The Python Language Reference
Release 3.13.0rc2

Guido van Rossum and the Python development team

September 06, 2024

Python Software Foundation
Email: docs@python.org

2

3

CONTENTS

1 Introduction 3
1.1 Alternate Implementations L. e 3
1.2 Notation o e e e e e e e e e e e 4
Lexical analysis 5
2.1 LANESIUCIUTE . . . v v v v o v e 5

2.1.1 Logical lines e e e 5
2.1.2 Physicallines L 5
2.1.3 0 Comments ov vt e e e e e e e e e e e e e e e e e 5
2.1.4 Encoding declarations L e e e e e e e e 6
2.1.5 Explicitline joining L e 6
2.1.6 Implicitline joining L 6
2.1.7 Blanklines. 7
2.1.8 Indentation L. e e e e e 7
2.1.9 Whitespace between tokenst e e e e e e e 8
22 Othertokens e e e e e e 8
2.3 Identifiersand keywords L. e 8
231 Keywords 9
232 SoftKeywords e e e e 9
2.3.3 Reserved classes of identifiers oL L o 9
24 Literals o L e e e e 10
24.1 Stringand Bytes literals L e 10
2.4.2 String literal concatenation oL Lo Lo e e e e e e 12
243 f-SINGS . . o oo e e e e e 12
244 Numericliterals L e 14
245 Integerliterals L e e e e e e e e 15
2.4.6 Floating-pointliterals L e 15
247 Imaginaryliterals oL 16
2.5 OPErators . . . v v v v vt e e e e e e e e e e e e e e 16
2.6 Delimiters. vt e e e e e e e e 16
Data model 17
3.1 Objects, values and types e e e e e e 17
3.2 Thestandard type hierarchy e e e e 18
32,1 NONE. . . o e e e e 18
322 Notlmplemented e 18
323 EIIPSIS . .« o v o i e e e e 18
324 numbers.NUMDETr i it e e e e e e e e 19
325 Sequences e e e e e e e e e e e 20
326 SetLYPeS . o v v e e e e e e e e e e e e e e 21
327 MappINgS . . v v e 21
32.8 Callable types e e 22
3229 Modules e e e e e 26
32,10 Customclasseso e e e e e e 26

3211 ClIassinStanCes v v v v v o e e e e e e e e e e e e e e e e 27

3.2.12 T/O objects (also known as file objects) e 27
32,13 Internal types oo e e e e e e e e e 27
3.3 Special method names L. L e 34
3.3.1 Basic customizationo e e e e e e 34
3.3.2 Customizing attribute acCess o o b it e e e e e e e e 38
3.3.3 Customizing class creation i e e e e e e e e e 42
3.3.4 Customizing instance and subclasschecks oL L. 45
3.3.5 Emulating generic types oo e e e e 46
3.3.6 Emulating callable objects oo 48
3.3.7 Emulating container types e e i e e e e e e e e e e e e e e 48
3.3.8 Emulating numeric tyPeS . . . v v v v v v e e e e e e e e e e e e e e e e e e 50
3.3.9 With Statement Context Managers v v it it e e e 52
3.3.10 Customizing positional arguments in class pattern matching 52
3.3.11 Emulating buffer types 53
3.3.12 Special method lookup L 53
34 COroutiNes v v v v e e e e e e e e e e e e e e 54
34.1 Awaitable Objects o o . o e e e e e e e e e e e 54
342 Coroutine ObJectS v v v v it e e e e e e e e e e e e 55
343 Asynchronous Iterators L e e 56
3.4.4 Asynchronous Context Managers it ittt e e 56
Execution model 57
4.1 Structure of aprogram Lo e e 57
42 Namingand binding e 57
4.2.1 Bindingofnames e 57
422 Resolutionof names e 58
423 Annotation SCOPES . .« « v v v v v e 59
424 Lazyevaluation 59
4.2.5 Builtins and restricted execution Lo Lol e e 60
4.2.6 Interaction with dynamic features L. oL 60
43 EXCePLONS . . . v v vt e 61
The import system 63
5.1 dmportlib e e e e 63
5.2 Packages e e e e e e e e 64
5.2.1 Regularpackages e e e e e e e e e 64
5.22 Namespace packages e e 64
53 Searching e 65
53.1 Themodulecache e 65
532 Findersand loaders e 65
5.33 Importhooks o . . e e e e e 66
534 Themetapath e e e 66
54 Loading L e 67
541 Loaders e e 68
542 Submodules e e 68
543 ModuleSpec e e e e e e e e e e e 69
5.4.4 Import-related module attributes L. Lo 69
545 module.__path_o e 70
54.6 Modulereprso e e e e e e 71
5.4.7 Cached bytecode invalidation 71
5.5 ThePathBased Finder e 71
5.5.1 Pathentryfinders e e e 72
5.5.2 Pathentry finder protocol L e 73
5.6 Replacing the standard import system oL o 73
5.7 Package Relative Imports L. 74
5.8 Special considerations for __main__ oL e e e e 74
5.8 1 MAIN__._ SPEC__ . e 74

59 References e e e
Expressions
6.1 Arithmetic cONVersions i it e e e e e e e e
6.2 ALOMS . . . o e e e e e e e
6.2.1 Identifiers (INames) v i v i i e e e e e
6.2.2 Literals e e e
6.2.3 Parenthesized forms L
6.2.4 Displays for lists, sets and dictionaries Lo
6.2.5 Listdisplays e e e e
6.2.6 Setdisplays e e e e e e e e e e e
6.2.7 Dictionary displays e e e e e e e e e e
6.2.8 Generator eXpressions et e e e e e e e e e e e e e
6.2.9 Yieldexpressions e
6.3 Primaries e e e e
6.3.1 Attribute references L ..o
6.3.2 SubSCriptionS e e e e e e e e e e e e
6.3.3 SHCINGS o e e e e e e
6.34 Calls e e
6.4 AWAIt EXPIeSSION v v e e e e e e e e e e e e e e e e
6.5 The pOWEr OPEerator v v v v v e
6.6 Unary arithmetic and bitwise Operations v v v v v v v vt e e e e e
6.7 Binary arithmetic operations L. e e e
6.8 Shifting operations L L L e e e e e e e
6.9 Binary bitwise Operationso e e e e e e e e e e e
6.10 CompariSONS v v v i e
6.10.1 Value compariSOns v v i i e e e e e e e e e e e e e e
6.10.2 Membership test Operationsot te e e e e e eee
6.10.3 Identity compariSOnSo e e e e e e
6.11 Boolean operationst L e e e e e e e e e e e e e e e e e e e
6.12 AsSSIgNMENt eXPresSSiONS . . .« o v v vt i e e e e e e e e e e e e e e e e e e e
6.13 Conditional Xpressions v v v i i e e e e e e e e e e e e e e e e e e
6.14 Lambdas e e e
6.15 Expression lists L e e e e
6.16 Evaluationorder e e e e e e
6.17 Operator precedence v v it e e e e e e e e e e e e

Simple statements

7.1
7.2

7.3
7.4
1.5
7.6
7.7
7.8
7.9
7.10
7.11

7.12
7.13
7.14

Expression statements

AsSSIgNment StAtEMENTS L e e e e e e e e e e e e e e e e
7.2.1 Augmented assignment StateMENtS e e e e e e e e e e e e
7.2.2 Annotated assignment Statements e e e e e e e e e e
The assertstatement. e

The pass statement
The del statement .

The returnstatement i e e e e e e e e e e e e e

The yield statement
The raise statement
The break statement

The continuestatement i i i e e e e e e e e e e e
The import statement 0 i e e e e e e e e e e e e e e
7.11.1 Future statementst i e
The global Statement v v v i v et e e e e e e e e e e e e e e e e e
The nonlocal statement v i i v i it e e e e e e e e e e e e

The type statement

Compound statements

8.1
8.2

The 1if statement . .

77
77
77
78
78
79
79
80
80
80
81
81
86
86
86
87
87
89
89
90
90
91
91
92
92
94
95
95
95
96
96
96
97
97

99

99
100
102
102
103
103
104
104
104
105
106
107
107
108
109
110
110

113
114
114

10

8.3 The forstatement i e e e e e e e e e e e e e e e e 114
84 Thetrystatement it it i e e e e e e e e e e e e e e e e e e 115
8.4.1 exceptclause e e e e e e e e e e 115
842 except*clause e 116
843 elseclause e e e e 117
844 finallyclause e e e e 117
8.5 Thewithstatementt i v i et e e e e e e e e e e e e e e e e e e e 118
8.6 Thematchstatement i v i i it e e e e e e e e e e e e e e e e e 119
8.6.1 OVEIVIEW e e e e e e e e e e e e e e e 120
8.62 Guards. e e e 121
8.6.3 TIrrefutable Case Blocks e 121
8.6.4 Patterns e e e e e e e e e e e 121
8.7 Functiondefinitions e e e e e e e e e e e e e e e 128
8.8 Classdefinitions o e e e e e e e e e e e e e e e e e e e 130
8.9 COoroutines v i i e e e e e e e e e e e 131
8.9.1 Coroutine function definition 131
8.9.2 Theasync forstatementt i v ittt e e e e 131
8.93 Theasync withstatement v v v v v i it e e e e e 132
8.10 Type parameter lists o . e e e e e e e e e e e e e e e 133
8.10.1 Generic functions L. e e e e e e e e e e e e e e 134
8.10.2 Generic Classes e e e e e e e e 135
8.10.3 Generictype aliases e e e e e 136
Top-level components 137
9.1 Complete Python programs 0 e e e e 137
0.2 Fileinput e e e e e e e e e e e e e 137
0.3 Interactive inPUL v v e o e 138
9.4 EXpPression input v o v v it e 138
Full Grammar specification 139
Glossary 155
About these documents 171
B.1 Contributors to the Python Documentation 171
History and License 173
C.1 Historyof thesoftware e 173
C.2 Terms and conditions for accessing or otherwise using Python 174
C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.130rc2 174
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 175
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 176
C.2.4 CWILICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 177

C.2.5 ZERO-CLAUSEBSD LICENSE FOR CODE IN THE PYTHON 3.13.0rc2 DOCUMEN-
TATION e e e e e 177
C.3 Licenses and Acknowledgements for Incorporated Software 178
C.3.1 Mersenne TWISIET o v v v o e e e e e e e e e e e e e e e e e e 178
C.3.2 SoCKets . . . o o i e e e e e e e e e e e e e e e 179
C.3.3 Asynchronous socket Services e e 179
C34 Cookiemanagement 180
C3.5 ExXecution traCing v v v v vt i e e e e e e e e e e 180
C.3.6 UUencode and UUdecode functions 181
C.3.7 XML Remote Procedure Calls, 181
C.3.8 test_epoll L e e e e 182
C39 Selectkqueue e 182
C3.10 SipHash24 e e 183
C3.11 strtodanddtoa. e e e 183
C.3.12 OpenSSL o e e e e e e e 184
C33 expat. . . v v v e e e e e e e e e e e 187

C3.14
C3.15
C.3.16
C3.17
C3.18
C3.19
C.3.20
C3.21

D Copyright

Index

7711 188
cfuhash e 188
libmpdec e 189
WI3C CIANeSt SUIte v v v o o o e e e e e e e e e e e e e e e e e e 189
mimalloc e e e e 190
ASYNCIO & v v v o e 190
Global Unbounded Sequences (GUS) 191

193

195

vi

The Python Language Reference, Release 3.13.0rc2

This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to be
exact and complete. The semantics of non-essential built-in object types and of the built-in functions and modules
are described in library-index. For an informal introduction to the language, see tutorial-index. For C or C++
programmers, two additional manuals exist: extending-index describes the high-level picture of how to write a Python
extension module, and the c-api-index describes the interfaces available to C/C++ programmers in detail.

CONTENTS 1

The Python Language Reference, Release 3.13.0rc2

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but
will leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python
from this document alone, you might have to guess things and in fact you would probably end up implementing quite
a different language. On the other hand, if you are using Python and wonder what the precise rules about a particular
area of the language are, you should definitely be able to find them here. If you would like to see a more formal
definition of the language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, CPython is the
one Python implementation in widespread use (although alternate implementations continue to gain support), and
its particular quirks are sometimes worth being mentioned, especially where the implementation imposes additional
limitations. Therefore, you’ll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are documented in
library-index. A few built-in modules are mentioned when they interact in a significant way with the language defi-
nition.

1.1 Alternate Implementations

Though there is one Python implementation which is by far the most popular, there are some alternate implementations
which are of particular interest to different audiences.

Known implementations include:

CPython
This is the original and most-maintained implementation of Python, written in C. New language features gen-
erally appear here first.

Jython
Python implemented in Java. This implementation can be used as a scripting language for Java applications,
or can be used to create applications using the Java class libraries. It is also often used to create tests for Java
libraries. More information can be found at the Jython website.

Python for .NET
This implementation actually uses the CPython implementation, but is a managed .NET application and makes
.NET libraries available. It was created by Brian Lloyd. For more information, see the Python for .NET home
page.

IronPython
An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that generates
IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the original creator
of Jython. For more information, see the IronPython website.

PyPy
An implementation of Python written completely in Python. It supports several advanced features not found

https://www.jython.org/
https://pythonnet.github.io/
https://pythonnet.github.io/
https://ironpython.net/

The Python Language Reference, Release 3.13.0rc2

in other implementations like stackless support and a Just in Time compiler. One of the goals of the project is
to encourage experimentation with the language itself by making it easier to modify the interpreter (since it is
written in Python). Additional information is available on the PyPy project’s home page.

Each of these implementations varies in some way from the language as documented in this manual, or introduces
specific information beyond what’s covered in the standard Python documentation. Please refer to the implementation-
specific documentation to determine what else you need to know about the specific implementation you’re using.

