The Python Library Reference
Release 3.13.0rc2

Guido van Rossum and the Python development team

September 06, 2024

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Notesonavailability e 3
1.1.1 WebAssembly platforms L 4
L1200 00S o 4
Built-in Functions 5
Built-in Constants 33
3.1 Constants added by the sitemodule 34
Built-in Types 35
4.1 Truth Value Testing o o v it e e e e e e e e e e e e e e e 35
4.2 Boolean Operations — and, O, NOT « .+ ¢ v v v v v v vt e e e e e e e e e e e e e e 35
4.3 CompariSONS e e e e e e e e e e e 36
4.4 Numeric Types — int, float,complex v ot v vt i v it 36
4.4.1 Bitwise Operations on Integer Types i vt i i 38
4.4.2 Additional Methods on Integer Types« v v v i v vt i 38
443 Additional Methodson Float 41
44.4 Hashingof numerictypes L e 42
4.5 Boolean Type - bool e e 43
4.6 Tterator TYPES v v v i i e e e e e e e 43
4.6.1 Generator TYPES v v i i e e e e e e e e e e e e e 44
47 Sequence Types — 1iSt, tuple, Fange v v v v v v v vt et e e e e e e 44
4.7.1 Common Sequence Operations v vt 44
4.7.2 Immutable Sequence Types L o 46
4773 Mutable Sequence TYpes o o i i i e 46
474 LiStS . .o oo e 47
4775 Tuples e e e e e e e e e 48
476 RaNES o e e e e e e e e 48
4.8 TextSequence Type — str L e 50
4.8.1 StringMethods 51
482 printf-style String Formatting e 59
4.9 Binary Sequence Types — bytes, bytearray, memoryview 61
4.9.1 BytesODbJects o . e e e e e e 61
49.2 Bytearray Objects o e e e e e e e e e e 62
4.9.3 Bytes and Bytearray Operations oo e e e e e 63
494 printf-style Bytes Formatting, 74
4.9.5 Memory VIEWS v v i it e e e e e e e e e e e e e e e e e e 76
410 SetTypes — set, frozenset . . . o v v v v v v i i e e e e e e e e e e e e e e e 83
411 Mapping Types — dict o o it e e e e e e e e e 85
4.11.1 Dictionary view objects L oL e 89
4.12 Context Manager Types L e 90
4.13 Type Annotation Types — Generic Alias, Union 91
4.13.1 Generic Alias Type o o e e e e e e e e 91

4132 UnionTyPe . . . v v i o e e e e e e e e e e e e e e e e e e 95

4.14 Other Built-in Types o o e e e e e e e e e e e 97
4.14.1 Modules e e e e 97
4.14.2 Classesand Class Instances i it 97
4143 Functions e e e e 97
4144 Methods o oL 97
4145 Code ObJeCtS . . . v v v v i e e e e e e e e e e e 98
4.14.6 Type ObJectS o v v i it e e e e e e e e e e e e e e 98
41477 The NullObject o e 98
4.14.8 The Ellipsis Object o e e 98
4.14.9 The Notlmplemented Object 98
4.14.10 Internal Objects o v v i i e e e e e e e e e e e e e 99

4.15 Special Aributes o e e e e e e e e e e e e e e e 99

4.16 Integer string conversion length limitation Lo oL, 100
4.16.1 Affected APIs 101
4.16.2 Configuring the limit 101
4.16.3 Recommended configuration e 102

Built-in Exceptions 103

5.1 EXCeption CONEXt v v v v v vttt e e e e e e e e e e e e e e e e e 103

5.2 Inheriting from built-in exceptions Lo 104

53 Baseclasses e e e e e e 104

54 Concrete eXCepPionsot ie e e e e ee e e e e e e eeeee 105
5401 OSexceptions o it e e e e e 110

55 Warnings e e e e 112

5.6 EXCeption groupsot e e e e e e e e 113

5.7 Exception hierarchy L e e e e e 114

Text Processing Services 117

6.1 string— Common String OPErations v v v v v v v e e e e e e e e e e e e e e 117
6.1.1 String COnStants oo e e e e e e e e e e e e e e e e 117
6.1.2 Custom String Formatting 118
6.1.3 Format String Syntax L e 119
6.1.4 Template strings L. e e e e e e e 126
6.1.5 Helperfunctions i i e e e e e e e e e e 128

