you find IDLE, the development envi-
ronment that is a standard part of official Python distributions; and Python Launcher, which handles
double-clicking Python scripts from the Finder.

¢ A framework /Library/Frameworks/Python. framework, which includes the Python executable
and libraries. The installer adds this location to your shell path. To uninstall Python, you can remove these
three things. A symlink to the Python executable is placed in /usr/local/bin/.

© Note

On macOS 10.8-12.3, the Apple-provided build of Python is installed in /System/Library/
Frameworks/Python.framework and /usr/bin/python, respectively. You should never modify
or delete these, as they are Apple-controlled and are used by Apple- or third-party software. Remember that if
you choose to install a newer Python version from python.org, you will have two different but functional Python
installations on your computer, so it will be important that your paths and usages are consistent with what you
want to do.

IDLE includes a Help menu that allows you to access Python documentation. If you are completely new to Python
you should start reading the tutorial introduction in that document.

If you are familiar with Python on other Unix platforms you should read the section on running Python scripts from
the Unix shell.

63

mailto:bobsavage@mac.com
https://developer.apple.com/documentation/macos-release-notes/macos-12_3-release-notes#Python
https://www.python.org/downloads/macos/

Python Setup and Usage, Release 3.13.0rc2

5.1.1 How to run a Python script
Your best way to get started with Python on macOS is through the IDLE integrated development environment; see
section The IDE and use the Help menu when the IDE is running.

If you want to run Python scripts from the Terminal window command line or from the Finder you first need an editor
to create your script. macOS comes with a number of standard Unix command line editors, vim nano among them.
If you want a more Mac-like editor, BBEdit from Bare Bones Software (see https://www.barebones.com/products/
bbedit/index.html) are good choices, as is TextMate (see https://macromates.com). Other editors include MacVim
(https://macvim.org) and Aquamacs (https://aquamacs.org).

To run your script from the Terminal window you must make sure that /usr/local/bin is in your shell search
path.

To run your script from the Finder you have two options:
* Dragitto Python Launcher.

¢ Select Python Launcher as the default application to open your script (or any .py script) through the
finder Info window and double-click it. Python Launcher has various preferences to control how your
script is launched. Option-dragging allows you to change these for one invocation, or use its Preferences menu
to change things globally.

5.1.2 Running scripts with a GUI

With older versions of Python, there is one macOS quirk that you need to be aware of : programs that talk to the Aqua
window manager (in other words, anything that has a GUI) need to be run in a special way. Use pythonw instead
of python to start such scripts.

With Python 3.9, you can use either python or pythonw.

5.1.3 Configuration

Python on macOS honors all standard Unix environment variables such as PYTHONPATH, but setting these variables
for programs started from the Finder is non-standard as the Finder does not read your .profile or .cshrc at
startup. You need to create a file ~/ .MacOSX/environment .plist. See Apple’s Technical Q&A QA1067
for details.

For more information on installation Python packages, see section Installing Additional Python Packages.

5.2 The IDE

Python ships with the standard IDLE development environment. A good introduction to using IDLE can be found at
https://www.hashcollision.org/hkn/python/idle_intro/index.html.

5.3 Installing Additional Python Packages

This section has moved to the Python Packaging User Guide.

64 Chapter 5. Using Python on a Mac

https://www.barebones.com/products/bbedit/index.html
https://www.barebones.com/products/bbedit/index.html
https://macromates.com
https://macvim.org
https://aquamacs.org
https://developer.apple.com/library/archive/qa/qa1067/_index.html
https://www.hashcollision.org/hkn/python/idle_intro/index.html
https://packaging.python.org/en/latest/tutorials/installing-packages/

Python Setup and Usage, Release 3.13.0rc2

5.4 GUI Programming

There are several options for building GUI applications on the Mac with Python.

PyObjC is a Python binding to Apple’s Objective-C/Cocoa framework, which is the foundation of most modern Mac
development. Information on PyObjC is available from pyobjc.

The standard Python GUI toolkit is tkinter, based on the cross-platform Tk toolkit (https://www.tcl.tk). An
Aqua-native version of Tk is bundled with macOS by Apple, and the latest version can be downloaded and installed
from https://www.activestate.com; it can also be built from source.

A number of alternative macOS GUI toolkits are available:
* PySide: Official Python bindings to the Qt GUI toolkit.
e PyQt: Alternative Python bindings to Qt.
¢ Kivy: A cross-platform GUI toolkit that supports desktop and mobile platforms.
* Toga: Part of the BeeWare Project; supports desktop, mobile, web and console apps.

e wxPython: A cross-platform toolkit that supports desktop operating systems.

5.5 Distributing Python Applications

A range of tools exist for converting your Python code into a standalone distributable application:
* py2app: Supports creating macOS . app bundles from a Python project.

* Briefcase: Part of the BeeWare Project; a cross-platform packaging tool that supports creation of . app bundles
on macOS, as well as managing signing and notarization.