1.2 Notation

The descriptions of lexical analysis and syntax use a modified Backus—Naur form (BNF) grammar notation. This
uses the following style of definition:

name L= lc_letter (lc_letter | "_")x*
lc_letter = "at..."z"

The first line says that a name is an 1c_letter followed by a sequence of zero or more 1c_letters and
underscores. An lc_letter in turn is any of the single characters 'a' through 'z'. (This rule is actually
adhered to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and : : =. A vertical bar (|) is used to separate
alternatives; it is the least binding operator in this notation. A star (*) means zero or more repetitions of the preceding
item; likewise, a plus (+) means one or more repetitions, and a phrase enclosed in square brackets ([]) means zero
or one occurrences (in other words, the enclosed phrase is optional). The * and + operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively
with each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by
three dots mean a choice of any single character in the given (inclusive) range of ASCII characters. A phrase between
angular brackets (<. . . >) gives an informal description of the symbol defined; e.g., this could be used to describe
the notion of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(“Lexical Analysis”) are lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Chapter 1. Introduction

https://www.pypy.org/
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

CHAPTER
TWO

LEXICAL ANALYSIS

A Python program is read by a parser. Input to the parser is a stream of fokens, generated by the lexical analyzer.
This chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding decla-
ration and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError is
raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any
of the standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the
Windows form using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the
ASCII CR (return) character. All of these forms can be used equally, regardless of platform. The end of input also
serves as an implicit terminator for the final physical line.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical
line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are
ignored by the syntax.

https://peps.python.org/pep-3120/

The Python Language Reference, Release 3.13.0rc2

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding [=:]\s* ([-\
w.] +), this comment is processed as an encoding declaration; the first group of this expression names the encoding
of the source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first
line must also be a comment-only line. The recommended forms of an encoding expression are

[# —*— coding: <encoding-name> —*-

which is recognized also by GNU Emacs, and

[# vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. If the implicit or explicit encoding of a file is
UTF-8, an initial UTF-8 byte-order mark (b’xefxbbxbf’) is ignored rather than being a syntax error.

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding
is used for all lexical analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni’', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

6 Chapter 2. Lexical analysis

The Python Language Reference, Release 3.13.0rc2

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e.
one containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of
spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over
multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to
use a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different
platforms may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may
reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring
on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT
token is generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that
is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r = []
for i in range(len(l)):
s = 1[:4i] + 1[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)
return r

The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:1i] + 1[i+1:]
p = perm(l[:1] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

2.1. Line structure 7

The Python Language Reference, Release 3.13.0rc2

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be
used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes
as defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the
uppercase and lowercase letters A through Z, the underscore _ and, except for the first character, the digits O through
9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier = xid _start xid_continue*

id_start = <all characters in general categories Lu, L1, Lt, Lm, Lo,
id_continue = <all characters in id_start, plus characters in the categories Mn,
xid_start = <all characters in id_start whose NFKC normalization is in "id_start

xid_continue

The Unicode category codes mentioned above stand for:
e Lu - uppercase letters
* LI - lowercase letters
[t - titlecase letters
¢ Lm - modifier letters
* Lo - other letters
* NI - letter numbers
* Mn - nonspacing marks
¢ Mc - spacing combining marks
e Nd - decimal numbers

* Pc - connector punctuations

8 Chapter 2. Lexical analysis

<all characters in id_continue whose NFKC normalization is in

https://peps.python.org/pep-3131/
https://peps.python.org/pep-3131/

The Python Language Reference, Release 3.13.0rc2

e Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
* Other_ID_Continue - likewise
All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 15.1.0 can be found at https://www.
unicode.org/Public/15.1.0/ucd/DerivedCoreProperties.txt

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try

as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Soft Keywords

Added in version 3.10.

Some identifiers are only reserved under specific contexts. These are known as soft keywords. The identifiers mat ch,
case, type and _ can syntactically act as keywords in certain contexts, but this distinction is done at the parser
level, not when tokenizing.

As soft keywords, their use in the grammar is possible while still preserving compatibility with existing code that uses
these names as identifier names.

match, case, and _ are used in the mat ch statement. type is used in the t ype statement.

Changed in version 3.12: type is now a soft keyword.

2.3.3 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns
of leading and trailing underscore characters:

*

Not imported by from module import *.

In a case pattern within a mat ch statement, __ is a soft keyword that denotes a wildcard.

Separately, the interactive interpreter makes the result of the last evaluation available in the variable _. (It is
stored in the builtins module, alongside built-in functions like print.)

Elsewhere, __is a regular identifier. It is often used to name “special” items, but it is not special to Python itself.

O Note

The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

It is also commonly used for unused variables.

2.3. Identifiers and keywords 9

https://www.unicode.org/Public/15.1.0/ucd/PropList.txt
https://www.unicode.org/Public/15.1.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/15.1.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, Release 3.13.0rc2

*

System-defined names, informally known as “dunder” names. These names are defined by the interpreter and
its implementation (including the standard library). Current system names are discussed in the Special method
names section and elsewhere. More will likely be defined in future versions of Python. Any use of __*___
names, in any context, that does not follow explicitly documented use, is subject to breakage without warning.

Class-private names. Names in this category, when used within the context of a class definition, are re-written
to use a mangled form to help avoid name clashes between “private” attributes of base and derived classes. See
section Ildentifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral = [stringprefix] (shortstring | longstring)
stringprefix = "™ | "y" | "R" | "U" | "£" | "E"

| "fr"™ | "Fr" | "fR" | "FR" | "rf" | "rgF" | "Rf" | "RE"
shortstring = "'" shortstringitem* "'" | '"' shortstringitem* '"'
longstring = "' Jongstringitem* "'''" | '"""' Jongstringitem* '"""'
shortstringitem := shortstringchar | stringescapeseq
longstringitem = longstringchar | stringescapeseq
shortstringchar := <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
stringescapeseq = "\" <any source character>
bytesliteral = bytesprefix(shortbytes | longbytes)
bytesprefix = "b" | "B" | "br" | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb"
shortbytes = "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes = "'''" Jongbytesitem* "'''"™ | '"""' Jongbytesitem* '"""'
shortbytesitem := shortbyteschar | bytesescapeseq
longbytesitem = longbyteschar | bytesescapeseq
shortbyteschar = <any ASCII character except "\" or newline or the quote>
longbyteschar = <any ASCII character except "\">
bytesescapeseq = "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the st ring-
prefixor bytesprefix and the rest of the literal. The source character set is defined by the encoding declara-
tion; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can
also be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted
strings). The backslash (\) character is used to give special meaning to otherwise ordinary characters like n, which
means ‘newline’ when escaped (\n). It can also be used to escape characters that otherwise have a special meaning,
such as newline, backslash itself, or the quote character. See escape sequences below for examples.

Bytes literals are always prefixed with 'b' or 'B"'; they produce an instance of the bytes type instead of the str
type. They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with
escapes.

10 Chapter 2. Lexical analysis

n RB n

The Python Language Reference, Release 3.13.0rc2

Both string and bytes literals may optionally be prefixed with a letter 'r' or 'R'; such constructs are called raw
string literals and raw bytes literals respectively and treat backslashes as literal characters. As a result, in raw string
literals, ' \U' and '\u"' escapes are not treated specially.

Added in version 3.3: The 'rb"' prefix of raw bytes literals has been added as a synonym of 'br'.

Support for the unicode legacy literal (u' value ') was reintroduced to simplify the maintenance of dual Python 2.x
and 3.x codebases. See PEP 414 for more information.

A string literal with '£' or 'F "' in its prefix is a formatted string literal; see f-strings. The ' £' may be combined
with 'r', butnot with 'b' or 'u"', therefore raw formatted strings are possible, but formatted bytes literals are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
quotes in a row terminate the literal. (A “quote” is the character used to open the literal, i.e. either ' or ".)

Escape sequences

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to
rules similar to those used by Standard C. The recognized escape sequences are:

Escape Sequence Meaning Notes
\<newline> Backslash and newline ignored (1)
N\ Backslash (\)

\! Single quote (")

\" Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ooo Character with octal value ooo (2,4)
\xhh Character with hex value hh 3.4

Escape sequences only recognized in string literals are:

Escape Sequence Meaning Notes
\N{name} Character named name in the Unicode database (5)
\UXXXX Character with 16-bit hex value xxxx (6)
\UXXXXXXXX Character with 32-bit hex value xxxxxxxx @)

Notes:

(1) A backslash can be added at the end of a line to ignore the newline:

>>> 'This string will not include \
. backslashes or newline characters.'
'This string will not include backslashes or newline characters.'

The same result can be achieved using triple-quoted strings, or parentheses and string literal concatenation.
(2) Asin Standard C, up to three octal digits are accepted.
Changed in version 3.11: Octal escapes with value larger than 00377 produce a DeprecationWarning.

Changed in version 3.12: Octal escapes with value larger than 00377 produce a SyntaxWarning. Ina
future Python version they will be eventually a SyntaxError.

2.4. Literals 11

https://peps.python.org/pep-0414/

The Python Language Reference, Release 3.13.0rc2

(3) Unlike in Standard C, exactly two hex digits are required.

(4) In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

(5) Changed in version 3.3: Support for name aliases' has been added.
(6) Exactly four hex digits are required.
(7) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in
the result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more
easily recognized as broken.) It is also important to note that the escape sequences only recognized in string literals
fall into the category of unrecognized escapes for bytes literals.

Changed in version 3.6: Unrecognized escape sequences produce a DeprecationWarning.

Changed in version 3.12: Unrecognized escape sequences produce a SyntaxWarning. In a future Python version
they will be eventually a SyntaxError.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; " \ " is not a valid string
literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a
single backslash (since the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the literal, not as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions, are
allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' isequivalentto "hel-
loworld". This feature can be used to reduce the number of backslashes needed, to split long strings conveniently
across long lines, or even to add comments to parts of strings, for example:

re.compile (" [A-Za—-z_]" # letter or underscore
"[A-Za-z0-9_1*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+” operator must
be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting
styles for each component (even mixing raw strings and triple quoted strings), and formatted string literals may be
concatenated with plain string literals.

2.4.3 f-strings

Added in version 3.6.

A formatted string literal or f-string is a string literal that is prefixed with ' £' or 'F'. These strings may contain
replacement fields, which are expressions delimited by curly braces { }. While other string literals always have a
constant value, formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string).
After decoding, the grammar for the contents of the string is:

f_string = (literal_char | "{{" | "}}" | replacement_field)™*
replacement_field = "{" f_expression ["="] ["!" conversion] [":" format_spec]
f_expression = (conditional_expression | "*" or_ expr)

("," conditional_expression | "," "*" or expr)* [","]

| yield expression

U https://www.unicode.org/Public/15.1.0/ucd/NameAliases.txt

12 Chapter 2. Lexical analysis

"}"

https://www.unicode.org/Public/15.1.0/ucd/NameAliases.txt

The Python Language Reference, Release 3.13.0rc2

conversion "

format_spec
literal_char

"S" | "r" ‘ "a
(literal_char | replacement_field)*
<any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces '{{"' or '} }'
are replaced with the corresponding single curly brace. A single opening curly bracket ' { ' marks a replacement field,
which starts with a Python expression. To display both the expression text and its value after evaluation, (useful in
debugging), an equal sign ' =" may be added after the expression. A conversion field, introduced by an exclamation
point ' ! ' may follow. A format specifier may also be appended, introduced by a colon ' : '. A replacement field
ends with a closing curly bracket ' } '.

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with
a few exceptions. An empty expression is not allowed, and both Iambda and assignment expressions : = must be
surrounded by explicit parentheses. Each expression is evaluated in the context where the formatted string literal
appears, in order from left to right. Replacement expressions can contain newlines in both single-quoted and triple-
quoted f-strings and they can contain comments. Everything that comes after a # inside a replacement field is a
comment (even closing braces and quotes). In that case, replacement fields must be closed in a different line.

>>> f"abc{a # This is a comment }"
+ 3"
'abch'!'

Changed in version 3.7: Prior to Python 3.7, an awa i t expression and comprehensions containing an async for
clause were illegal in the expressions in formatted string literals due to a problem with the implementation.

Changed in version 3.12: Prior to Python 3.12, comments were not allowed inside f-string replacement fields.

When the equal sign '=" is provided, the output will have the expression text, the '="' and the evaluated value.
Spaces after the opening brace ' { ', within the expression and after the '=" are all retained in the output. By
default, the '=" causes the repr () of the expression to be provided, unless there is a format specified. When a

format is specified it defaults to the st r () of the expression unless a conversion ' ! r' is declared.
Added in version 3.8: The equal sign '=".

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion ' !' s’
calls str () ontheresult, ' !r' calls repr (),and '!a"' callsascii ().

The result is then formatted using the format () protocol. The format specifier is passed tothe _ format__ ()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own con-
version fields and format specifiers, but may not include more deeply nested replacement fields. The format specifier
mini-language is the same as that used by the str. format () method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

>>> name = "Fred"

>>> f"He said his name is {name "

"He said his name is 'Fred'."

>>> f"He said his name is {repr(name) }." # repr() is equivalent to !r
"He said his name is 'Fred'."

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f'"result: {value:{width}. {precision}}" # nested fields
'result: 12.35"

>>> today = datetime (year=2017, month=1, day=27)

>>> f"{today:%B %d, %Y}" # using date format specifier

'January 27, 2017'
>>> f"{today=:%B %d, %Y }" # using date format specifier and debugging
'today=January 27, 2017’
(continues on next page)

2.4. Literals 13

The Python Language Reference, Release 3.13.0rc2

(continued from previous page)

>>> number = 1024

>>> f" {number:#0x}" # using integer format specifier
'0x400'"'

>>> foo = "bar"

>>> f"{ foo " # preserves whitespace
" foo = 'bar'"

>>> line = "The mill's closed"

>>> f"{line "

'line = "The mill\'s closed"'

>>> f"{line 20"

"line = The mill's closed "

>>> f"{line 20"

'line = "The mill\'s closed" '

Reusing the outer f-string quoting type inside a replacement field is permitted:

>>> a = dict (x=2)
>>> f"abc {a["x" def"
'abc 2 def!

Changed in version 3.12: Prior to Python 3.12, reuse of the same quoting type of the outer f-string inside a replace-
ment field was not possible.

Backslashes are also allowed in replacement fields and are evaluated the same way as in any other context:

>>> a = ["a", "b", "c"]

>>> print (f"List a contains:\n{"\n".join(a) }")
List a contains:

a

b

@

Changed in version 3.12: Prior to Python 3.12, backslashes were not permitted inside an f-string replacement field.

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

>>> def foo():
f"Not a docstring"

>>> foo. doc_ is None
True

See also PEP 498 for the proposal that added formatted string literals, and st r. format (), which uses a related
format string mechanism.