6.2 re — Regular expression Operations v v v v e e e e e e e e e e e e e e e e 128
6.2.1 Regular Expression Syntax o 128
6.2.2 Module Contents e e e 135
6.2.3 Regular Expression Objects e 141
6.24 MatchObjects e e 142
6.2.5 Regular Expression Examples e 145

6.3 difflib — Helpers for computingdeltas 150
6.3.1 SequenceMatcher Objects e 155
6.3.2 SequenceMatcher Examples oL oo 157
6.3.3 DifferObjects e e 158
6.3.4 Differ Example e e e e 159
6.3.5 A command-line interface todifflib oo o oo 160
6.3.6 ndiff example e e 161

6.4 textwrap —Textwrappingandfilling. L 163

6.5 unicodedata—Unicode Database 166

6.6 stringprep — Internet String Preparation 168

6.7 readline —GNUreadlineinterface 169
6.7.1 Initfile e 170
6.72 Linebuffer. e 170
6.7.3 Historyfile. e e e 171
6.7.4 History list e e e 171
6.7.5 Startup hooks e e e e e e e 172
6.7.6 Completion e e e e e e e e e e e e 172

6.7.7 Example e e e
6.8 rlcompleter — Completion function for GNU readline
7 Binary Data Services
7.1 struct — Interpret bytes as packed binarydata oL oL
7.1.1 Functions and Exceptions e
7.1.2 Format Strings e e
713 Applications e e e e e e e e e
T4 CIasSeS . . . v v v v e e e e e e e e e e e e e
7.2 codecs — Codecregistryand base classes L oo
7.2.1 Codec Base Classes v v i i v ittt e e e
7.2.2 Encodingsand Unicode e e
7.2.3 Standard Encodings
7.2.4 Python Specific Encodings
7.2.5 encodings.idna — Internationalized Domain Names in Applications
7.2.6 encodings.mbcs — Windows ANSIcodepage
7277 encodings.utf_8_sig— UTF-8 codec with BOM signature
8 Data Types
8.1 datetime —Basicdateandtimetypes e
8.1.1 Awareand Naive Objects it
8.1.2 Constants e e e
8.1.3 Available Types o . e e e e e
8.14 timedelta Objects o i i i e
8.1.5 date ODbJects i v i e e e e e e e e e e e e
8.1.6 datetime Objects o v v i e e e e e e e e
8.1.7 time ObJeCtS i i e e e e e e e e e e e
8.1.8 tzinfoObjects e
819 timezone ObJECES o v i e e e e
8.1.10 strftime () and strptime () Behavior
8.2 zoneinfo—ITANAtIMEZONE SUPPOTt . . .« v v v v v v e i e e e e e e e e e e e e
82.1 Using ZoneInfo v i i i it e e e e
8.2.2 DatasSoUICeS v v v v v e i e
8.2.3 The ZoneInfoclass o i i e e e e e
824 Functions e e e e
825 Globals
8.2.6 Exceptions and warnings i it i e e e e e e e e e e e e
8.3 calendar — General calendar-related functions L Lo
8.3.1 Command-Line Usage it
84 collections— Container datatypes« o v v vt et e e e e
8.4.1 ChainMap objects v v v v v e i e e e e e e e e e e e e e e e e e
84.2 Counter ObJeCtS v v i i e e e e e e e e e e e e e
843 deque obJeCts e e e e e e e e
844 defaultdictobjects. e
8.4.5 namedtuple () Factory Function for Tuples with Named Fields
84.6 OrderedDict ObJECtS v v v v v vt i e e e e e e e
847 UserDIictL ObJECES . . . v v v i i e e e e e e e e e e e e e e
84.8 UserList ObJeCtS v v v v v i i e e e e e e e e e e e e
8.4.9 UserStringobjects i e e e e e e
8.5 collections.abc — Abstract Base Classes for Containers
8.5.1 Collections Abstract Base Classes i e
8.5.2 Collections Abstract Base Classes — Detailed Descriptions
8.5.3 Examplesand Recipes L e e e e
8.6 heapg—Heapqueuealgorithm
8.6.1 BasicExamples
8.6.2 Priority Queue Implementation Notes L.
8.6.3 Theory. i i e e e e e e e e e e
8.7 Dbisect — Array bisection algorithm L L

175
175
176
176
181
182
183
186
192
194
196
198
199
199

201
201
202
202
202
204
207
212
223
227
233
234
238
238
239
240
242
243
243
243
249
250
251
253
256
260
261
264
267
267
268
268
269
271
273
274
275
276
277
278