 Pylnstaller: A cross-platform packaging tool that creates a single file or folder as a distributable artifact.

5.5.1 App Store Compliance
Apps submitted for distribution through the macOS App Store must pass Apple’s app review process. This process
includes a set of automated validation rules that inspect the submitted application bundle for problematic code.

The Python standard library contains some code that is known to violate these automated rules. While these violations
appear to be false positives, Apple’s review rules cannot be challenged. Therefore, it is necessary to modify the Python
standard library for an app to pass App Store review.

The Python source tree contains a patch file that will remove all code that is known to cause issues with
the App Store review process. This patch is applied automatically when CPython is configured with the
-—with-app-store-compliance option.

This patch is not normally required to use CPython on a Mac; nor is it required if you are distributing an app outside
the macOS App Store. It is only required if you are using the macOS App Store as a distribution channel.

5.6 Other Resources

The Pythonmac-SIG mailing list is an excellent support resource for Python users and developers on the Mac:
https://www.python.org/community/sigs/current/pythonmac-sig/
Another useful resource is the MacPython wiki:

https://wiki.python.org/moin/MacPython

5.4. GUI Programming 65

https://pypi.org/project/pyobjc/
https://www.tcl.tk
https://www.activestate.com
https://www.qt.io/qt-for-python
https://qt.io
https://riverbankcomputing.com/software/pyqt/intro
https://kivy.org
https://toga.readthedocs.io
https://beeware.org
https://www.wxpython.org
https://pypi.org/project/py2app/
https://briefcase.readthedocs.io
https://beeware.org
https://pyinstaller.org/
https://github.com/python/cpython/tree/3.13/Mac/Resources/app-store-compliance.patch
https://www.python.org/community/sigs/current/pythonmac-sig/
https://wiki.python.org/moin/MacPython

Python Setup and Usage, Release 3.13.0rc2

66

Chapter 5. Using Python on a Mac

CHAPTER
SIX

USING PYTHON ON IOS

Authors
Russell Keith-Magee (2024-03)

Python on iOS is unlike Python on desktop platforms. On a desktop platform, Python is generally installed as a
system resource that can be used by any user of that computer. Users then interact with Python by running a python
executable and entering commands at an interactive prompt, or by running a Python script.

On i0S, there is no concept of installing as a system resource. The only unit of software distribution is an “app”.
There is also no console where you could run a python executable, or interact with a Python REPL.

As aresult, the only way you can use Python on iOS is in embedded mode - that is, by writing a native iOS application,
and embedding a Python interpreter using 1 1 bPython, and invoking Python code using the Python embedding API.
The full Python interpreter, the standard library, and all your Python code is then packaged as a standalone bundle
that can be distributed via the iOS App Store.

If you're looking to experiment for the first time with writing an iOS app in Python, projects such as BeeWare and
Kivy will provide a much more approachable user experience. These projects manage the complexities associated
with getting an iOS project running, so you only need to deal with the Python code itself.

6.1 Python at runtime on iOS

6.1.1 iOS version compatibility

The minimum supported iOS version is specified at compile time, using the ——host option to configure. By
default, when compiled for iOS, Python will be compiled with a minimum supported iOS version of 13.0. To use
a different minimum i0S version, provide the version number as part of the ——host argument - for example,
—-—host=armé4-apple-iosl5.4-simulator would compile an ARM64 simulator build with a deploy-
ment target of 15.4.

6.1.2 Platform identification
When executing on i0S, sys.platform will report as ios. This value will be returned on an iPhone or iPad,
regardless of whether the app is running on the simulator or a physical device.

Information about the specific runtime environment, including the iOS version, device model, and whether the device
is a simulator, can be obtained using platform.ios_ver (). platform.system() will report 10S or
iPadoOs, depending on the device.

os.uname () reports kernel-level details; it will report a name of Darwin.

67

https://beeware.org
https://kivy.org

Python Setup and Usage, Release 3.13.0rc2

6.1.3 Standard library availability

The Python standard library has some notable omissions and restrictions on iOS. See the API availability guide for
10S for details.

6.1.4 Binary extension modules

One notable difference about iOS as a platform is that App Store distribution imposes hard requirements on the
packaging of an application. One of these requirements governs how binary extension modules are distributed.

The 10S App Store requires that all binary modules in an iOS app must be dynamic libraries, contained in a framework
with appropriate metadata, stored in the Frameworks folder of the packaged app. There can be only a single binary
per framework, and there can be no executable binary material outside the Frameworks folder.

This conflicts with the usual Python approach for distributing binaries, which allows a binary extension module to be
loaded from any location on sys . path. To ensure compliance with App Store policies, an iOS project must post-
process any Python packages, converting . so binary modules into individual standalone frameworks with appropriate
metadata and signing. For details on how to perform this post-processing, see the guide for adding Python to your
project.