2.4.4 Numeric literals
There are three types of numeric literals: integers, floating-point numbers, and imaginary numbers. There are no
complex literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary
operator ‘-’ and the literal 1.

14 Chapter 2. Lexical analysis

https://peps.python.org/pep-0498/

The Python Language Reference, Release 3.13.0rc2

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer n= decinteger | bininteger | octinteger | hexinteger
decinteger = nonzerodigit (["_"] digit)* | "O0"+ (["_"] "O"™)*
bininteger = "o" ("b" | "B") (["_"] bindigit)+

octinteger = "0" ("o"™ | "OM") (["_"] octdigit)+

hexinteger = "o ("x" | "X") (["_"] hexdigit)+

nonzerodigit = marL,LL"on

digit = "om..."o"

bindigit BES "om | omin

octdigit u= "om...mm

hexdigit = digit | "a"..."f" | "A"..."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for
enhanced readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

Some examples of integer literals:

7 2147483647 00177 0b100110111
3 79228162514264337593543950336 00377 Oxdeadbeef
100_000_000_000 0b_1110_0101

Changed in version 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.6 Floating-point literals

Floating-point literals are described by the following lexical definitions:

floatnumber = pointfloat | exponentfloat
pointfloat RES [digitpart] fraction | digitpart "."
exponentfloat = (digitpart | pointfloat) exponent
digitpart RES digit (["_"] digit)™*

fraction = "." digitpart

exponent = ("e" | "E") ["+"™ | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077e010 is legal, and
denotes the same number as 77e10. The allowed range of floating-point literals is implementation-dependent. As
in integer literals, underscores are supported for digit grouping.

Some examples of floating-point literals:

[3.14 10. .001 1e100 3.14e-10 0e0 3.14_15_93

Changed in version 3.6: Underscores are now allowed for grouping purposes in literals.

2.4. Literals 15

The Python Language Reference, Release 3.13.0rc2

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber = (floatnumber | digitpart) ("j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating-point numbers and have the same restrictions on their range. To create a complex number with a nonzero
real part, add a floating-point number to it, e.g., (3+4 7). Some examples of imaginary literals:

[3.14j 10.3 103 .00173 1e1007 3.14e-107 3.14_15_933 }

2.5 Operators

The following tokens are operators:

+ - e e / // % @
<< >> & | A ~ 9=
< > <= >= == =

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

14 ! 5 @ =
- = —= *= /= // 9=
@= &= |= ~ >>= << * k=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

R |

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

CEE J

16 Chapter 2. Lexical analysis

CHAPTER
THREE

DATA MODEL

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer”, code is
also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you
may think of it as the object’s address in memory. The i s operator compares the identity of two objects; the 1d ()
function returns an integer representing its identity.

CPython implementation detail: For CPython, id (x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., “does it have a length?”) and also defines
the possible values for objects of that type. The t ype () function returns an object’s type (which is an object itself).
Like its identity, an object’s fype is also unchangeable.'

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains
areference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same
as having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance,
numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation
quality how garbage collection is implemented, as long as no objects are collected that are still reachable.

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed
detection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not
guaranteed to collect garbage containing circular references. See the documentation of the gc module for information
on controlling the collection of cyclic garbage. Other implementations act differently and CPython may change. Do
not depend on immediate finalization of objects when they become unreachable (so you should always close files
explicitly).

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception with a t ry...except statement may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, usually a close () method. Programs
are strongly recommended to explicitly close such objects. The try... finally statement and the wi t h statement
provide convenient ways to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples, lists
and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a
container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability

11t is possible in some cases to change an object’s type, under certain controlled conditions. Tt generally isn’t a good idea though, since it can
lead to some very strange behaviour if it is handled incorrectly.

17

The Python Language Reference, Release 3.13.0rc2

of a container, only the identities of the immediately contained objects are implied. So, if an immutable container
(like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object with
the same type and value, while for mutable objects this is not allowed. For example, aftera = 1; b = 1,cand b
may or may not refer to the same object with the value one, depending on the implementation. This is because int
is an immutable type, so the reference to 1 can be reused. This behaviour depends on the implementation used, so
should not be relied upon, but is something to be aware of when making use of object identity tests. However, after
c = [1; d = [1],candd are guaranteed to refer to two different, unique, newly created empty lists. (Note that
e = f£ = [] assigns the same object to both e and f.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be
provided via the standard library instead.

Some of the type descriptions below contain a paragraph listing ‘special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

3.2.1 None

This type has a single value. There is a single object with this value. This object is accessed through the built-in name
None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions that don’t
explicitly return anything. Its truth value is false.

3.2.2 Notlmplemented

This type has a single value. There is a single object with this value. This object is accessed through the built-in
name Not Implemented. Numeric methods and rich comparison methods should return this value if they do not
implement the operation for the operands provided. (The interpreter will then try the reflected operation, or some
other fallback, depending on the operator.) It should not be evaluated in a boolean context.

See implementing-the-arithmetic-operations for more details.

Changed in version 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of Python.

3.2.3 Ellipsis

This type has a single value. There is a single object with this value. This object is accessed through the literal . . .
or the built-in name E11ipsis. Its truth value is true.

18 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

3.2.4 numbers.Number

These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in functions.
Numeric objects are immutable; once created their value never changes. Python numbers are of course strongly
related to mathematical numbers, but subject to the limitations of numerical representation in computers.

The string representations of the numeric classes, computedby __ repr_ () and ___str__ (), have the following
properties:

e They are valid numeric literals which, when passed to their class constructor, produce an object having the
value of the original numeric.

 The representation is in base 10, when possible.

 Leading zeros, possibly excepting a single zero before a decimal point, are not shown.
* Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.

* A sign is shown only when the number is negative.

Python distinguishes between integers, floating-point numbers, and complex numbers:

numbers.Integral

These represent elements from the mathematical set of integers (positive and negative).

© Note

The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers.

There are two types of integers:

Integers (int)
These represent numbers in an unlimited range, subject to available (virtual) memory only. For the purpose
of shift and mask operations, a binary representation is assumed, and negative numbers are represented in a
variant of 2’s complement which gives the illusion of an infinite string of sign bits extending to the left.

Booleans (bool)
These represent the truth values False and True. The two objects representing the values False and True
are the only Boolean objects. The Boolean type is a subtype of the integer type, and Boolean values behave
like the values 0 and 1, respectively, in almost all contexts, the exception being that when converted to a string,
the strings "False" or "True" are returned, respectively.

numbers .Real (float)

These represent machine-level double precision floating-point numbers. You are at the mercy of the underlying
machine architecture (and C or Java implementation) for the accepted range and handling of overflow. Python does
not support single-precision floating-point numbers; the savings in processor and memory usage that are usually the
reason for using these are dwarfed by the overhead of using objects in Python, so there is no reason to complicate the
language with two kinds of floating-point numbers.

3.2. The standard type hierarchy 19

The Python Language Reference, Release 3.13.0rc2

numbers .Complex (complex)

These represent complex numbers as a pair of machine-level double precision floating-point numbers. The same
caveats apply as for floating-point numbers. The real and imaginary parts of a complex number z can be retrieved
through the read-only attributes z . real and z . imag.

3.2.5 Sequences

These represent finite ordered sets indexed by non-negative numbers. The built-in function 1en () returns the number
of items of a sequence. When the length of a sequence is n, the index set contains the numbers 0, 1, ..., n-1. Item
i of sequence a is selected by a [1]. Some sequences, including built-in sequences, interpret negative subscripts by
adding the sequence length. For example, a [-2] equals a [n—21], the second to last item of sequence a with length
n.

Sequences also support slicing: a[i:7j] selects all items with index k such that i <= k < j. When used as an
expression, a slice is a sequence of the same type. The comment above about negative indexes also applies to negative
slice positions.

Some sequences also support “extended slicing” with a third “step” parameter: a [1: j : k] selects all items of a with
index x where x = 1 + n*k,n>=0andi<=x<].

Sequences are distinguished according to their mutability:

Immutable sequences

An object of an immutable sequence type cannot change once it is created. (If the object contains references to
other objects, these other objects may be mutable and may be changed; however, the collection of objects directly
referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings
A string is a sequence of values that represent Unicode code points. All the code points in the range U+0000
- U+10FFFF can be represented in a string. Python doesn’t have a char type; instead, every code point in
the string is represented as a string object with length 1. The built-in function ord () converts a code point
from its string form to an integer in the range 0 - 10FFFF; chr () converts an integer in the range 0
— 10FFFF to the corresponding length 1 string object. str.encode () can be used to convert a str to
bytes using the given text encoding, and bytes.decode () can be used to achieve the opposite.

Tuples
The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by comma-separated
lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affixing a comma to an expression (an
expression by itself does not create a tuple, since parentheses must be usable for grouping of expressions). An
empty tuple can be formed by an empty pair of parentheses.

Bytes
A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range 0 <=x <
256. Bytes literals (like b ' abc ') and the built-in bytes () constructor can be used to create bytes objects.
Also, bytes objects can be decoded to strings via the decode () method.

20 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

Mutable sequences

Mutable sequences can be changed after they are created. The subscription and slicing notations can be used as the
target of assignment and de 1 (delete) statements.

© Note

The collections and array module provide additional examples of mutable sequence types.

There are currently two intrinsic mutable sequence types:

Lists
The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of expres-
sions in square brackets. (Note that there are no special cases needed to form lists of length O or 1.)

Byte Arrays
A bytearray object is a mutable array. They are created by the built-in bytearray () constructor. Aside
from being mutable (and hence unhashable), byte arrays otherwise provide the same interface and functionality
as immutable bytes objects.

3.2.6 Set types

These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any sub-
script. However, they can be iterated over, and the built-in function 1en () returns the number of items in a set.
Common uses for sets are fast membership testing, removing duplicates from a sequence, and computing mathemat-
ical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the normal
rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1. 0), only one of them can be contained
in a set.

There are currently two intrinsic set types:

Sets
These represent a mutable set. They are created by the built-in set () constructor and can be modified
afterwards by several methods, such as add () .

Frozen sets
These represent an immutable set. They are created by the built-in frozenset () constructor. As a frozenset
is immutable and hashable, it can be used again as an element of another set, or as a dictionary key.

3.2.7 Mappings

These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a [k] selects the item
indexed by k from the mapping a; this can be used in expressions and as the target of assignments or de I statements.
The built-in function 1en () returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

3.2. The standard type hierarchy 21

The Python Language Reference, Release 3.13.0rc2

Dictionaries

These represent finite sets of objects indexed by nearly arbitrary values. The only types of values not acceptable
as keys are values containing lists or dictionaries or other mutable types that are compared by value rather than by
object identity, the reason being that the efficient implementation of dictionaries requires a key’s hash value to remain
constant. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(e.g., 1 and 1. 0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were added se-
quentially over the dictionary. Replacing an existing key does not change the order, however removing a key and
re-inserting it will add it to the end instead of keeping its old place.

Dictionaries are mutable; they can be created by the { } notation (see section Dictionary displays).

The extension modules dbm . ndbm and dbm . gnu provide additional examples of mapping types, as does the col—
lections module.

Changed in version 3.7: Dictionaries did not preserve insertion order in versions of Python before 3.6. In CPython
3.6, insertion order was preserved, but it was considered an implementation detail at that time rather than a language
guarantee.

3.2.8 Callable types

These are the types to which the function call operation (see section Calls) can be applied:

User-defined functions

A user-defined function object is created by a function definition (see section Function definitions). It should be called
with an argument list containing the same number of items as the function’s formal parameter list.

Special read-only attributes

Attribute Meaning

A reference to the dictionary that holds the func-
tion’s global variables — the global namespace of the
module in which the function was defined.

None ora tuple of cells that contain bindings for the
function’s free variables.

A cell object has the attribute ce11_contents. This
can be used to get the value of the cell, as well as set the
value.

function.__globals___

function.___closure

Special writable attributes

Most of these attributes check the type of the assigned value:

22 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

Attribute

Meaning

function.__doc

function.___name_

function.__qualname___

function.__module_

function.__defaults___

function.__code_

function.__dict___

function.__annotations___

function.__kwdefaults___

function.___type_params___

The function’s documentation string, or None if un-
available. Not inherited by subclasses.

The function’s name. See also: _ _name_ at-
tributes.

The function’s qualified name. See also: ___qual-
name__ attributes.

Added in version 3.3.
The name of the module the function was defined in, or
None if unavailable.

A tuple containing default parameter values for those
parameters that have defaults, or None if no parameters
have a default value.

The code object representing the compiled function
body.

The namespace supporting arbitrary function attributes.
See also: __dict__ attributes.

A dictionary containing annotations of parame-
ters. The keys of the dictionary are the parameter
names, and 'return' for the return annotation, if
provided. See also: annotations-howto.

A dictionary containing defaults for keyword-only
paramelers.

A tuple containing the type parameters of a generic

function.

Added in version 3.12.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach meta-
data to functions. Regular attribute dot-notation is used to get and set such attributes.

CPython implementation detail: CPython’s current implementation only supports function attributes on user-
defined functions. Function attributes on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object (accessible via the

___code___ attribute).

3.2. The standard type hierarchy

23

The Python Language Reference, Release 3.13.0rc2

Instance methods

An instance method object combines a class, a class instance and any callable object (normally a user-defined func-
tion).

Special read-only attributes:

Refers to the class instance object to which the method
method._ _self N

Refers to the original function object
method.__func___

The method’s documentation (same as method.
__func__.__doc__). A string if the original
function had a docstring, else None.

The name of the method (same as method.
_ func__.__ _name_)

method.__doc___

method.__name_

The name of the module the method was defined in, or

method.__module__ None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of that
class), if that attribute is a user-defined function object or a classmethod object.

When an instance method object is created by retrieving a user-defined function object from a class via one of its
instances, its ___self_ __ attribute is the instance, and the method object is said to be bound. The new method’s
__func___ attribute is the original function object.

When an instance method object is created by retrieving a classmethod object from a class or instance, its
__self_ _ attribute is the class itself, and its __ func___ attribute is the function object underlying the class
method.

When an instance method object is called, the underlying function (___ func__) is called, inserting the class instance
(__self__)in front of the argument list. For instance, when C is a class which contains a definition for a function
f (), and x is an instance of C, calling x . £ (1) is equivalent to calling C. f (x, 1).