9

8.7.1 Performance Notes e e e 279

8.7.2 Searching Sorted Lists e e e e e 279
8.7.3 Examples e e e e e e 280
8.8 array — Efficient arrays of numeric values oL oL 281
89 weakref —Weakreferences 284
8.9.1 Weak Reference Objects e 288
8.9.2 Example e e e e e e e e e e 289
8.9.3 Finalizer Objects o o i e e e e e e e e 290
8.9.4 Comparing finalizers with __del_ () methods. 291
8.10 types — Dynamic type creation and names for built-in types L. 292
8.10.1 Dynamic Type Creation o v v v v i ittt e 292
8.10.2 Standard Interpreter Types o 0 i e e e e 294
8.10.3 Additional Utility Classes and Functions 298
8.10.4 Coroutine Utility Functions 299
8.11 copy — Shallow and deep copy operations 299
8.12 pprint — Datapretty printero i e e e e e e e e 300
8.12.1 Functions e e e e 301
8.12.2 PrettyPrinter Objects o o i e e e e e e e e e e e e e e 302
8.12.3 Example L e e e e e e e e e 303
8.13 reprlib — Alternate repr () implementationo 306
8.13.1 ReprObjects e 307
8.13.2 Subclassing Repr Objects e 309
8.14 enum — Support for enUMErations v v vt e e e e e e e e e e e e e 309
8.14.1 Module Contents e e e e e e e 310
8.14.2 DataTypes o v i i e e e e e e e e 311
8.14.3 Utilities and Decorators oL e e e e e e e e 322
8144 NOES . . . o i it e e 324
8.15 graphlib — Functionality to operate with graph-like structures 324
. A5.1 EXCEPHONS o v v i e e e e e e e e e e e e e e e e 327
Numeric and Mathematical Modules 329
9.1 numbers — Numeric abstractbaseclasses 329
9.1.1 ThenumeriC tOWer o i it ittt e e e e 329
9.1.2 Notes for type implementers Lo e 330
9.2 math — Mathematical functions L e 332
9.2.1 Number-theoretic and representation functions 332
9.2.2 Power and logarithmic functions e 336
9.2.3 Trigonometric functions it e e e e e e e e 337
9.2.4 Angular conversiono i e e e e e e e e 338
9.2.5 Hyperbolic functions o e 338
9.2.6 Special functions e e e e e e e 339
9.2.7 Constants oo e e e e e e e e e e 339
9.3 cmath — Mathematical functions for complex numbers 340
9.3.1 Conversions to and from polar coordinates 341
9.3.2 Power and logarithmic functions oL oL 341
9.3.3 Trigonometric functions 342
9.3.4 Hyperbolic functions e 342
9.3.5 Classification functions e 342
9.3.6 ConStants oo e e e e e e e e e e e e e e e e 343
9.4 decimal — Decimal fixed-point and floating-point arithmetic 344
9.4.1 Quick-start Tutorial e e 345
942 Decimal objects e e 348
943 ConteXtObJECtS e e e e e e e e e e e e e e e e e e 356
944 Constants oot e e e e e e e e e e e e e e 362
945 Roundingmodes. 362
9.4.6 Signals e e e e 363
9.4.7 Floating-Point Notes 364
9.4.8 Workingwiththreads 366

9.4.9 RECIPES . . v v v v i e e e 366

9.4.10 Decimal FAQ e e e e 369

9.5 fractions—Rationalnumbers L e 372
9.6 random— Generate pseudo-random numbers Lo 375
9.6.1 Bookkeeping functions 376

9.6.2 Functionsforbytes e 376

9.6.3 Functions fOor inte€gers o i i e e e e e e e e e e e e e 377

9.6.4 Functions fOor SEQUENCES v v i i e e e e e e e e e e e 377

9.6.5 Discrete distributions e 378

9.6.6 Real-valued distributions e 379

9.6.7 Alternative GEnerator it e e e e 380

9.6.8 NotesonReproducibility 380

9.6.9 Examples e e e e e e e 381
9.6.10 RECIPES . . v v v v i e e e e e e e e e 383
9.6.11 Command-lineusage 384
9.6.12 Command-lineexample 385

9.7 statistics — Mathematical statistics functions oL 385
9.7.1 Averages and measures of central location 386