To help Python discover binaries in their new location, the original . so file on sys.path is replaced with a .
fwork file. This file is a text file containing the location of the framework binary, relative to the app bundle. To
allow the framework to resolve back to the original location, the framework must contain a . origin file that contains
the location of the . fwork file, relative to the app bundle.

For example, consider the case of an import from foo.bar import _whiz, where _whiz is implemented
with the binary module sources/foo/bar/_whiz.abi3.so, with sources being the location registered
on sys.path, relative to the application bundle. This module must be distributed as Frameworks/foo.bar.
_whiz.framework/foo.bar._whiz (creating the framework name from the full import path of the mod-
ule), with an Info.plist file in the . framework directory identifying the binary as a framework. The foo.
bar._whiz module would be represented in the original location with a sources/foo/bar/_whiz.abi3.
fwork marker file, containing the path Frameworks/foo.bar._whiz/foo.bar._whiz. The framework
would also contain Frameworks/foo.bar._whiz.framework/foo.bar._whiz.origin, containing
the path to the . fwork file.

When running on i0S, the Python interpreter will install an AppleFrameworkLoader that is able to read and
import . fwork files. Once imported, the __file__ attribute of the binary module will report as the location of
the . fwork file. However, the ModuleSpec for the loaded module will report the origin as the location of the
binary in the framework folder.

6.1.5 Compiler stub binaries

Xcode doesn’t expose explicit compilers for i0S; instead, it uses an xcrun script that resolves to a full compiler path
(e.g., xcrun --sdk iphoneos clang to getthe clang for an iPhone device). However, using this script
poses two problems:

* The output of xcrun includes paths that are machine specific, resulting in a sysconfig module that cannot be
shared between users; and

e It results in CC/CPP/LD/AR definitions that include spaces. There is a lot of C ecosystem tooling that assumes
that you can split a command line at the first space to get the path to the compiler executable; this isn’t the case
when using xcrun.

To avoid these problems, Python provided stubs for these tools. These stubs are shell script wrappers around the
underingly xcrun tools, distributed in a bin folder distributed alongside the compiled iOS framework. These
scripts are relocatable, and will always resolve to the appropriate local system paths. By including these scripts in
the bin folder that accompanies a framework, the contents of the sysconfig module becomes useful for end-users
to compile their own modules. When compiling third-party Python modules for iOS, you should ensure these stub
binaries are on your path.

68 Chapter 6. Using Python on iOS

Python Setup and Usage, Release 3.13.0rc2

6.2 Installing Python on iOS

6.2.1 Tools for building iOS apps

Building for i0S requires the use of Apple’s Xcode tooling. It is strongly recommended that you use the most recent
stable release of Xcode. This will require the use of the most (or second-most) recently released macOS version, as
Apple does not maintain Xcode for older macOS versions. The Xcode Command Line Tools are not sufficient for
i0S development; you need a full Xcode install.

If you want to run your code on the iOS simulator, you'll also need to install an iOS Simulator Platform. You should be
prompted to select an i0OS Simulator Platform when you first run Xcode. Alternatively, you can add an iOS Simulator
Platform by selecting from the Platforms tab of the Xcode Settings panel.

6.2.2 Adding Python to an iOS project

Python can be added to any iOS project, using either Swift or Objective C. The following examples will use Objective
C; if you are using Swift, you may find a library like PythonKit to be helpful.

To add Python to an i0OS Xcode project:

1. Build or obtain a Python XCFramework. See the instructions in iOS/README.rst (in the CPython
source distribution) for details on how to build a Python XCFramework. At a minimum, you will need
a build that supports arm64—-apple—ios, plus one of either arm64-apple-ios—simulator or
x86_64-apple—-ios—-simulator.

2. Drag the XCframework into your iOS project. In the following instructions, we’ll assume you’ve dropped
the XCframework into the root of your project; however, you can use any other location that you want by
adjusting paths as needed.

3. Drag the 10S/Resources/dylib-Info-template.plist file into your project, and ensure it is
associated with the app target.

4. Add your application code as a folder in your Xcode project. In the following instructions, we’ll assume that
your user code is in a folder named app in the root of your project; you can use any other location by adjusting
paths as needed. Ensure that this folder is associated with your app target.

5. Select the app target by selecting the root node of your Xcode project, then the target name in the sidebar that
appears.

6. In the “General” settings, under “Frameworks, Libraries and Embedded Content”, add Python.
xcframework, with “Embed & Sign” selected.