When an instance method object is derived from a c1assmethod object, the “class instance” storedin ___self
will actually be the class itself, so that calling either x. £ (1) or C.f (1) is equivalent to calling £ (C, 1) where £
is the underlying function.

It is important to note that user-defined functions which are attributes of a class instance are not converted to bound
methods; this only happens when the function is an attribute of the class.

Generator functions

A function or method which uses the yield statement (see section The yield statement) is called a generator func-
tion. Such a function, when called, always returns an iferator object which can be used to execute the body of the
function: calling the iterator’s iterator.__next__ () method will cause the function to execute until it pro-
vides a value using the yield statement. When the function executes a return statement or falls off the end, a
StopIteration exception is raised and the iterator will have reached the end of the set of values to be returned.

24 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

Coroutine functions

A function or method which is defined using async def is called a coroutine function. Such a function, when
called, returns a coroutine object. It may contain awa it expressions, as well as async withand async for
statements. See also the Coroutine Objects section.

Asynchronous generator functions

A function or method which is defined using async def and which uses the yield statement is called a asyn-
chronous generator function. Such a function, when called, returns an asynchronous iterator object which can be used
inan async for statement to execute the body of the function.

Calling the asynchronous iterator’s aiterator.___anext__ method will return an awaitable which when awaited
will execute until it provides a value using the yield expression. When the function executes an empty return
statement or falls off the end, a StopAsyncIteration exception is raised and the asynchronous iterator will
have reached the end of the set of values to be yielded.

Built-in functions

A built-in function object is a wrapper around a C function. Examples of built-in functions are 1en () and math.
sin () (math is a standard built-in module). The number and type of the arguments are determined by the C
function. Special read-only attributes:

e __doc___is the function’s documentation string, or None if unavailable. See function.__doc___
e _ name___is the function’s name. See function.___name_ .
e _ self__ issettoNone (but see the next item).

¢ module__isthe name of the module the function was defined in or None if unavailable. See function.
__module__.

Built-in methods
This is really a different disguise of a built-in function, this time containing an object passed to the C function as an
implicit extra argument. An example of a built-in method is alist .append (), assuming alist is a list object. In

this case, the special read-only attribute ___self__ is set to the object denoted by alist. (The attribute has the same
semantics as it does with ot her instance methods.)

Classes
Classes are callable. These objects normally act as factories for new instances of themselves, but variations are possible

for class types that override __new___ (). The arguments of the call are passed to __new___ () and, in the typical
case,to __init__ () to initialize the new instance.

Class Instances

Instances of arbitrary classes can be made callable by defininga ___call__ () method in their class.

3.2. The standard type hierarchy 25

The Python Language Reference, Release 3.13.0rc2

3.2.9 Modules

Modules are a basic organizational unit of Python code, and are created by the import system as invoked either by
the import statement, or by calling functions such as importlib.import_module () and built-in __im-
port__ (). A module object has a namespace implemented by a dictionary object (this is the dictionary
referenced by the __globals___ attribute of functions defined in the module). Attribute references are translated
to lookups in this dictionary, e.g., m.x is equivalent tom.__dict__ ["x"]. A module object does not contain
the code object used to initialize the module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.
_ dict__ ["x"] = 1.

Predefined (writable) attributes:

__name__
The module’s name.

doc

The module’s documentation string, or None if unavailable.

file
The pathname of the file from which the module was loaded, if it was loaded from a file. The
_ file attribute may be missing for certain types of modules, such as C modules that are
statically linked into the interpreter. For extension modules loaded dynamically from a shared
library, it’s the pathname of the shared library file.

__annotations___
A dictionary containing variable annotations collected during module body execution. For best
practices on working with __annotations__, please see annotations-howto.

Special read-only attribute: __dict___ is the module’s namespace as a dictionary object.

CPython implementation detail: Because of the way CPython clears module dictionaries, the module dictionary
will be cleared when the module falls out of scope even if the dictionary still has live references. To avoid this, copy
the dictionary or keep the module around while using its dictionary directly.

3.2.10 Custom classes

Custom class types are typically created by class definitions (see section Class definitions). A class has a namespace
implemented by a dictionary object. Class attribute references are translated to lookups in this dictionary, e.g., C . x
istranslatedto C.__dict__ ["x"] (although there are a number of hooks which allow for other means of locating
attributes). When the attribute name is not found there, the attribute search continues in the base classes. This search
of the base classes uses the C3 method resolution order which behaves correctly even in the presence of ‘diamond’
inheritance structures where there are multiple inheritance paths leading back to a common ancestor. Additional
details on the C3 MRO used by Python can be found at python_2.3_mro.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into an instance
method object whose __self attribute is C. When it would yield a stat icmethod object, it is transformed
into the object wrapped by the static method object. See section Implementing Descriptors for another way in which
attributes retrieved from a class may differ from those actually contained inits __dict__.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called (see above) to yield a class instance (see below).
Special attributes:

__nhame___
The class name.

__module___
The name of the module in which the class was defined.

__diect__
The dictionary containing the class’s namespace.

26 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

bases
A tuple containing the base classes, in the order of their occurrence in the base class list.

doc___
The class’s documentation string, or None if undefined.

__annotations__
A dictionary containing variable annotations collected during class body execution. For best prac-
tices on working with __annotations__, please see annotations-howto.

__type_params___
A tuple containing the type parameters of a generic class.

__static_attributes___
A tuple containing names of attributes of this class which are assigned through self . X from any
function in its body.

_ firstlineno___
The line number of the first line of the class definition, including decorators.

3.2.11 Class instances

A class instance is created by calling a class object (see above). A class instance has a namespace implemented as a
dictionary which is the first place in which attribute references are searched. When an attribute is not found there,
and the instance’s class has an attribute by that name, the search continues with the class attributes. If a class attribute
is found that is a user-defined function object, it is transformed into an instance method object whose ___self
attribute is the instance. Static method and class method objects are also transformed; see above under “Classes”.
See section Implementing Descriptors for another way in which attributes of a class retrieved via its instances may
differ from the objects actually stored in the class’s ___dict__. If no class attribute is found, and the object’s class
hasa___getattr__ () method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has a
__setattr__ ()or__delattr__ () method, this is called instead of updating the instance dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special names.
See section Special method names.

Special attributes: __dict___is the attribute dictionary; __class___is the instance’s class.

3.2.12 1/0 objects (also known as file objects)

A file object represents an open file. Various shortcuts are available to create file objects: the open () built-in
function, and also os.popen (), os.fdopen (), and the makefile () method of socket objects (and perhaps
by other functions or methods provided by extension modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to the
interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow the interface
defined by the i0.Text IOBase abstract class.

3.2.13 Internal types

A few types used internally by the interpreter are exposed to the user. Their definitions may change with future
versions of the interpreter, but they are mentioned here for completeness.

3.2. The standard type hierarchy 27

The Python Language Reference, Release 3.13.0rc2

Code objects

Code objects represent byte-compiled executable Python code, or bytecode. The difference between a code object
and a function object is that the function object contains an explicit reference to the function’s globals (the module
in which it was defined), while a code object contains no context; also the default argument values are stored in the
function object, not in the code object (because they represent values calculated at run-time). Unlike function objects,
code objects are immutable and contain no references (directly or indirectly) to mutable objects.

28 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

Special read-only attributes

codeobject

codeobject.

codeobject

codeobject.

codeobject

codeobject.

codeobject.

codeobject.

codeobject.

codeobject.

codeobject.

codeobject.

codeobject

codeobject.

codeobject

codeobject.

codeobject

.co_name

co_qualname

.co_argcount

co_posonlyargcount

.co_kwonlyargcount

co_nlocals

CO_varnames

co_cellvars

co_freevars

co_code

co_consts

CcoO_names

.co_filename

co_firstlineno

.co_1lnotab

co_stacksize

.co_flags

The function name

The fully qualified function name
Added in version 3.11.

The total number of positional parameters (including
positional-only parameters and parameters with default
values) that the function has

The number of positional-only parameters (including
arguments with default values) that the function has

The number of keyword-only parameters (including ar-
guments with default values) that the function has

The number of local variables used by the function (in-
cluding parameters)

A tuple containing the names of the local variables
in the function (starting with the parameter names)

A tuple containing the names of local variables that
are referenced by nested functions inside the function

A tuple containing the names of free variables in the
function

A string representing the sequence of byfecode instruc-
tions in the function

A tuple containing the literals used by the bytecode
in the function

A tuple containing the names used by the bytecode in
the function

The name of the file from which the code was compiled

The line number of the first line of the function

A string encoding the mapping from bytecode offsets to
line numbers. For details, see the source code of the
interpreter.

Deprecated since version 3.12: This attribute of code
objects is deprecated, and may be removed in Python
3.14.

The required stack size of the code object

An integer encoding a number of flags for the inter-
preter.

3.2. The standard type hierarchy

29

The Python Language Reference, Release 3.13.0rc2

The following flag bits are defined for co_f1ags: bit 0x04 is set if the function uses the *argument s syntax to
accept an arbitrary number of positional arguments; bit 0x 08 is set if the function uses the * *keywords syntax to
accept arbitrary keyword arguments; bit 0x20 is set if the function is a generator. See inspect-module-co-flags for
details on the semantics of each flags that might be present.

Future feature declarations (from __ future_ import division)also use bitsin co_f1ags to indicate
whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if the function was compiled
with future division enabled; bits 0x10 and 0x1 000 were used in earlier versions of Python.

Other bits in co_ f1ags are reserved for internal use.

If a code object represents a function, the first item in co_consts is the documentation string of the function, or
None if undefined.

Methods on code objects

codeobject.co_positions ()
Returns an iterable over the source code positions of each byrecode instruction in the code object.

The iterator returns tuples containing the (start_line, end_line, start_column,
end_column). The i-th tuple corresponds to the position of the source code that compiled to the i-th code
unit. Column information is O-indexed utf-8 byte offsets on the given source line.

This positional information can be missing. A non-exhaustive lists of cases where this may happen:
¢ Running the interpreter with —X no_debug_ranges.
* Loading a pyc file compiled while using ~X no_debug_ranges.
* Position tuples corresponding to artificial instructions.
 Line and column numbers that can’t be represented due to implementation specific limitations.
When this occurs, some or all of the tuple elements can be None.

Added in version 3.11.

O Note

This feature requires storing column positions in code objects which may result in a small increase of disk
usage of compiled Python files or interpreter memory usage. To avoid storing the extra information and/or
deactivate printing the extra traceback information, the —X no_debug_ranges command line flag or
the PYTHONNODEBUGRANGES environment variable can be used.

codeobject.co_lines ()

Returns an iterator that yields information about successive ranges of byfecodes. Each item yielded is a
(start, end, lineno) tuple:

e start (an int) represents the offset (inclusive) of the start of the byrecode range
* end (an int) represents the offset (exclusive) of the end of the bytecode range

e lineno is an int representing the line number of the byfecode range, or None if the bytecodes in the
given range have no line number

The items yielded will have the following properties:
* The first range yielded will have a start of 0.

e The (start, end) ranges will be non-decreasing and consecutive. That is, for any pair of tuples,
the start of the second will be equal to the end of the first.

¢ No range will be backwards: end >= start for all triples.

* The last tuple yielded will have end equal to the size of the byrecode.

30 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

Zero-width ranges, where start == end, are allowed. Zero-width ranges are used for lines that are present
in the source code, but have been eliminated by the bytecode compiler.

Added in version 3.10.

e See also

PEP 626 - Precise line numbers for debugging and other tools.
The PEP that introduced the co_lines () method.

codeobject .replace (**kwargs)

Return a copy of the code object with new values for the specified fields.
Code objects are also supported by the generic function copy . replace ().
Added in version 3.8.

Frame objects

Frame objects represent execution frames. They may occur in traceback objects, and are also passed to registered
trace functions.

Special read-only attributes

Points to the previous stack frame (towards the caller),
frame.£f_back or None if this is the bottom stack frame
The code object being executed in this frame.
Accessing this attribute raises an auditing event
object._ _getattr__ with arguments ob7j and
"f code".
The mapping used by the frame to look up local vari-
ables. If the frame refers to an optimized scope, this may
return a write-through proxy object.
Changed in version 3.13: Return a proxy for optimized
scopes.
The dictionary used by the frame to look up global vari-
ables

frame.f_code

frame.f_locals

frame.f_globals

o The dictionary used by the frame to look up built-in (in-
frame.f builtins trinsic) names
The “precise instruction” of the frame object (this is an

frame.f_lasti index into the bytecode string of the code object)

3.2. The standard type hierarchy 31

https://peps.python.org/pep-0626/

The Python Language Reference, Release 3.13.0rc2

Special writable attributes

If not None, this is a function called for various events
during code execution (this is used by debuggers). Nor-
mally an event is triggered for each new source line (see
f_trace_lines).

Set this attribute to False to disable triggering a trac-
ing event for each source line.

frame.f_trace

frame.f_trace_lines

Set this attribute to True to allow per-opcode events
to be requested. Note that this may lead to undefined
interpreter behaviour if exceptions raised by the trace
function escape to the function being traced.

The current line number of the frame — writing to this
from within a trace function jumps to the given line
(only for the bottom-most frame). A debugger can im-
plement a Jump command (aka Set Next Statement) by
writing to this attribute.

frame.f_ trace_opcodes

frame.f_lineno

Frame object methods

Frame objects support one method:

frame.clear ()

This method clears all references to local variables held by the frame. Also, if the frame belonged to a generator,
the generator is finalized. This helps break reference cycles involving frame objects (for example when catching
an exception and storing its traceback for later use).

RuntimeError is raised if the frame is currently executing or suspended.
Added in version 3.4.

Changed in version 3.13: Attempting to clear a suspended frame raises Runt imeError (as has always been
the case for executing frames).

Traceback objects

Traceback objects represent the stack trace of an exception. A traceback object is implicitly created when an exception
occurs, and may also be explicitly created by calling types . TracebackType.

Changed in version 3.7: Traceback objects can now be explicitly instantiated from Python code.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack, at each
unwound level a traceback object is inserted in front of the current traceback. When an exception handler is entered,
the stack trace is made available to the program. (See section The try statement.) It is accessible as the third item of
the tuple returned by sys.exc_info (), and asthe __traceback___ attribute of the caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error
stream; if the interpreter is interactive, it is also made available to the user as sys.last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the tb_next attributes
should be linked to form a full stack trace.