9.7.2 Measuresof spread e e e e 386

9.7.3 Statistics for relations between twoinputs oL Lo 387

9.7.4 Functiondetails e 387

9.7.5 EXCepPLONS v v i i e e e e e e e 396

9.7.6 NormalDist objects i i i i i e e e e e 396

9.7.7 Examplesand Recipes e 398

10 Functional Programming Modules 401
10.1 itertools — Functions creating iterators for efficient looping 401
10.1.1 Ttertool Functions e 403

10.1.2 Ttertools Recipes o o o i i e e e 411

10.2 functools — Higher-order functions and operations on callable objects 416
10.2.1 partial ObJects o v v i i i e e 426

10.3 operator — Standard operators as functions Lo 426
10.3.1 Mapping Operators to Functions 431
10.3.2 In-place Operators o i it e e e e e 431

11 File and Directory Access 435
11.1 pathlib — Object-oriented filesystem paths 435
IT.1T Basicuse oot e 436
IT.1.2 EXCeptionso i it i e e e e e e 437

11.1.3 Purepaths L e 437
11.1.4 Concrete paths o o e e e e e 446

I11.1.5 Patternlanguage i i e e e e e e e e e e e 457

11.1.6 Comparisontothe globmodule 458
11.1.7 Comparison to the os and os.pathmodules 458

11.2 os.path — Common pathname manipulations 460
11.3 fileinput — Iterate over lines from multiple input streams 466
11.4 stat —Interpreting stat () results i e e e 468
11.5 filecmp — File and Directory Comparisons v v v v v v v v v v vt 474
11.5.1 Thedircmpclass o o i i i i e e e e e e 475

11.6 tempfile — Generate temporary files and directories 476
11.6.1 Examples o o oo e e 481

11.6.2 Deprecated functions and variables 481

11.7 glob — Unix style pathname pattern eXpansion v v v v v v v v v v v v oo v 482
11.7.1 Examples o o e e e e e e 484

11.8 fnmatch — Unix filename pattern matching 485
119 linecache —Randomaccesstotextlines 486
11.10 shutil — High-level file operations 487
11.10.1 Directory and files operations v v v it e e e e e 487

11.10.2 Archiving Operations v v v v v vttt e e e e e e e 493

11.10.3 Querying the size of the output terminal 496

12 Data Persistence 499
12.1 pickle — Pythonobject serialization i e 499
12.1.1 Relationship to other Pythonmodules 499
12.1.2 Datastreamformat e 500
12.1.3 Module Interface L e 501
12.1.4 What can be pickled and unpickled? 504
12.1.5 Pickling Class Instances i 505
12.1.6 Custom Reduction for Types, Functions, and Other Objects 511
12.1.7 Out-of-band Buffers 511

12.1.8 Restricting Globals e 513

12.1.9 Performance e e 514
12.1.10 Examples o oo e e e 514

12.2 copyreg— Register pickle supportfunctions 515
12.2.1 Example o o e e e e e e e e e e e 515

12.3 shelve — Python object persistence e 516
12301 RESHHCHONS . . . v v o o e ot e et e e e e e e e e e e e e 517

1232 Example o e 518

12.4 marshal — Internal Python object serialization 518
12.5 dbm — Interfaces to Unix “databases™ e 520
12.5.1 dbm.sglite3 — SQLite backend fordbm 522
12.5.2 dbm.gnu— GNU database manager 522
12.5.3 dbm.ndbm — New Database Manager 524
12.5.4 dbm.dumb — Portable DBM implementation 525

12.6 sglite3 — DB-API 2.0 interface for SQLite databases 526
12.6.1 Tutorial e e e e e e 526

12.6.2 Reference e 528
12.6.3 How-toguides o i e e e e e e 549
12.6.4 Explanation e e e 556

13 Data Compression and Archiving 559
13.1 zlib — Compression compatible withgzip 559
13.2 gzip—Supportforgzipfiles e 563
13.2.1 Examplesof Usage« o v v i e e e e e e e e e e e 565
13.22 Command Line Interface L 566

13.3 bz2 — Support forbzip2 compressionol 566
13.3.1 (De)compressionof files. 566
13.3.2 Incremental (de)compression e u e e e 568

13.3.3 One-shot (de)compression oo v v vt v ittt e e e 569

1334 Examplesof Usage i e e e e e e e e e e 570

13.4 1lzma — Compression using the LZMA algorithm, 571
13.4.1 Reading and writing compressed files o000 0oL 571
13.4.2 Compressing and decompressing data inmemory 572
13.43 Miscellaneouso e 575