7. In the “Build Settings” tab, modify the following:
¢ Build Options
— User Script Sandboxing: No
— Enable Testability: Yes
* Search Paths
— Framework Search Paths: $ (PROJECT_DIR)
— Header Search Paths: "$ (BUILT_PRODUCTS_DIR) /Python.framework/Headers"
» Apple Clang - Warnings - All languages
— Quoted Include In Framework Header: No

8. Add a build step that copies the Python standard library into your app. In the “Build Phases” tab, add a new
“Run Script” build step before the “Embed Frameworks” step, but after the “Copy Bundle Resources” step.
Name the step “Install Target Specific Python Standard Library”, disable the “Based on dependency analysis”
checkbox, and set the script content to:

6.2. Installing Python on iOS 69

https://github.com/pvieito/PythonKit
https://github.com/python/cpython/tree/3.13/iOS/README.rst

Python Setup and Usage, Release 3.13.0rc2

e R
set -e

mkdir —-p "$CODESIGNING_FOLDER_PATH/python/lib"
if ["SEFFECTIVE_PLATFORM_NAME" = "-iphonesimulator"]; then

echo "Installing Python modules for i0S Simulator"

rsync —au —-delete "SPROJECT_DIR/Python.xcframework/ios—arm64_x86_64—
—»simulator/lib/" "SCODESIGNING_FOLDER_PATH/python/lib/"
else

echo "Installing Python modules for i0S Device"

rsync —au —-delete "$SPROJECT_DIR/Python.xcframework/ios—arm64/lib/" "
—$CODESIGNING_FOLDER_PATH/python/lib/"
fi

. J

Note that the name of the simulator “slice” in the XCframework may be different, depending the CPU archi-
tectures your XCFramework supports.

9. Add a second build step that processes the binary extension modules in the standard library into “Framework”
format. Add a “Run Script” build step directly after the one you added in step 8, named “Prepare Python Binary
Modules”. It should also have “Based on dependency analysis” unchecked, with the following script content:

set -—-e

install_dylib () {
INSTALL_BASE=51
FULL_EXT=S$2

The name of the extension file

EXT=$ (basename "SFULL_EXT")

The location of the extension file, relative to the bundle
RELATIVE_EXT=S${FULL_EXT#SCODESIGNING_FOLDER_PATH/ }

The path to the extension file, relative to the install base
PYTHON_EXT=${RELATIVE_EXT/$INSTALL_BASE/}

The full dotted name of the extension module, constructed from the file.

—path.

FULL_MODULE_NAME=$ (echo $PYTHON_EXT | cut -d "." -f£ 1 | tr "/" ".");

A bundle identifier; not actually used, but required by Xcode framework..
—packaging

FRAMEWORK_BUNDLE_ID=$ (echo $PRODUCT_BUNDLE_IDENTIFIER.S$SFULL_MODULE_NAME |._
—tr "_" o"-")

The name of the framework folder.
FRAMEWORK_FOLDER="Frameworks/SFULL_MODULE_NAME . framework"

If the framework folder doesn't exist, create it.
if [! -d "$SCODESIGNING_FOLDER_PATH/SFRAMEWORK_FOLDER"]; then
echo "Creating framework for SRELATIVE_EXT"
mkdir -p "SCODESIGNING_FOLDER_PATH/SFRAMEWORK_FOLDER"
cp "SCODESIGNING_FOLDER_PATH/dylib-Info-template.plist" "SCODESIGNING_
—FOLDER_PATH/S$FRAMEWORK_FOLDER/Info.plist"
plutil -replace CFBundleExecutable -string "SFULL_MODULE_NAME" "
< $CODESIGNING_FOLDER_PATH/$FRAMEWORK_FOLDER/Info.plist"
plutil -replace CFBundleldentifier -string "$FRAMEWORK_BUNDLE_ID" "
%$CODESIGNINGiFOLDERiPATH/$FRAMEWORK7FOLDER/Info.plist"
fi

echo "Installing binary for S$SFRAMEWORK_FOLDER/S$SFULL_MODULE_NAME"

mv "SFULL_EXT" "$CODESIGNING_FOLDER_PATH/S$SFRAMEWORK_FOLDER/S$FULL_MODULE_
—NAME"

Create a placeholder .fwork file where the .so was

echo "$FRAMEWORK_FOLDER/$FULL_MODULE_NAME" > S${FULL_EXT%.so}.fwork

Create a back reference to the .so file location in the framework

echo "S{RELATIVE_EXT%.so}.fwork" > "SCODESIGNING_FOLDER_PATH/SFRAMEWORK_
—FOLDER/$FULL_MODULE_NAME.origin"

(continues on next page)

70

Chapter 6. Using Python on iOS

Python Setup and Usage, Release 3.13.0rc2

(continued from previous page)

PYTHON_VER=$ (1s -1 "SCODESIGNING_FOLDER_PATH/python/1lib")
echo "Install Python $PYTHON_VER standard library extension modules...

find "$CODESIGNING_FOLDER_PATH/python/lib/$PYTHON_VER/lib-dynload" -name "*.so
—" | while read FULL_EXT; do

install_dylib python/lib/$PYTHON_VER/lib-dynload/ "$FULL_EXT"
done

Clean up dylib template
rm —f "SCODESIGNING_FOLDER_PATH/dylib-Info-template.plist"

echo "Signing frameworks as S$SEXPANDED_CODE_SIGN_IDENTITY_NAME (SEXPANDED_CODE_
—SIGN_IDENTITY)..."