Special read-only attributes:

32 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

Points to the execution frame of the current level.
Accessing this attribute raises an auditing event
object._ getattr__ with arguments obj and
"tb_frame".

Gives the line number where the exception occurred

traceback.tb_frame

traceback.tb_lineno

Indicates the “precise instruction”.
traceback.tb_lasti

The line number and last instruction in the traceback may differ from the line number of its frame object if the
exception occurred in a t ry statement with no matching except clause or with a finally clause.

traceback.tb_next
The special writable attribute tlb_next is the next level in the stack trace (towards the frame where the

exception occurred), or None if there is no next level.

Changed in version 3.7: This attribute is now writable

Slice objects

Slice objects are used to represent slices for __getitem () methods. They are also created by the built-in
slice () function.

Special read-only attributes: start is the lower bound; st op is the upper bound; step is the step value; each is
None if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices (self, length)

This method takes a single integer argument length and computes information about the slice that the slice
object would describe if applied to a sequence of length items. It returns a tuple of three integers; respectively
these are the start and stop indices and the step or stride length of the slice. Missing or out-of-bounds indices
are handled in a manner consistent with regular slices.

Static method objects

Static method objects provide a way of defeating the transformation of function objects to method objects described
above. A static method object is a wrapper around any other object, usually a user-defined method object. When a
static method object is retrieved from a class or a class instance, the object actually returned is the wrapped object,
which is not subject to any further transformation. Static method objects are also callable. Static method objects are
created by the built-in staticmethod () constructor.

Class method objects

A class method object, like a static method object, is a wrapper around another object that alters the way in which
that object is retrieved from classes and class instances. The behaviour of class method objects upon such retrieval
is described above, under ‘instance methods”. Class method objects are created by the built-in classmethod ()
constructor.

3.2. The standard type hierarchy 33

The Python Language Reference, Release 3.13.0rc2

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or sub-
scripting and slicing) by defining methods with special names. This is Python’s approach to operator overloading,
allowing classes to define their own behavior with respect to language operators. For instance, if a class defines a
methodnamed ___getitem__ (), and x is an instance of this class, then x [i] is roughly equivalent to t ype (x) .
__getitem__ (x, 1i). Except where mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined (typically AttributeError or TypeError).

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class
sets__iter__ () to None, the class is not iterable, so calling iter () on its instances will raise a TypeError
(without falling back to __getitem _ ()).

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of this is the NodeList
interface in the W3C’s Document Object Model.)

3.3.1 Basic customization

object._ _new__ (cls[,])

Called to create a new instance of class cls. ___new__ () is a static method (special-cased so you need not
declare it as such) that takes the class of which an instance was requested as its first argument. The remaining
arguments are those passed to the object constructor expression (the call to the class). The return value of
__new___ () should be the new object instance (usually an instance of cIs).

Typical implementations create a new instance of the class by invoking the superclass’s ___new__ () method
using super () .__new__ (cls[, ...]) with appropriate arguments and then modifying the newly
created instance as necessary before returning it.

If _ _new__ () isinvoked during object construction and it returns an instance of cls, then the new instance’s
__init__ () method will be invoked like __init__ (self[, ...]), where self is the new instance
and the remaining arguments are the same as were passed to the object constructor.

If new () does not return an instance of cls, then the new instance’s init () method will not be
invoked.

__new___ () is intended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize
instance creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init__ (self[,..]

Called after the instance has been created (by ___new__ ()), but before it is returned to the caller. The
arguments are those passed to the class constructor expression. If a base classhasan___init__ () method,
the derived class’s ___init__ () method, if any, must explicitly call it to ensure proper initialization of the
base class part of the instance; for example: super () .__init__ ([args...]).

Because __new__ () and __init__ () work together in constructing objects (__new__ () to create it,
and ___init__ () to customize it), no non-None value may be returned by ___init__ (); doing so will
cause a TypeError to be raised at runtime.

object.__del__ (self)

Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor.
If a base class hasa ___del__ () method, the derived class’s ___del__ () method, if any, must explicitly
call it to ensure proper deletion of the base class part of the instance.

It is possible (though not recommended!) forthe __del__ () method to postpone destruction of the instance
by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether

2The _hash__ (), __iter (), _reversed (), _contains__ (), __class_getitem__ () and __fspath__ ()
methods have special handling for this. Others will still raise a TypeError, but may do so by relying on the behavior that None is not callable.

34 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

__del__ () iscalled a second time when a resurrected object is about to be destroyed; the current CPython
implementation only calls it once.

It is not guaranteed that __de1__ () methods are called for objects that still exist when the interpreter exits.
weakref.finalize provides a straightforward way to register a cleanup function to be called when an
object is garbage collected.

© Note

del x doesn’tdirectlycall x.__del__ () — the former decrements the reference count for x by one,
and the latter is only called when x’s reference count reaches zero.

CPython implementation detail: It is possible for a reference cycle to prevent the reference count of an object
from going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage collector. A
common cause of reference cycles is when an exception has been caught in a local variable. The frame’s locals
then reference the exception, which references its own traceback, which references the locals of all frames
caught in the traceback.

e See also

Documentation for the gc module.

A\ Warning

Due to the precarious circumstances under which___del__ () methods are invoked, exceptions that occur
during their execution are ignored, and a warning is printed to sys . stderr instead. In particular:

e del_ () can be invoked when arbitrary code is being executed, including from any arbitrary
thread. If __del () needs to take a lock or invoke any other blocking resource, it may deadlock
as the resource may already be taken by the code that gets interrupted to execute __del__ ().

e _del__ () canbe executed during interpreter shutdown. As a consequence, the global variables
it needs to access (including other modules) may already have been deleted or set to None. Python
guarantees that globals whose name begins with a single underscore are deleted from their module
before other globals are deleted; if no other references to such globals exist, this may help in assuring
that imported modules are still available at the time when the ___del__ () method is called.

object.__repr__ (self)
Called by the repr () built-in function to compute the “official” string representation of an object. If at
all possible, this should look like a valid Python expression that could be used to recreate an object with
the same value (given an appropriate environment). If this is not possible, a string of the form <. . . some
useful description...> should be returned. The return value must be a string object. If a class
defines _ _repr () butnot __str__ (), then _ repr__ () is also used when an “informal” string
representation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and unam-
biguous.

object.__str__ (self)

Called by str (object) and the built-in functions format () and print () to compute the “informal”
or nicely printable string representation of an object. The return value must be a string object.

This method differs from object.___repr__ () in that there is no expectation that ___str () returna
valid Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object._ repr ().

3.3. Special method names 35

The Python Language Reference, Release 3.13.0rc2

object.__bytes__ (self)

Called by bytes to compute a byte-string representation of an object. This should return a bytes object.

object.__format__ (self, format_spec)

Called by the format () built-in function, and by extension, evaluation of formatted string literals and the
str.format () method, to produce a “formatted” string representation of an object. The format_spec ar-
gument is a string that contains a description of the formatting options desired. The interpretation of the
format_spec argument is up to the type implementing __ format__ (), however most classes will either
delegate formatting to one of the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.
The return value must be a string object.

Changed in version 3.4: The __format__ method of object itself raises a TypeError if passed any non-
empty string.

Changed in version 3.7: object.__ format__ (x, '') is now equivalent to str (x) rather than
format (str(x), '').

object.__1t__ (self, other)

object.__le__ (self, other)

object.__eq__ (self, other)

object.__ne__ (self, other)

object.__gt__ (self, other)

object.__ge__ (self, other)

These are the so-called “rich comparison” methods. The correspondence between operator symbols and
method names is as follows: x<y calls x.__ 1t (y), x<=y calls x.__le_ (y), x==y calls x.
eq (y),x!=ycallsx._ ne_ (y),x>ycallsx._ gt_ (y),andx>=ycallsx._ ge_ (y).

A rich comparison method may return the singleton Not Implemented if it does not implement the operation
for a given pair of arguments. By convention, False and True are returned for a successful comparison.
However, these methods can return any value, so if the comparison operator is used in a Boolean context (e.g.,
in the condition of an if statement), Python will call bool () on the value to determine if the result is true
or false.

By default, object implements __eq () by using is, returning Not Implemented in the case of a
false comparison: True 1if x 1s y else NotImplemented. For _ ne (), by default it
delegates to ___eqg___ () and inverts the result unless it is Not Implemented. There are no other implied
relationships among the comparison operators or default implementations; for example, the truth of (x<y or
x==y) does not imply x<=y. To automatically generate ordering operations from a single root operation, see
functools.total_ordering().

See the paragraph on ___hash__ () for some important notes on creating hashable objects which support
custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support
the operation but the right argument does); rather, 71t () and __gt___ () are each other’s reflection,
__le ()and __ge__ () are each other’s reflection, and _ _eq () and __ne__ () are their own re-
flection. If the operands are of different types, and the right operand’s type is a direct or indirect subclass
of the left operand’s type, the reflected method of the right operand has priority, otherwise the left operand’s
method has priority. Virtual subclassing is not considered.

‘When no appropriate method returns any value other than Not Implemented, the == and ! = operators will
fall back to is and is not, respectively.

object._ _hash__ (self)

Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset, and dict. The _ _hash__ () method should return an integer. The only required property
is that objects which compare equal have the same hash value; it is advised to mix together the hash values of
the components of the object that also play a part in comparison of objects by packing them into a tuple and
hashing the tuple. Example:

36

Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

def _ hash__ (self):
return hash((self.name, self.nick, self.color))

© Note

hash () truncates the value returned from an object’s custom ___hash__ () method to the size of a
Py_ssize_t. This is typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s
___hash___ () must interoperate on builds of different bit sizes, be sure to check the width on all supported
builds. An easy way to do this is with python -c "import sys; print (sys.hash_info.
width)".

If a class does not define an ___eqg () method it should not define a __hash () operation either; if it
defines__eq () butnot___hash__ (), itsinstances will not be usable as items in hashable collections. If a
class defines mutable objects and implements an __eqg___ () method, it should not implement ___hash__ (),
since the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s
hash value changes, it will be in the wrong hash bucket).

User-defined classeshave __eq () and__hash___ () methods by default; with them, all objects compare
unequal (except with themselves) and x . __hash__ () returns an appropriate value such that x == y implies
boththat x is yand hash(x) == hash (y).

Aclassthatoverrides__eqg () anddoesnotdefine__hash__ () willhaveits___hash__ () implicitly set
to None. Whenthe ___hash___ () method of a class is None, instances of the class will raise an appropriate
TypeError when a program attempts to retrieve their hash value, and will also be correctly identified as
unhashable when checking isinstance (obj, collections.abc.Hashable).

If a class that overrides __eq__ () needs to retain the implementation of ___hash___ () from a parent class,
the interpreter must be told this explicitly by setting __hash__ = <ParentClass>._ _hash__.

If a class that does not override __eg_ () wishes to suppress hash support, it should include __hash___
= None in the class definition. A class which defines its own ___hash__ () that explicitly raises a Type—
Error would be incorrectly identified as hashable by an isinstance (obj, collections.abc.
Hashable) call.

© Note

By default, the __hash__ () values of str and bytes objects are “salted” with an unpredictable random
value. Although they remain constant within an individual Python process, they are not predictable between
repeated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully chosen inputs that
exploit the worst case performance of a dict insertion, O(n?) complexity. See http://ocert.org/advisories/
ocert-2011-003.html for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this
ordering (and it typically varies between 32-bit and 64-bit builds).

See also PYTHONHASHSEED.

Changed in version 3.3: Hash randomization is enabled by default.

object._ _bool__ (self)
Called to implement truth value testing and the built-in operation bool () ; should return False or True.
When this method is not defined, __1en__ () is called, if it is defined, and the object is considered true if its
result is nonzero. If a class defines neither __1en () nor __bool__ (), all its instances are considered
true.

3.3. Special method names 37

http://ocert.org/advisories/ocert-2011-003.html
http://ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, Release 3.13.0rc2

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion
of x.name) for class instances.

object.__getattr__ (self, name)

Called when the default attribute access fails with an Att ributeError (either _ _getattribute__ ()
raises an AttributeError because name is not an instance attribute or an attribute in the class tree for
self;or ___get__ () of a name property raises AttributeError). This method should either return
the (computed) attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, ___getattr__ () isnot called. (This is an
intentional asymmetry between ___getattr__ () and ___setattr__ ().) This is done both for efficiency
reasons and because otherwise ___getattr__ () would have no way to access other attributes of the instance.
Note that at least for instance variables, you can take total control by not inserting any values in the instance
attribute dictionary (but instead inserting them in another object). See the getattribute _ () method
below for a way to actually get total control over attribute access.

object.__getattribute__ (self, name)

Called unconditionally to implement attribute accesses for instances of the class. If the class also defines
__getattr__ (), the latter will not be called unless ___getattribute () either calls it explicitly or
raises an AttributeError. This method should return the (computed) attribute value or raise an At —
tributeError exception. In order to avoid infinite recursion in this method, its implementation should
always call the base class method with the same name to access any attributes it needs, for example, object .
__getattribute__ (self, name).

© Note

This method may still be bypassed when looking up special methods as the result of implicit invocation via
language syntax or built-in functions. See Special method lookup.

For certain sensitive attribute accesses, raises an auditing event object .__getattr__ with arguments
obj and name.

object.__setattr__ (self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store
the value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If _ _setattr__ () wants to assign to an instance attribute, it should call the base class method with the
same name, for example, object._ _setattr__ (self, name, value).

For certain sensitive attribute assignments, raises an auditing event object .___setattr__ with arguments
ob7j, name, value.
object.__delattr__ (self, name)

Like setattr__ () but for attribute deletion instead of assignment. This should only be implemented if
del obj.name is meaningful for the object.

For certain sensitive attribute deletions, raises an auditing event object.__delattr__ with arguments
obj and name.
object.__dir__ (self)

Called when dir () is called on the object. An iterable must be returned. dir () converts the returned
iterable to a list and sorts it.

38 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

Customizing module attribute access

Special names __getattr___ and __dir__ can be also used to customize access to module attributes. The
__getattr__ function at the module level should accept one argument which is the name of an attribute and return
the computed value or raise an At t ributeError. If an attribute is not found on a module object through the nor-
mal lookup, i.e. object.__getattribute__ (),then__getattr__ issearched inthe module __dict___
before raising an AttributeError. If found, it is called with the attribute name and the result is returned.