13.4.4 Specifying custom filterchains L L 575

1345 Examples o e e e e e 576

13.5 zipfile— WorkwithZIP archives e 577
13.5.1 ZipFile Objects e e e e e 578
1352 PathObjects L 583

13.5.3 PyZipFile Objects o i e e e e e e e e 584
13.54 ZipInfo Objects o v i i e e e e e e e e e e e 585
13.5.5 Command-Line Interface o . 587

13.5.6 Decompression pitfalls 587

13.6 tarfile —Read and write tar archivefiles o . 588
13.6.1 TarFile Objects o v it e e e e e e e e e e e 592
13.6.2 TarInfo Objects o o o i e e e e e e e 596

vi

13.6.3 Extractionfilterso
13.6.4 Command-Line Interface
13.6.5 Examples e e e e e e e e
13.6.6 Supported tar formatso L. e
13.6.7 UnicodeiSSUeS« v v i v e e e e e e
14 File Formats
14.1 csv—CSV File Readingand Writing i
14.1.1 Module Contents ot it e e e e e e e e
14.1.2 Dialects and Formatting Parameters
14.1.3 Reader Objects o i v i i e e e e e e e e e e e
14.1.4 Writer ObJectS o v v o e e e e e e e e e e e e e e
14.1.5 Examples L e
142 configparser — Configuration file parser
1421 Quick Start e e e e e e e e
14.2.2 Supported Datatypes o . e e e e e e e e
1423 Fallback Values e
14.2.4 Supported INI File Structure
14.2.5 Unnamed Sections o o it e e e e e e e e e
14.2.6 Interpolation of values
14.2.7 Mapping Protocol ACCESS v v v v i e e e e e e e e e e e e
14.2.8 Customizing Parser Behaviour L o
1429 Legacy APTExamples e
14.2.10 ConfigParser Objects o v i i e e e e e e
14.2.11 RawConfigParser Objects o i
14.2.12 EXCEPLIONS . . v v v v o e
143 tomllib—Parse TOMLfiles it e
14.3.1 Examples e e e e e e e e
14.3.2 Conversion Table e e
144 netrc—netrcfile processing o e e e e e
1441 netrc ObJects oo i it e e e
14.5 plistlib — Generate and parse Apple .plistfiles
14.5.1 Examples e e e e e e e e e e
15 Cryptographic Services
15.1 hashlib — Secure hashes and message digests
15.1.1 Hashalgorithms e
15.1.2 Usage i i e e
15.1.3 ConStructors v v v it e e e e e e e e e e e e e e e e e
15.1.4 Atributes oL e e e e
15.1.5 Hash Objects o v i it et e e e e e e e e e e
15.1.6 SHAKE variable length digests
15.1.7 Filehashing e
15.1.8 Keyderivation L L e e e e e e e
15.1.9 BLAKE2 e
15.2 hmac — Keyed-Hashing for Message Authentication
15.3 secrets — Generate secure random numbers for managing secrets
15.3.1 Randomnumbers e e e e e e
15.3.2 Generatingtokens L e
15.3.3 Otherfunctions e
15.3.4 Recipesand best practiceso i e e e e
16 Generic Operating System Services
16.1 os — Miscellaneous operating system interfaces
16.1.1 File Names, Command Line Arguments, and Environment Variables
16.1.2 Python UTF-8 Mode e e e e e e e e e
16.1.3 Process Parameters e e e e
16.1.4 File Object Creation o i ittt e e
16.1.5 File Descriptor Operations o v v v vt it e e e e e

605
605
605
609
610
611
611
612
613
614
615
616
617
617
618
619
623
625
629
629
630
631
631
632
632
633
634