find "SCODESIGNING_FOLDER_PATH/Frameworks" -—-name "*.framework" -—-exec /usr/bin/
—codesign —--force —--sign "SEXPANDED_CODE_SIGN_IDENTITY" OTHER_CODE_SIGN_
—FLAGS:=} —o runtime --timestamp=none --preserve-metadata=identifier,
—entitlements, flags —-—generate—-entitlement—-der "{}" \;

10. Add Objective C code to initialize and use a Python interpreter in embedded mode. You should ensure that:
e UTF-8 mode is enabled,
e Buffered stdio is disabled;
* Writing bytecode is disabled,
e Signal handlers are enabled,

* PYTHONHOME for the interpreter is configured to point at the python subfolder of your app’s
bundle; and

* The PYTHONPATH for the interpreter includes:
— the python/lib/python3. X subfolder of your app’s bundle,
— the python/lib/python3.X/lib-dynload subfolder of your app’s bundle, and
— the app subfolder of your app’s bundle

Your app’s bundle location can be determined using [[NSBundle mainBundle] resour-—
cePath].

Steps 8, 9 and 10 of these instructions assume that you have a single folder of pure Python application code, named
app. If you have third-party binary modules in your app, some additional steps will be required:

* You need to ensure that any folders containing third-party binaries are either associated with the app target, or
copied in as part of step 8. Step 8 should also purge any binaries that are not appropriate for the platform a
specific build is targeting (i.e., delete any device binaries if you're building an app targeting the simulator).

* Any folders that contain third-party binaries must be processed into framework form by step 9. The invocation
of install_dylib that processes the 1ib-dynload folder can be copied and adapted for this purpose.

« If you’re using a separate folder for third-party packages, ensure that folder is included as part of the PYTHON~
PATH configuration in step 10.

6.2. Installing Python on iOS 71

Python Setup and Usage, Release 3.13.0rc2

6.3 App Store Compliance

The only mechanism for distributing apps to third-party iOS devices is to submit the app to the iOS App Store; apps
submitted for distribution must pass Apple’s app review process. This process includes a set of automated validation
rules that inspect the submitted application bundle for problematic code.

The Python standard library contains some code that is known to violate these automated rules. While these violations
appear to be false positives, Apple’s review rules cannot be challenged; so, it is necessary to modify the Python
standard library for an app to pass App Store review.

The Python source tree contains a patch file that will remove all code that is known to cause issues with the App Store
review process. This patch is applied automatically when building for iOS.

72 Chapter 6. Using Python on iOS

https://github.com/python/cpython/tree/3.13/Mac/Resources/app-store-compliance.patch

CHAPTER
SEVEN

EDITORS AND IDES

There are a number of IDEs that support Python programming language. Many editors and IDEs provide syntax
highlighting, debugging tools, and PEP 8 checks.

Please go to Python Editors and Integrated Development Environments for a comprehensive list.

73

https://peps.python.org/pep-0008/
https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Python Setup and Usage, Release 3.13.0rc2

74

Chapter 7. Editors and IDEs

APPENDIX
A

GLOSSARY

>>>
The default Python prompt of the inferactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

Can refer to:

¢ The default Python prompt of the interactive shell when entering the code for an indented code block,
when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

e The E11ipsis built-in constant.

abstract base class

Abstract base classes complement duck-typing by providing a way to define interfaces when other techniques
like hasattr () would be clumsy or subtly wrong (for example with magic methods). ABCs introduce virtual
subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance () and
issubclass (); see the abc module documentation. Python comes with many built-in ABCs for data
structures (in the collections.abc module), numbers (in the numbers module), streams (in the io
module), import finders and loaders (in the import1lib.abc module). You can create your own ABCs with
the abc module.

annotation
A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a rype hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class at-
tributes, and functions are stored in the __annotations__ special attribute of modules, classes, and func-
tions, respectively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality. Also
see annotations-howto for best practices on working with annotations.

argument
A value passed to a function (or method) when calling the function. There are two kinds of argument:

* keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by * *. For example, 3 and 5 are both keyword arguments in the following
calls to complex ():

complex (**{'real': 3, 'imag': 5})

complex (real=3, imag=5) }

e positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3
and 5 are both positional arguments in the following calls:

complex (3, 5)
complex (* (3, 5))

75

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Python Setup and Usage, Release 3.13.0rc2

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asynchronous context manager
An object which controls the environment seen in an async with statement by defining ___aenter__ ()
and __aexit__ () methods. Introduced by PEP 492.

asynchronous generator
A function which returns an asynchronous generator iterator. It looks like a coroutine function defined with
async def except that it contains yie1ld expressions for producing a series of values usable in an async
for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in
some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for, and async
with statements.

asynchronous generator iterator
An object created by a asynchronous generator function.