The __dir___ function should accept no arguments, and return an iterable of strings that represents the names
accessible on module. If present, this function overrides the standard dir () search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the
__class___ attribute of a module object to a subclass of types.ModuleType. For example:

import sys
from types import ModuleType

class VerboseModule (ModuleType) :
def _ repr_ (self):
return f'Verbose {self._name__ }'
def _ setattr_ (self, attr, value):
print (f'Setting {attr}..."')
super () .__setattr__ (attr, value)

sys.modules|[_ name_]. class__ = VerboseModule

© Note

Defining module __getattr__ andsettingmodule __class___ only affect lookups made using the attribute
access syntax — directly accessing the module globals (whether by code within the module, or via a reference to
the module’s globals dictionary) is unaffected.

Changed in version 3.5: __class__ module attribute is now writable.

Added in version 3.7: __getattr__ _and __ dir__ module attributes.

> See also

PEP 562 - Module __getattr__ and __dir__
Describes the __getattr_ and _ dir__ functions on modules.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for
one of its parents). In the examples below, “the attribute” refers to the attribute whose name is the key of the property
in the owner class’ __dict_ .

object.__get__ (self, instance, owner=None)

Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance
attribute access). The optional owner argument is the owner class, while instance is the instance that the
attribute was accessed through, or None when the attribute is accessed through the owner.

This method should return the computed attribute value or raise an AttributeError exception.

PEP 252 specifies that ___get___ () is callable with one or two arguments. Python’s own built-in descriptors
support this specification; however, it is likely that some third-party tools have descriptors that require both

3.3. Special method names 39

https://peps.python.org/pep-0562/
https://peps.python.org/pep-0252/

The Python Language Reference, Release 3.13.0rc2

arguments. Python’sown___getattribute__ () implementation always passes in both arguments whether
they are required or not.

object.__set__ (self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.
Note, adding __set__ () or __delete__ () changes the kind of descriptor to a “data descriptor”. See
Invoking Descriptors for more details.

object.__delete__ (self, instance)

Called to delete the attribute on an instance instance of the owner class.
Instances of descriptors may also have the ___objclass___ attribute present:

object.__objclass___

The attribute __objclass__ is interpreted by the inspect module as specifying the class where this
object was defined (setting this appropriately can assist in runtime introspection of dynamic class attributes).
For callables, it may indicate that an instance of the given type (or a subclass) is expected or required as the
first positional argument (for example, CPython sets this attribute for unbound methods that are implemented
in C).

Invoking Descriptors

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden
by methods in the descriptor protocol: __get__ (),__set___ (),and __delete__ (). If any of those methods
are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance,
a . x has a lookup chain starting with a.__dict__ ['x'],then type(a).__dict__['x'], and continuing
through the base classes of type (a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on
which descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a . x. How the arguments are assembled depends on a:

Direct Call
The simplest and least common call is when user code directly invokes a descriptor method: x.___get__ (a).

Instance Binding
If binding to an object instance, a.x is transformed into the call: type(a).__dict__ ['x'].
__get__(a, type(a)).

Class Binding
If binding to a class, A . x is transformed into the call: A.__dict__ ['x'].__get__ (None, A).
Super Binding
A dotted lookup such as super (A, a) .xsearchesa.__class__._ mro__ forabase class B following
Aandthenreturns B.__dict_ ['x'].__get__ (a, A).If nota descriptor, x is returned unchanged.

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined.
A descriptor can define any combination of __get__ (), set__ () and __delete__ (). If it does not
define __get__ (), then accessing the attribute will return the descriptor object itself unless there is a value in
the object’s instance dictionary. If the descriptor defines ___set__ () and/or __delete__ (), it is a data de-
scriptor; if it defines neither, it is a non-data descriptor. Normally, data descriptors define both __get__ () and
__set__ (), while non-data descriptors have just the __get__ () method. Data descriptors with __get__ ()
and __set__ () (and/or __delete__ ()) defined always override a redefinition in an instance dictionary. In
contrast, non-data descriptors can be overridden by instances.

Python methods (including those decorated with @staticmethod and @classmethod) are implemented as
non-data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to
acquire behaviors that differ from other instances of the same class.

40 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

The property () function is implemented as a data descriptor. Accordingly, instances cannot override the behavior
of a property.

__slots__

__slots__ allow us to explicitly declare data members (like properties) and deny the creation of __dict__ and
__weakref__ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using ___dict___ can be significant. Attribute lookup speed can be significantly improved as
well.

object.__slots__

This class variable can be assigned a string, iterable, or sequence of strings with variable names used by in-
stances. __slots__ reserves space for the declared variables and prevents the automatic creationof __dict___
and __weakref __ for each instance.

Notes on using __slots__:

e When inheriting from a class without __slots__, the __dict__ and __weakref__ attribute of the instances
will always be accessible.

e Withouta___dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition.
Attempts to assign to an unlisted variable name raises AttributeError. If dynamic assignment of new
variables is desired, then add '__dict__ ' to the sequence of strings in the __slots__ declaration.

e Without a __weakref__ variable for each instance, classes defining __slots__ do not support weak refer-
ences to its instances. If weak reference support is needed, then add ' __weakref__ ' to the sequence of
strings in the __slots__ declaration.

e _ slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class
attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class
attribute would overwrite the descriptor assignment.

* The action of a __slots__ declaration is not limited to the class where it is defined. __slots__ declared in parents
are available in child classes. However, child subclasses will geta __dict___ and __weakref__ unless they
also define __slots__ (which should only contain names of any additional slots).

¢ If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is
inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of the
program undefined. In the future, a check may be added to prevent this.

e TypeError will be raised if nonempty __ slots__ are defined for a class derived from a
"variable-length" built-in typesuchas int,bytes, and tuple.

* Any non-string iferable may be assigned to __slots__.

e If a dictionary is used to assign __slots__, the dictionary keys will be used as the slot names. The val-
ues of the dictionary can be used to provide per-attribute docstrings that will be recognised by inspect.
getdoc () and displayed in the output of help ().

e __ class___ assignment works only if both classes have the same __slofs__.

e Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have
attributes created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

e If an iterator is used for __slots__ then a descriptor is created for each of the iterator’s values. However, the
__slots__ attribute will be an empty iterator.

3.3. Special method names 41

The Python Language Reference, Release 3.13.0rc2

3.3.3 Customizing class creation

Whenever a class inherits from another class, ___init_subclass__ () is called on the parent class. This way,
it is possible to write classes which change the behavior of subclasses. This is closely related to class decorators,
but where class decorators only affect the specific class they’re applied to, __init_subclass__ solely applies to
future subclasses of the class defining the method.

classmethod object.__init_subclass__ (cls)

This method is called whenever the containing class is subclassed. cls is then the new subclass. If defined as a
normal instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent class’s __init_subclass__.
For compatibility with other classes using __init_subclass__, one should take out the needed keyword
arguments and pass the others over to the base class, as in:

class Philosopher:
def __ _init_subclass__(cls, /, default_name, **kwargs):
super () .__init_subclass__ (**kwargs)
cls.default_name = default_name

class AustralianPhilosopher (Philosopher, default_name="Bruce"):
pass

The default implementation object.__init_subclass__ does nothing, but raises an error if it is called
with any arguments.

© Note

The metaclass hint metaclass is consumed by the rest of the type machinery, and is never passed to
__init_subclass___ implementations. The actual metaclass (rather than the explicit hint) can be
accessed as type (cls).

Added in version 3.6.

When a class is created, type._ _new__ () scans the class variables and makes callbacks to those with a
__set_name___ () hook.

object.__set_name__ (self, owner, name)
Automatically called at the time the owning class owner is created. The object has been assigned to name in
that class:
class A:
x = C() # Automatically calls: x.__set_name__ (A, 'x'")

If the class variable is assigned after the class is created, __set_name__ () will not be called automatically.
If needed, __set_name___ () can be called directly:

class A:
pass
e = C()
A.x = C # The hook is not called
c._ _set_name__ (A, 'x") # Manually invoke the hook

See Creating the class object for more details.

Added in version 3.6.

42 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

Metaclasses

By default, classes are constructed using type (). The class body is executed in a new namespace and the class
name is bound locally to the result of type (name, bases, namespace).

The class creation process can be customized by passing the metaclass keyword argument in the class definition
line, or by inheriting from an existing class that included such an argument. In the following example, both MyClass
and MySubclass are instances of Meta:

class Meta(type) :
pass

class MyClass (metaclass=Meta) :
pass

class MySubclass (MyClass) :
pass

J

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations
described below.

When a class definition is executed, the following steps occur:
* MRO entries are resolved,;
* the appropriate metaclass is determined;
* the class namespace is prepared;
* the class body is executed;

* the class object is created.

Resolving MRO entries

object.__mro_entries__ (self, bases)
If a base that appears in a class definition is not an instance of t ype, thenan__mro_entries__ () method
is searched on the base. If an__mro_entries__ () method is found, the base is substituted with the result
of acallto ___mro_entries__ () when creating the class. The method is called with the original bases
tuple passed to the bases parameter, and must return a tuple of classes that will be used instead of the base.
The returned tuple may be empty: in these cases, the original base is ignored.

> See also

types.resolve_bases ()
Dynamically resolve bases that are not instances of type.

types.get_original_bases()
Retrieve a class’s “original bases” prior to modifications by _ _mro_entries_ ().

PEP 560
Core support for typing module and generic types.

3.3. Special method names 43

https://peps.python.org/pep-0560/

The Python Language Reference, Release 3.13.0rc2

Determining the appropriate metaclass

The appropriate metaclass for a class definition is determined as follows:
* if no bases and no explicit metaclass are given, then t ype () is used;
« if an explicit metaclass is given and it is not an instance of type (), then it is used directly as the metaclass;

« ifaninstance of t ype () is given as the explicit metaclass, or bases are defined, then the most derived metaclass
is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type (cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these
candidate metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail
with TypeError.

Preparing the class hamespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass has
a__ prepare___ attribute, it is called as namespace = metaclass._ prepare_ (name, bases,
**kwds) (where the additional keyword arguments, if any, come from the class definition). The __prepare_
method should be implemented as a classmethod. The namespace returned by __prepare_ is passed in to
__new___, but when the final class object is created the namespace is copied into a new dict.

If the metaclass has no __prepare___ attribute, then the class namespace is initialised as an empty ordered map-
ping.

> See also

PEP 3115 - Metaclasses in Python 3000
Introduced the __prepare__ namespace hook

Executing the class body

The class body is executed (approximately) as exec (body, globals (), namespace). The key difference
from a normal call to exec () is that lexical scoping allows the class body (including any methods) to reference
names from the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see
names defined at the class scope. Class variables must be accessed through the first parameter of instance or class
methods, or through the implicit lexically scoped ___class___ reference described in the next section.

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass (name, bases, namespace, **kwds) (the additional keywords passed here are the same as
those passed to __prepare_).

This class object is the one that will be referenced by the zero-argument form of super (). __class__isan
implicit closure reference created by the compiler if any methods in a class body refer to either __class__ or
super. This allows the zero argument form of super () to correctly identify the class being defined based on
lexical scoping, while the class or instance that was used to make the current call is identified based on the first
argument passed to the method.

CPython implementation detail: In CPython 3.6 and later, the __class___ cell is passed to the metaclass as a
__classcell___ entry in the class namespace. If present, this must be propagated up to the type.__new___
call in order for the class to be initialised correctly. Failing to do so will result in a Runt imeError in Python 3.8.

44 Chapter 3. Data model

https://peps.python.org/pep-3115/

The Python Language Reference, Release 3.13.0rc2

When using the default metaclass type, or any metaclass that ultimately calls type.__new__, the following
additional customization steps are invoked after creating the class object:

1) The type.__new__ method collects all of the attributes in the class namespace that define a
__set_name___ () method;

2) Those __set_name__ methods are called with the class being defined and the assigned name of that par-
ticular attribute;

3) The _init_subclass__ () hook is called on the immediate parent of the new class in its method reso-
lution order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the
resulting object is bound in the local namespace as the defined class.

When a new class is created by type.__new__, the object provided as the namespace parameter is copied to a
new ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which
becomes the ___dict___ attribute of the class object.

> See also

PEP 3135 - New super
Describes the implicit __class___ closure reference

Uses for metaclasses

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging, in-
terface checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource
locking/synchronization.

3.3.4 Customizing instance and subclass checks

The following methods are used to override the default behavior of the isinstance () and issubclass ()
built-in functions.

In particular, the metaclass abc . ABCMeta implements these methods in order to allow the addition of Abstract
Base Classes (ABCs) as “virtual base classes” to any class or type (including built-in types), including other ABCs.

class.__instancecheck__ (self, instance)
Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to imple-
ment isinstance (instance, class).

class.__subclasscheck__ (self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to imple-

ment issubclass (subclass, class).

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods in
the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case
the instance is itself a class.

> See also

PEP 3119 - Introducing Abstract Base Classes
Includes the specification for customizing isinstance () and issubclass () behavior through
__instancecheck__ () and __subclasscheck__ (), with motivation for this functionality in
the context of adding Abstract Base Classes (see the abc module) to the language.

3.3. Special method names 45

https://peps.python.org/pep-3135/
https://peps.python.org/pep-3119/

The Python Language Reference, Release 3.13.0rc2

3.3.5 Emulating generic types

When using type annotations, it is often useful to parameterize a generic type using Python’s square-brackets notation.
For example, the annotation 1ist [int] might be used to signify a 1ist in which all the elements are of type
int.

> See also

PEP 484 - Type Hints
Introducing Python’s framework for type annotations

Generic Alias Types
Documentation for objects representing parameterized generic classes

Generics, user-defined generics and typing.Generic
Documentation on how to implement generic classes that can be parameterized at runtime and understood
by static type-checkers.

A class can generally only be parameterized if it defines the special class method __class_getitem__ ().

classmethod object.__class_getitem__ (cls, key)

Return an object representing the specialization of a generic class by type arguments found in key.

When defined on a class, class_getitem__ () is automatically a class method. As such, there is no
need for it to be decorated with @classmethod when it is defined.

The purpose of __class_getitem__

The purpose of ___class_getitem__ () isto allow runtime parameterization of standard-library generic classes
in order to more easily apply 7ype hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers,
users should either inherit from a standard library class that already implements __class_getitem (), or
inherit from typing.Generic, which has its own implementation of __class_getitem__ ().

Custom implementationsof ___class_getitem__ () onclasses defined outside of the standard library may not be
understood by third-party type-checkers such as mypy. Using __class_getitem__ () onany class for purposes
other than type hinting is discouraged.

__class_getitem__ versus __getitem _

Usually, the subscription of an object using square brackets will call the __ _getitem _ () instance method
defined on the object’s class. However, if the object being subscribed is itself a class, the class method
__class_getitem__ () may be called instead. __class_getitem__ () should return a GenericAlias ob-
ject if it is properly defined.

Presented with the expression ob 7 [x 1, the Python interpreter follows something like the following process to decide
whether _ getitem () or_ _class_getitem__ () should be called:

from inspect import isclass

def subscribe (obj, x):
"""Return the result of the expression 'obj[x]'"""

class_of_obj = type (obj)
If the class of obj defines __getitem ,

call class_of obj.__getitem _ (obj, x)
if hasattr(class_of_obj, '_ _getitem_'):

(continues on next page)

46 Chapter 3. Data model

https://peps.python.org/pep-0484/

The Python Language Reference, Release 3.13.0rc2

(continued from previous page)

return class_of_obj.__getitem__ (obj, x)

Else, if obj is a class and defines __class_getitem _,

call obj._ _class_getitem _ (x)

elif isclass(obj) and hasattr(obj, '__ _class_getitem__'):
return obj._ _class_getitem__ (x)

Else, raise an exception
else:
raise TypeError (
f"'{class_of_obj.__name__}' object is not subscriptable"

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’s mefa-
class, and most classes have the type class as their metaclass. type does not define __getitem__ (), mean-
ing that expressions such as 1ist [int], dict[str, float] and tuple([str, bytes] all result in
__class_getitem__ () being called:

>>> # list has class "type'" as its metaclass, like most classes:
>>> type(list)
<class 'type'>

>>> type(dict) == type(list) == type (tuple) == type(str) == type (bytes)
True

>>> # "list[int]" calls "list.__class_getitem _ (int)"

>>> list[int]

list[int]

>>> # list.__class_getitem _ returns a GenericAlias object:

>>> type (list[int])
<class 'types.GenericAlias'>

However, if a class has a custom metaclass that defines _ getitem__ (), subscribing the class may result in
different behaviour. An example of this can be found in the enum module:

>>> from enum import Enum

>>> class Menu (Enum) :
""n"pA breakfast menu'"""
SPAM = 'spam'
BACON = 'bacon'

>>> # Enum classes have a custom metaclass:
>>> type (Menu)

<class 'enum.EnumMeta'>

>>> # EnumMeta defines __getitem
>>> # so __class_getitem__ 1is not called,

7

>>> # and the result is not a GenericAlias object:
>>> Menu|['SPAM']

<Menu.SPAM: 'spam'>

>>> type (Menu['SPAM'])

<enum 'Menu'>

@ See also

PEP 560 - Core Support for typing module and generic types
Introducing _ class getitem (), and outlining when a subscripion results in
__class_getitem__ () beingcalled instead of __getitem__ ()

3.3. Special method names 47

https://peps.python.org/pep-0560/

The Python Language Reference, Release 3.13.0rc2

3.3.6 Emulating callable objects

object.__call__ (self[, args...])

Called when the instance is “called” as a function; if this method is defined, x (argl, arg2, ...) roughly
translates to type (x) .__call__ (x, argl, ...).

3.3.7 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as
lists or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set
of methods is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the
allowable keys should be the integers k for which 0 <= k < N where N is the length of the sequence, or slice
objects, which define a range of items. It is also recommended that mappings provide the methods keys (), val-
ues (), items (), get (), clear (), setdefault (), pop(), popitem(), copy (), and update ()
behaving similar to those for Python’s standard dictionary objects. The collections.abc module pro-
vides a Mut ableMapping abstract base class to help create those methods from a base setof ___getitem (),
__setitem__(),__delitem__ (), and keys (). Mutable sequences should provide methods append (),
count (), index (), extend (), insert (), pop (), remove (), reverse () and sort (), like Python
standard 1ist objects. Finally, sequence types should implement addition (meaning concatenation) and multipli-
cation (meaning repetition) by defining the methods ___add (), ___radd (), __iadd (), __mul__ (),
_ rmul__ () and __imul__ () described below; they should not define other numerical operators. It is recom-
mended that both mappings and sequences implement the ___contains__ () method to allow efficient use of the
in operator; for mappings, in should search the mapping’s keys; for sequences, it should search through the values.
It is further recommended that both mappings and sequences implementthe ___iter___ () method to allow efficient
iteration through the container; for mappings, __iter__ () should iterate through the object’s keys; for sequences,
it should iterate through the values.

object.__len__ (self)

Called to implement the built-in function 1en (). Should return the length of the object, an integer >= 0.
Also, an object that doesn’t define a ___bool__ () method and whose __len__ () method returns zero is
considered to be false in a Boolean context.

CPython implementation detail: In CPython, the length is required to be at most sys.maxsize. If

the length is larger than sys.maxsize some features (such as 1en ()) may raise OverflowError. To

prevent raising OverflowError by truth value testing, an object must definea ___bool__ () method.
object.__length_hint___ (self)

Called to implement operator.length_hint (). Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer >= 0. The return value may also
be Not Implemented, which is treated the same as if the ___1ength_hint__ method didn’t exist at all.
This method is purely an optimization and is never required for correctness.

Added in version 3.4.

© Note

Slicing is done exclusively with the following three methods. A call like

[a[l:Z] =Db J

is translated to
[a[slice(l, 2, None)] = Db J

and so forth. Missing slice items are always filled in with None.

object.__getitem__ (self, key)

Called to implement evaluation of self [key]. For sequence types, the accepted keys should be integers.
Optionally, they may support s1ice objects as well. Negative index support is also optional. If key is of an

48 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

inappropriate type, TypeError may be raised; if key is a value outside the set of indexes for the sequence
(after any special interpretation of negative values), IndexError should be raised. For mapping types, if
key is missing (not in the container), KeyError should be raised.

© Note

for loops expect that an IndexError will be raised for illegal indexes to allow proper detection of the
end of the sequence.

© Note

When subscripting a class, the special class method class_getitem _ () may be called instead of
__getitem__ (). See _ class_getitem__ versus __getitem___ for more details.

object.__setitem__ (self, key, value)

Called to implement assignment to self [key]. Same note as for ___getitem _ (). This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added,
or for sequences if elements can be replaced. The same exceptions should be raised for improper key values as
forthe getitem _ () method.

object.__delitem__ (self, key)
Called to implement deletion of self [key]. Same note as for __getitem _ (). This should only be
implemented for mappings if the objects support removal of keys, or for sequences if elements can be removed

from the sequence. The same exceptions should be raised for improper key values asforthe _getitem__ ()
method.

object.__missing__ (self, key)
Called by dict. getitem () to implement self [key] for dict subclasses when key is not in the
dictionary.

object.__iter__ (self)

This method is called when an iterator is required for a container. This method should return a new iterator
object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the
container.

object.__reversed__ (self)

Called (if present) by the reversed () built-in to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.

If the reversed () method is not provided, the reversed () built-in will fall back to using the
sequence protocol (__len__ () and __getitem__ ()). Objects that support the sequence protocol should
only provide __reversed__ () if they can provide an implementation that is more efficient than the one
provided by reversed ().

The membership test operators (in and not 1in) are normally implemented as an iteration through a container.
However, container objects can supply the following special method with a more efficient implementation, which also
does not require the object be iterable.

object.__contains__ (self, item)
Called to implement membership test operators. Should return true if item is in self, false otherwise. For
mapping objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don’t define __contains__ (), the membership test first tries iterationvia___iter (),
then the old sequence iteration protocol via ___getitem _ (), see this section in the language reference.

3.3. Special method names 49

The Python Language Reference, Release 3.13.0rc2

3.3.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should
be left undefined.

object.__add__ (self, other)

object.__sub__ (self, other)

object.__mul__ (self, other)

object.__matmul__ (self, other)

object.__truediv__ (self, other)

object._ _floordiv__ (self, other)

object.__mod___ (self, other)

object.__divmod__ (self, other)

object.__pow__ (self, other[, modulo])

object.__lshift__ (self, other)

object.__rshift__ (self, other)

object.__and___ (self, other)

object.__xor__ (self, other)

object.__oxr__ (self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, 7, |). For instance, to evaluate the expression x + vy, where x is an instance of
aclass that hasan ___add__ () method, type (x) .__add__ (x, vy) iscalled. The __divmod _ ()
method should be the equivalent to using _ floordiv.__ () and __mod__ (); it should not be related to
__truediv__ (). Note that __pow__ () should be defined to accept an optional third argument if the
ternary version of the built-in pow () function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return Not Im-

plemented.
object.__radd__ (self, other)
object.__rsub__ (self, other)
object.__rmul__ (self, other)
object.__rmatmul__ (self, other)
object.__rtruediv__ (self, other)
object._ _rfloordiv__ (self, other)
object.__rmod__ (self, other)
object.__rdivmod__ (self, other)
object.__rpow___ (self, other[, modulo])
object.__rlshift__ (self, other)
object.__rrshift__ (self, other)
object.__rand__ (self, other)
object.__rxor__ (self, other)
object.__ror__ (self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, ~, |) with reflected (swapped) operands. These functions are only called if the left
operand does not support the corresponding operation® and the operands are of different types.* For instance,

3 “Does not support” here means that the class has no such method, or the method returns Not Implemented. Do not set the method to
None if you want to force fallback to the right operand’s reflected method—that will instead have the opposite effect of explicitly blocking such
fallback.

4 For operands of the same type, it is assumed that if the non-reflected method — suchas __add__ () — fails then the overall operation is not
supported, which is why the reflected method is not called.

50 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

to evaluate the expression x — vy, where y is an instance of a class that has an ___rsub__ () method,
type(y) .__rsub__ (y, x) iscalledif type (x).__sub__ (x, y) returns NotImplemented.

Note that ternary pow () will not try calling __rpow__ () (the coercion rules would become too compli-
cated).

O Note

If the right operand’s type is a subclass of the left operand’s type and that subclass provides a different im-
plementation of the reflected method for the operation, this method will be called before the left operand’s
non-reflected method. This behavior allows subclasses to override their ancestors’ operations.

object.__iadd__ (self, other)
object.__isub__ (self, other)
object.__imul__ (self, other)
object.__imatmul__ (self, other)
object.__itruediv__ (self, other)
object.__ifloordiv___ (self, other)
object.__imod___ (self, other)
object.__ipow___ (self, other[, modulo])
object.__ilshift__ (self, other)
object.__irshift__ (self, other)
object.__iand__ (self, other)
object.__ixor__ (self, other)

object.__ior__ (self, other)

These methods are called to implement the augmented arithmetic assignments (+=, —=, *=, @=, /=, //=,
§=, **=, <<=, >>=, &=, *=, | =). These methods should attempt to do the operation in-place (modifying

self’) and return the result (which could be, but does not have to be, self). If a specific method is not defined,
or if that method returns Not Implemented, the augmented assignment falls back to the normal methods.
For instance, if x is an instance of a class withan ___iadd__ () method, x += yisequivalentto x = x.
diadd (y) . If __iadd () does notexist, orif x.__ iadd__ (y) returns Not Implemented,
x.__add_ (y) and y._ radd__ (x) are considered, as with the evaluation of x + y. In certain

situations, augmented assignment can result in unexpected errors (see fag-augmented-assignment-tuple-error),
but this behavior is in fact part of the data model.

object.__neg__ (self)

object.__pos__ (self)

object.__abs__ (self)

object.__invert__ (self)

Called to implement the unary arithmetic operations (-, +, abs () and ~).

object.__complex__ (self)

object.__int__ (self)

object._ _float__ (self)
Called to implement the built-in functions complex (), int () and f£1loat (). Should return a value of the
appropriate type.

object.__index__ (self)

Called to implement operator.index (), and whenever Python needs to losslessly convert the numeric
object to an integer object (such as in slicing, or in the built-inbin (), hex () and oct () functions). Presence
of this method indicates that the numeric object is an integer type. Must return an integer.

If int (), float__ () and __complex__ () are not defined then corresponding built-in func-
tions int (), float () and complex () fallbackto_ index ().

3.3. Special method names 51

The Python Language Reference, Release 3.13.0rc2

object.__round__ (self[, ndigits])
object.__trunc__ (self)
object.__floor__ (self)
object.__ceil__ (self)

Called to implement the built-in function round () and math functions t runc (), floor () andceil ().
Unless ndigits is passed to __round___ () all these methods should return the value of the object truncated
toan Integral (typically an int).

The built-in function int () falls back to _ trunc__ () if neither __int__ () nor __index__ () is
defined.

Changed in version 3.11: The delegation of int () to___ trunc__ () is deprecated.

3.3.9 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a wi t h statement.
The context manager handles the entry into, and the exit from, the desired runtime context for the execution of the
block of code. Context managers are normally invoked using the with statement (described in section 7he with
statement), but can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking
resources, closing opened files, etc.

For more information on context managers, see typecontextmanager.

object.__enter__ (self)
Enter the runtime context related to this object. The with statement will bind this method’s return value to
the target(s) specified in the as clause of the statement, if any.

object.__exit__ (self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The parameters describe the exception that caused the context
to be exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being prop-
agated), it should return a true value. Otherwise, the exception will be processed normally upon exit from this
method.

Note that __exit___ () methods should not reraise the passed-in exception; this is the caller’s responsibility.

> See also

PEP 343 - The “with” statement
The specification, background, and examples for the Python wi t h statement.

3.3.10 Customizing positional arguments in class pattern matching

When using a class name in a pattern, positional arguments in the pattern are not allowed by default, i.e. case
MyClass (x, vy) is typically invalid without special support in MyClass. To be able to use that kind of pattern,
the class needs to define a __match_args__ attribute.

object.__match_args___
This class variable can be assigned a tuple of strings. When this class is used in a class pattern with positional

arguments, each positional argument will be converted into a keyword argument, using the corresponding value
in __match_args__ as the keyword. The absence of this attribute is equivalent to setting it to () .