This is an asynchronous iterator which when called using the __anext__ () method returns an awaitable
object which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the asynchronous generator iterator eftectively resumes with another
awaitable returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__ () method. Introduced by PEP 492.

asynchronous iterator
An object that implements the __aiter__ () and __anext__ () methods. __anext__ () must re-
turn an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__ () method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute
A value associated with an object which is usually referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

It is possible to give an object an attribute whose name is not an identifier as defined by identifiers, for example
using setattr (), if the object allows it. Such an attribute will not be accessible using a dotted expression,
and would instead need to be retrieved with getattr ().

awaitable
An object that can be used in an await expression. Can be a coroutine or an object withan __await__ ()
method. See also PEP 492.

BDFL
Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary
mode ("rb', 'wb' or 'rb+"), sys.stdin.buffer, sys.stdout.buffer, and instances of io.
BytesIOand gzip.GzipFile.

See also zext file for a file object able to read and write st r objects.

borrowed reference
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

76 Appendix A. Glossary

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

Python Setup and Usage, Release 3.13.0rc2

Calling Py_INCREF () on the borrowed reference is recommended to convert it to a strong reference in-
place, except when the object cannot be destroyed before the last usage of the borrowed reference. The
Py_NewRef () function can be used to create a new strong reference.

bytes-like object
An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all bytes,
bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like
objects can be used for various operations that work with binary data; these include compression, saving to a
binary file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as “read-
write bytes-like objects”. Example mutable buffer objects include bytearray and a memoryview of a
bytearray. Other operations require the binary data to be stored in immutable objects (“read-only bytes-
like objects”); examples of these include bytes and a memoryview of a bytes object.

bytecode
Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in . pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a
virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are
not expected to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

callable
A callable is an object that can be called, possibly with a set of arguments (see argument), with the following
syntax:

[callable(argumentl, argument2, argumentN)

A function, and by extension a method, is a callable. An instance of a class that implements the __call__ ()
method is also a callable.

callback
A subroutine function which is passed as an argument to be executed at some point in the future.

class
A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

class variable
A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the class).

complex number
An extension of the familiar real number system in which all numbers are expressed as a sum of a real part
and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of —1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which
are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+17J. To get access
to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you're not aware of a need for them, it’s almost certain you can safely ignore them.

context manager
An object which controls the environment seen in a with statement by defining _ _enter_ () and
__exit__ () methods. See PEP 343.

context variable
A variable which can have different values depending on its context. This is similar to Thread-Local Storage in
which each execution thread may have a different value for a variable. However, with context variables, there
may be several contexts in one execution thread and the main usage for context variables is to keep track of
variables in concurrent asynchronous tasks. See contextvars.

contiguous
A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next

77

https://peps.python.org/pep-0343/

Python Setup and Usage, Release 3.13.0rc2

to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the
last index varies the fastest when visiting items in order of memory address. However, in Fortran contiguous
arrays, the first index varies the fastest.

coroutine
Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be imple-
mented with the async def statement. See also PEP 492.

coroutine function
A function which returns a coroutine object. A coroutine function may be defined with the async def

statement, and may contain await, async for,and async with keywords. These were introduced by
PEP 492.

CPython
The canonical implementation of the Python programming language, as distributed on python.org. The term
“CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator
A function returning another function, usually applied as a function transformation using the @wrapper syn-
tax. Common examples for decorators are classmethod () and staticmethod ().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiv-
alent:

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arqg):

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor
Any object which defines the methods ___get__ (), set_ (),or ___delete_ (). When a class at-
tribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors or the Descriptor How To Guide.

dictionary
An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eq__ () methods. Called a hash in Perl.

dictionary comprehension
A compact way to process all or part of the elements in an iterable and return a dictionary with the results.
results = {n: n ** 2 for n in range (10) } generates a dictionary containing key n mapped
tovaluen ** 2. See comprehensions.

dictionary view
The objects returned from dict .keys (),dict.values (),and dict.items () are called dictionary
views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes,
the view reflects these changes. To force the dictionary view to become a full list use 1ist (dictview).
See dict-views.

docstring
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the ___doc___ attribute of the enclosing class,

78 Appendix A. Glossary

https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

Python Setup and Usage, Release 3.13.0rc2

function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing
A programming style which does not look at an object’s type to determine if it has the right interface; instead, the
method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must be a duck.”)
By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by allowing
polymorphic substitution. Duck-typing avoids tests using type () or isinstance (). (Note, however,
that duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr ()
tests or EAFP programming.

EAFP
Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many t ry and except statements. The technique contrasts with the LBYL style common
to many other languages such as C.

expression
A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation of
expression elements like literals, names, attribute access, operators or function calls which all return a value. In
contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module
A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string
String literals prefixed with '£' or 'F' are commonly called “f-strings” which is short for formatted string
literals. See also PEP 498.

file object
An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying re-
source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to
another type of storage or communication device (for example standard input/output, in-memory buffers,
sockets, pipes, etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open ()
function.

file-like object
A synonym for file object.

filesystem encoding and error handler
Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to
the operating system.