For example, if M\yClass.__match_args__is ("left", "center", "right") that means that case
MyClass (x, y) isequivalentto case MyClass (left=x, center=y). Note thatthe number of arguments

52 Chapter 3. Data model

https://peps.python.org/pep-0343/

The Python Language Reference, Release 3.13.0rc2

in the pattern must be smaller than or equal to the number of elements in __match_args__; if it is larger, the pattern

match attempt will raise a TypeError.

Added in version 3.10.

e See also

PEP 634 - Structural Pattern Matching

The specification for the Python mat ch statement.

3.3.11 Emulating buffer types

The buffer protocol provides a way for Python objects to expose efficient access to a low-level memory array. This
protocol is implemented by builtin types such as bytes and memoryview, and third-party libraries may define

additional buffer types.

While buffer types are usually implemented in C, it is also possible to implement the protocol in Python.

object.__buffer__ (self, flags)

Called when a buffer is requested from self (for example, by the memoryview constructor). The flags argu-
ment is an integer representing the kind of buffer requested, affecting for example whether the returned buffer
is read-only or writable. inspect.BufferFlags provides a convenient way to interpret the flags. The

method must return a memoryview object.

object.__release_buffer__ (self, buffer)

Called when a buffer is no longer needed. The buffer argument is a memoryview object that was previously
returned by buffer__ (). The method must release any resources associated with the buffer. This method
should return None. Buffer objects that do not need to perform any cleanup are not required to implement this

method.
Added in version 3.12.

e See also

PEP 688 - Making the buffer protocol accessible in Python
Introduces the Python __buffer_ and___release_buffer__ methods.

collections.abc.Buffer
ABC for buffer types.

3.3.12 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an
object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an

exception:

>>> class C:

pass
>>> ¢ = C()
>>> ¢c._ _len_ = lambda: 5

>>> len(c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

3.3. Special method names

53

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0688/

The Python Language Reference, Release 3.13.0rc2

The rationale behind this behaviour lies with a number of special methods suchas___hash__ () and__repr__ ()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the conven-
tional lookup process, they would fail when invoked on the type object itself:

>>> 1 ._ _hash__ () == hash(1l)
True
>>> int._ _hash__ () == hash(int)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash_ ' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as ‘metaclass
confusion’, and is avoided by bypassing the instance when looking up special methods:

>>> type(l) .__hash__ (1) == hash (1)

True

>>> type(int).__hash__ (int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the __getattribute__ () method even of the object’s metaclass:

>>> class Meta (type) :
def _ _getattribute__ (*args):
print ("Metaclass getattribute invoked")
return type._ _getattribute__ (*args)

>>> class C(object, metaclass=Meta) :
def _ len_ (self):
return 10
def _ getattribute__ (*args):
print ("Class getattribute invoked")

return object._ _getattribute__ (*args)
>>> ¢c = C()
>>> c.__len_ () # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__ (c) # Explicit lookup via type
Metaclass getattribute invoked
10
>>> len(c) # Implicit lookup
10

Bypassingthe __getattribute__ () machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be
set on the class object itself in order to be consistently invoked by the interpreter).

3.4 Coroutines

3.4.1 Awaitable Objects

An awaitable object generally implementsan ___await__ () method. Coroutine objects returned from async def
functions are awaitable.

© Note 1

54 Chapter 3. Data model

The Python Language Reference, Release 3.13.0rc2

The generator iterator objects returned from generators decorated with t ypes.coroutine () are also await-
able, but they do not implement __await__ ().

object.__await__ (self)

Must return an iterator. Should be used to implement awaitable objects. For instance, asyncio.Future
implements this method to be compatible with the awa i t expression.

© Note

The language doesn’t place any restriction on the type or value of the objects yielded by the iterator returned
by __await__, as this is specific to the implementation of the asynchronous execution framework (e.g.
asyncio) that will be managing the awaitable object.

Added in version 3.5.

> See also

PEP 492 for additional information about awaitable objects.

3.4.2 Coroutine Objects

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling __await__ () and
iterating over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration,
and the exception’s value attribute holds the return value. If the coroutine raises an exception, it is propagated by
the iterator. Coroutines should not directly raise unhandled StopIteration exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator
methods). However, unlike generators, coroutines do not directly support iteration.

Changed in version 3.5.2: Itis a RuntimeError to await on a coroutine more than once.

coroutine.send (value)

Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator
returned by ___await__ (). If value is not None, this method delegates to the send () method of the
iterator that caused the coroutine to suspend. The result (return value, StopIteration, or other exception)
is the same as when iterating over the __await__ () return value, described above.

coroutine.throw (value)

coroutine.throw (type[, value[, tmceback]])

Raises the specified exception in the coroutine. This method delegates to the t hrow () method of the iterator
that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspension
point. The result (return value, StopIteration, or other exception) is the same as when iterating over the
__await___ () return value, described above. If the exception is not caught in the coroutine, it propagates
back to the caller.

Changed in version 3.12: The second signature (type[, value[, traceback]]) is deprecated and may be removed
in a future version of Python.

coroutine.close ()

Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the
close () method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up. Finally, the
coroutine is marked as having finished executing, even if it was never started.

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4. Coroutines 55

https://peps.python.org/pep-0492/

The Python Language Reference, Release 3.13.0rc2

3.4.3 Asynchronous lterators

An asynchronous iterator can call asynchronous code inits __anext___ method.
Asynchronous iterators can be used in an async for statement.
object.__aiter__ (self)

Must return an asynchronous iterator object.

object.__anext__ (self)

Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration
error when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline(self):

def _ aiter_ (self):
return self

async def _ _anext__ (self):
val = await self.readline()
if val == b'':

raise StopAsynclteration
return val

Added in version 3.5.

Changed in version 3.7: Prior to Python 3.7, _ _aiter () could return an awaitable that would resolve to an

asynchronous iterator.

Starting with Python 3.7, __aiter () must return an asynchronous iterator object. Returning anything else will
result ina TypeError error.

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter___ and
__aexit__ methods.

Asynchronous context managers can be used in an async with statement.

object.__aenter__ (self)

Semantically similar to__enter__ (), the only difference being that it must return an awaitable.

object.__aexit__ (self, exc_type, exc_value, traceback)

Semantically similar to__exit__ (), the only difference being that it must return an awaitable.

An example of an asynchronous context manager class:

class AsyncContextManager:
async def __ _aenter_ (self):
await log('entering context')

async def _ _aexit__ (self, exc_type, exc, tb):
await log('exiting context')

Added in version 3.5.

56 Chapter 3. Data model

CHAPTER
FOUR

EXECUTION MODEL

4.1 Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is executed as a
unit. The following are blocks: a module, a function body, and a class definition. Each command typed interactively
is a block. A script file (a file given as standard input to the interpreter or specified as a command line argument to
the interpreter) is a code block. A script command (a command specified on the interpreter command line with the
—c option) is a code block. A module run as a top level script (as module ___main__) from the command line using
a —m argument is also a code block. The string argument passed to the built-in functions eval () and exec () isa
code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for debug-
ging) and determines where and how execution continues after the code block’s execution has completed.

4.2 Naming and binding

4.2.1 Binding of names

Names refer to objects. Names are introduced by name binding operations.
The following constructs bind names:

* formal parameters to functions,

e class definitions,

¢ function definitions,

* assignment expressions,

* targets that are identifiers if occurring in an assignment:

— for loop header,

— after as ina withstatement, except clause, except * clause, or in the as-pattern in structural pattern
matching,

— in a capture pattern in structural pattern matching
* import statements.
* Cype statements.
* type parameter lists.

The import statement of the form from ... import * binds all names defined in the imported module,
except those beginning with an underscore. This form may only be used at the module level.

A target occurring in a de] statement is also considered bound for this purpose (though the actual semantics are to
unbind the name).

57

The Python Language Reference, Release 3.13.0rc2

Each assignment or import statement occurs within a block defined by a class or function definition or at the module
level (the top-level code block).

If a name is bound in a block, it is a local variable of that block, unless declared as nonlocal or global. If
a name is bound at the module level, it is a global variable. (The variables of the module code block are local and
global.) If a variable is used in a code block but not defined there, it is a free variable.

Each occurrence of a name in the program text refers to the binding of that name established by the following name
resolution rules.

4.2.2 Resolution of names

A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that
block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining one,
unless a contained block introduces a different binding for the name.

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes
visible to a code block is called the block’s environment.

When a name is not found at all, a NameError exception is raised. If the current scope is a function scope, and
the name refers to a local variable that has not yet been bound to a value at the point where the name is used, an
UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated
as references to the current block. This can lead to errors when a name is used within a block before it is bound. This
rule is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block.
The local variables of a code block can be determined by scanning the entire text of the block for name binding
operations. See the FAQ entry on UnboundLocalError for examples.

If the g1obal statement occurs within a block, all uses of the names specified in the statement refer to the bindings
of those names in the top-level namespace. Names are resolved in the top-level namespace by searching the global
namespace, i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace
of the module builtins. The global namespace is searched first. If the names are not found there, the builtins
namespace is searched next. If the names are also not found in the builtins namespace, new variables are created in
the global namespace. The global statement must precede all uses of the listed names.

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing
scope for a free variable contains a global statement, the free variable is treated as a global.

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing
function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function
scope. Type parameters cannot be rebound with the nonlocal statement.

The namespace for a module is automatically created the first time a module is imported. The main module for a
script is always called __main__.

Class definition blocks and arguments to exec () and eval () are special in the context of name resolution. A
class definition is an executable statement that may use and define names. These references follow the normal rules
for name resolution with an exception that unbound local variables are looked up in the global namespace. The
namespace of the class definition becomes the attribute dictionary of the class. The scope of names defined in a class
block is limited to the class block; it does not extend to the code blocks of methods. This includes comprehensions
and generator expressions, but it does not include annotation scopes, which have access to their enclosing class scopes.
This means that the following will fail:

class A:
a = 42
b = list(a + i for i in range (10))

However, the following will succeed:

class A:
type Alias = Nested

(continues on next page)

58 Chapter 4. Execution model

The Python Language Reference, Release 3.13.0rc2

(continued from previous page)

class Nested: pass

print (A.Alias.__value_) # <type 'A.Nested'>

4.2.3 Annotation scopes

Type parameter lists and t ype statements introduce annotation scopes, which behave mostly like function scopes,
but with some exceptions discussed below. Annotations currently do not use annotation scopes, but they are expected
to use annotation scopes in Python 3.13 when PEP 649 is implemented.

Annotation scopes are used in the following contexts:
e Type parameter lists for generic type aliases.

» Type parameter lists for generic functions. A generic function’s annotations are executed within the annotation
scope, but its defaults and decorators are not.

» Type parameter lists for generic classes. A generic class’s base classes and keyword arguments are executed
within the annotation scope, but its decorators are not.

* The bounds, constraints, and default values for type parameters (lazily evaluated).
 The value of type aliases (lazily evaluated).
Annotation scopes differ from function scopes in the following ways:

¢ Annotation scopes have access to their enclosing class namespace. If an annotation scope is immediately
within a class scope, or within another annotation scope that is immediately within a class scope, the code in
the annotation scope can use names defined in the class scope as if it were executed directly within the class
body. This contrasts with regular functions defined within classes, which cannot access names defined in the
class scope.

» Expressions in annotation scopes cannot contain yield, yield from, await,or := expressions. (These
expressions are allowed in other scopes contained within the annotation scope.)

* Names defined in annotation scopes cannot be rebound with nonlocal statements in inner scopes. This
includes only type parameters, as no other syntactic elements that can appear within annotation scopes can
introduce new names.

¢ While annotation scopes have an internal name, that name is not reflected in the __qgualname__ of objects
defined within the scope. Instead, the __qualname___ of such objects is as if the object were defined in the
enclosing scope.

Added in version 3.12: Annotation scopes were introduced in Python 3.12 as part of PEP 695.

Changed in version 3.13: Annotation scopes are also used for type parameter defaults, as introduced by PEP 696.

4.2.4 Lazy evaluation

The values of type aliases created through the t ype statement are lazily evaluated. The same applies to the bounds,
constraints, and default values of type variables created through the rype parameter syntax. This means that they
are not evaluated when the type alias or type variable is created. Instead, they are only evaluated when doing so is
necessary to resolve an attribute access.

Example:

>>> type Alias = 1/0
>>> Alias._ _value_
Traceback (most recent call last):

ZeroDivisionError: division by zero
>>> def func[T: 1/0](): pass
(continues on next page)

4.2. Naming and binding 59

https://peps.python.org/pep-0649/
https://peps.python.org/pep-0695/
https://peps.python.org/pep-0696/

The Python Language Reference, Release 3.13.0rc2

(continued from previous page)

>>> T = func.__type_params__[0]
>>> T._ bound_
Traceback (most recent call last):

ZeroDivisionError: division by zero

Here the exception is raised only when the __value___ attribute of the type alias or the ___bound___ attribute of
the type variable is accessed.

This behavior is primarily useful for references to types that have not yet been defined when the type alias or type
variable is created. For example, lazy evaluation enables creation of mutually recursive type aliases:

from typing import Literal

type SimpleExpr = int | Parenthesized
type Parenthesized = tuple[Literal[" ("], Expr, Literal[")"]]
type Expr = SimpleExpr | tuple[SimpleExpr, Literal["+", "-"], Expr]

Lazily evaluated values are evaluated in annotation scope, which means that names that appear inside the lazily eval-
uated value are looked up as if they were used in the immediately enclosing scope.

Added in version 3.12.

4.2.5 Builtins and restricted execution

CPython implementation detail: Users should not touch __builtins__;itis strictly an implementation detail.
Users wanting to override values in the builtins namespace should import the builtins module and modify its
attributes appropriately.

The builtins namespace associated with the execution of a code block is actually found by looking up the name
__builtins___inits global namespace; this should be a dictionary or a module (in the latter case the module’s dic-
tionary is used). By default, wheninthe __main__ module, __builtins___is the built-in module builtins;
when in any other module, __builtins___is an alias for the dictionary of the built ins module itself.

4.2.6 Interaction with dynamic features

Name resolution of free variables occurs at runtime, not at compile time. This means that the following code will
print 42:

i =10

def f():
print (i)

i = 42

The eval () and exec () functions do not have access to the full environment for resolving names. Names may
be resolved in the local and global namespaces of the caller. Free variables are not resolved in the nearest enclosing
namespace, but in the global namespace.' The exec () and eval () functions have optional arguments to override
the g