The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.

The sys.getfilesystemencoding () and sys.getfilesystemencodeerrors () functions
can be used to get the filesystem encoding and error handler.

The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read () func-
tion: see filesystem_encodingand filesystem_errors members of PyConfig.

See also the locale encoding.

finder
An object that tries to find the loader for a module that is being imported.

There are two types of finder: meta path finders for use with sys.meta_path, and path entry finders for
use with sys.path_hooks.

See importsystem and import1ib for much more detail.

79

https://peps.python.org/pep-0498/

Python Setup and Usage, Release 3.13.0rc2

floor division
Mathematical division that rounds down to nearest integer. The floor division operator is / /. For example, the
expression 11 // 4 evaluates to 2 in contrast to the 2 . 75 returned by float true division. Note that (-11)
// 4 is —3 because that is —2 . 75 rounded downward. See PEP 238.

free threading
A threading model where multiple threads can run Python bytecode simultaneously within the same interpreter.
This is in contrast to the global interpreter lock which allows only one thread to execute Python bytecode at a
time. See PEP 703.

function
A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation
An annotation of a function parameter or return value.

Function annotations are usually used for type hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.

See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

future
A future statement, from __ future_ import <feature>, directs the compiler to compile the
current module using syntax or semantics that will become standard in a future release of Python. The __ fu-
ture__ module documents the possible values of feature. By importing this module and evaluating its vari-
ables, you can see when a new feature was first added to the language and when it will (or did) become the

default:
>>> import __ future_
>>> _ future_ .division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection
The process of freeing memory when it is not used anymore. Python performs garbage collection via reference
counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage collector
can be controlled using the gc module.

generator
A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator
An object created by a generator function.

Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast
to functions which start fresh on every invocation).

generator expression
An expression that returns an iterator. It looks like a normal expression followed by a for clause defining a
loop variable, range, and an optional i f clause. The combined expression generates values for an enclosing
function:

80 Appendix A. Glossary

https://peps.python.org/pep-0238/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0484/

Python Setup and Usage, Release 3.13.0rc2

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function
A function composed of multiple functions implementing the same operation for different types. Which im-
plementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch () decorator, and PEP
443.

generic type
A type that can be parameterized; typically a container class such as 1ist or dict. Used for type hints and
annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the t yping module.

GIL
See global interpreter lock.

global interpreter lock
The mechanism used by the CPython interpreter to assure that only one thread executes Python byrecode at
a time. This simplifies the CPython implementation by making the object model (including critical built-in
types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/0.

As of Python 3.13, the GIL can be disabled using the ——disable-gil build configuration. After building
Python with this option, code must be run with —X gi1 0 or after setting the PYTHON_GIL=0 environment
variable. This feature enables improved performance for multi-threaded applications and makes it easier to use
multi-core CPUs efficiently. For more details, see PEP 703.

hash-based pyc
A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source file to
determine its validity. See pyc-invalidation.

hashable
An object is hashable if it has a hash value which never changes during its lifetime (it needsa __hash__ ()
method), and can be compared to other objects (it needs an __eqg___ () method). Hashable objects which

compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries)
are not; immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except
with themselves), and their hash value is derived from their id ().

IDLE
An Integrated Development and Learning Environment for Python. idle is a basic editor and interpreter envi-
ronment which ships with the standard distribution of Python.

immortal
Immortal objects are a CPython implementation detail introduced in PEP 683.

If an object is immortal, its reference count is never modified, and therefore it is never deallocated while the
interpreter is running. For example, True and None are immortal in CPython.

immutable
An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot

81

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0683/

Python Setup and Usage, Release 3.13.0rc2

be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path

A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the
parent package’s ___path___ attribute.

importing

The process by which Python code in one module is made available to Python code in another module.

importer

An object that both finds and loads a module; both a finder and loader object.

interactive

Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly
by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect
modules and packages (remember help (x)). For more on interactive mode, see tut-interac.

interpreted

Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also inferactive.

interpreter shutdown

When asked to shut down, the Python interpreter enters a special phase where it gradually releases all allocated
resources, such as modules and various critical internal structures. It also makes several calls to the garbage
collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code exe-
cuted during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable

An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes
you define with an __iter__ () method or with a __getitem__ () method that implements sequence
semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary tocall iter () or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator

An object representing a stream of data. Repeated calls to the iterator’s __next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any fur-
ther calls to its __next__ () method just raise StopIteration again. Iterators are required to have an
__iter__ () method that returns the iterator object itself so every iterator is also iterable and may be used
in most places where other iterables are accepted. One notable exception is code which attempts multiple
iteration passes. A container object (such as a 11 st) produces a fresh new iterator each time you pass it to the
iter () function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

More information can be found in typeiter.

CPython implementation detail: CPython does not consistently apply the requirement that an iterator define
__iter__ (). And also please note that the free-threading CPython does not guarantee the thread-safety of

82

Appendix A. Glossary

Python Setup and Usage, Release 3.13.0rc2

iterator operations.

key function
A key function or collation function is a callable that returns a value used for sorting or ordering. For example,
locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They include
min (), max (), sorted(), list.sort (), heapg.merge (), heapg.nsmallest (), heapq.
nlargest (),and itertools.groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a 1 ambda expression such as
lambda r: (r[0], r[2]). Also, operator.attrgetter (), operator.itemgetter (),
and operator.methodcaller () are three key function constructors. See the Sorting HOW TO for
examples of how to create and use key functions.

keyword argument
See Cll’nglné’lll.

lambda
An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is Lambda [parameters]: expression

LBYL
Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the FAFP approach and is characterized by the presence of many i f statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the
looking” and “the leaping”. For example, the code, 1f key in mapping: return mappinglkey]
can fail if another thread removes key from mapping after the test, but before the lookup. This issue can be
solved with locks or by using the EAFP approach.

list
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension
A compact way to process all or part of the elements in a sequence and return a list with the results. result
= ['"{:4#04x}'.format (x) for x in range(256) if x % 2 == 0] generates a list of
strings containing even hex numbers (0x..) in the range from O to 255. The if clause is optional. If omitted,
all elements in range (256) are processed.

loader
An object that loads a module. It must define a method named load_module (). A loader is typically
returned by a finder. See PEP 302 for details and import1lib.abc.Loader for an abstract base class.

locale encoding
On Unix, it is the encoding of the LC_CTYPE locale. It can be set with Locale.setlocale (locale.
LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: "cpl1252™").

On Android and VxWorks, Python uses "ut £-8" as the locale encoding.
locale.getencoding () can be used to get the locale encoding.

See also the filesystem encoding and error handler.

magic method
An informal synonym for special method.

mapping
A container object that supports arbitrary key lookups and implements the methods specified
in the collections.abc.Mapping or collections.abc.MutableMapping abstract base
classes. Examples include dict, collections.defaultdict,collections.OrderedDict and
collections.Counter.

83

https://peps.python.org/pep-0302/

Python Setup and Usage, Release 3.13.0rc2

meta path finder
A finder returned by a search of sys.meta_path. Meta path finders are related to, but different from parh
entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass
The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented pro-
gramming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method
A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order
Method Resolution Order is the order in which base classes are searched for a member during lookup. See
python_2.3_mro for details of the algorithm used by the Python interpreter since the 2.3 release.

module
An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec
A namespace containing the import-related information used to load a module. An instance of importlib.
machinery.ModuleSpec.

MRO

See method resolution order.

mutable
Mutable objects can change their value but keep their id () . See also immutable.

named tuple
The term “named tuple” applies to any type or class that inherits from tuple and whose indexable elements are
also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

>>> sys.float_info[l] # Iindexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be
created from a regular class definition that inherits from t uple and that defines named fields. Such a class can
be written by hand, or it can be created by inheriting t yping.NamedTuple, or with the factory function
collections.namedtuple (). The latter techniques also add some extra methods that may not be found
in hand-written or built-in named tuples.

namespace
The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity
by preventing naming conflicts. For instance, the functions builtins.open and os.open () are distin-
guished by their namespaces. Namespaces also aid readability and maintainability by making it clear which

84 Appendix A. Glossary

Python Setup and Usage, Release 3.13.0rc2

module implements a function. For instance, writing random. seed () oritertools.islice () makes
it clear that those functions are implemented by the random and itertools modules, respectively.

namespace package
A PEP 420 package which serves only as a container for subpackages. Namespace packages may have no

physical representation, and specifically are not like a regular package because they have no __init__ .py
file.

See also module.

nested scope
The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference
and not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables
read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only new-style
classes could use Python’s newer, versatile features like ___slots__, descriptors, properties, getat-
tribute__ (), class methods, and static methods.

object
Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

optimized scope
A scope where target local variable names are reliably known to the compiler when the code is compiled,
allowing optimization of read and write access to these names. The local namespaces for functions, generators,
coroutines, comprehensions, and generator expressions are optimized in this fashion. Note: most interpreter
optimizations are applied to all scopes, only those relying on a known set of local and nonlocal variable names
are restricted to optimized scopes.

package
A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module witha __path___ attribute.

See also regular package and namespace package.
8 8

parameter
A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

* positional-or-keyword: specifies an argument that can be passed either posifionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

[def func (foo, bar=None): ...]

e positional-only: specifies an argument that can be supplied only by position. Positional-only parameters
can be defined by including a / character in the parameter list of the function definition after them, for
example posonlyl and posonly2 in the following:

[def func (posonlyl, posonly2, /, positional_or_keyword): ...]

 keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can
be defined by including a