637
637
637
638
638
639
639
640
640
641
641
649
650
651
651
652
652

655
655
656
656
657
664
665

vii

16.2

16.3

16.4

16.5

16.6

16.7

16.1.6 Files and Directories o v i i e e e e e e e e 677

16.1.7 Process Management v v it i e e e e e e e e e e e e 703
16.1.8 Interfacetothe scheduler 717
16.1.9 Miscellaneous System Information 718
16.1.10 Random numbers e e e 720
io — Core tools for working with streams L. oL 721
16.2.1 OVervIeW o o e e e e 722
1622 TextEncoding o 0 o i i e e e e e e e e e 723
16.2.3 High-level Module Interface o oL 723
16.2.4 Classhierarchy e 725
16.2.5 Performance 735
time — Time access and CONVETSIONS« v v v v v v vttt e et e e e e e e 736
16.3.1 Functions 737
16.3.2 ClockID Constants o oo ittt i e e e 745
16.3.3 Timezone Constants i vttt e e e e e e e e e 747
argparse — Parser for command-line options, arguments and sub-commands 748
16.4.1 Core Functionality e 748
16.4.2 Quick Links for add_argument() e 749
1643 Example e e e e e e 749
16.4.4 ArgumentParserobjects L 751
16.4.5 The add_argument() method 759
16.4.6 The parse_args() method 769
16.4.7 Otherutilities L 772
16.4.8 Upgradingoptparse code i i i e e e e e e e 780
16.4.9 EXCEpLions v v v v i e e e e e e e e e 781
logging — Logging facility for Python 0 0oL 781
16.5.1 Logger Objects o i i e e e e 782
1652 LoggingLevels e e e e e e 787
16.5.3 Handler Objects o v v i i e e e e e e e e e e e e 788
16.5.4 Formatter Objects o i e e e e 789
16.5.5 Filter Objects e e e e e e e e 791
16.5.6 LogRecord Objects o i e 792
16.5.7 LogRecord attributes L. e 793
16.5.8 LoggerAdapter Objects o i i i i e e e e e e e e e 795
16.59 Thread Safety e e e 795
16.5.10 Module-Level Functions 795
16.5.11 Module-Level Attributes 800
16.5.12 Integration with the warningsmodule 800
logging.config— Logging configuration, 801
16.6.1 Configuration functions o . i e e e e e 801
16.6.2 Security considerations L. oL e 803
16.6.3 Configuration dictionary schema 0oL oL, 803
16.6.4 Configuration file format oL 810
logging.handlers —Logginghandlers 813
16.7.1 StreamHandler e 813
16.7.2 FileHandler e 814
16.7.3 NullHandler 814
16.7.4 WatchedFileHandler. 815
16.7.5 BaseRotatingHandler 815
16.7.6 RotatingFileHandler e e e 817
16.7.7 TimedRotatingFileHandler 817
16.7.8 SocketHandler L 819
16.7.9 DatagramHandler oL oo 820
16.7.10 SysLogHandler e 820
16.7.11 NTEventLogHandler it et e e e e 822
16.7.12 SMTPHandler e 823
16.7.13 MemoryHandler 823
16.7.14 HTTPHandler e et e e e 824

viii

16.7.15 QueueHandler e e e 825

16.7.16 QueueListener e e e e e e e e e e e e e 826

16.8 getpass — Portable password input L. e e e 827
16.9 curses — Terminal handling for character-cell displays 828
16.9.1 Functions e e e e 829
16.9.2 Window Objects e e e e 835

1693 Constants i e e e e e e e e 842

16.10 curses.textpad — Text input widget for curses programs 854
16.10.1 Textbox objects o e e e e 854

16.11 curses.ascii — Utilities for ASCII characters 856
16.12 curses.panel — A panel stack extension forcurses 859
16.12.1 Functions i i i i e e e e e e e 860
16.12.2 Panel Objects o o i it e e e e e e e e e e 860

16.13 plat form — Access to underlying platform’s identifyingdata 861
16.13.1 Cross Platform o e 861
16.13.2 Java Platform 863
16.13.3 Windows Platform 863
16.13.4 macOS Platform e 863
16.13.5 iOS Platform e 864
16.13.6 Unix Platforms e 864
16.13.7 Linux Platforms e 864
16.13.8 Android Platform 865

16.14 errno — Standard errno system symbols e 865
16.15 ctypes — A foreign function library for Python o0 oL 872
16.15.1 ctypestutorial 872
16.15.2 ctypesreferencel e 889

17 Concurrent Execution 905
17.1 threading— Thread-based parallelism 905
17.1.1 Thread-Local Data e 908
17.1.2 Thread Objects e e e e 908

17.1.3 Lock Objects o o v i e e e e e e e e e e e e 911
17.1.4 RLock Objects o v i i e e e e e e e e e e 912
17.1.5 Condition Objects o e e 913
17.1.6 Semaphore Objects e 915
17.1.7 EventObjects e e e e e e 916
17.1.8 Timer ObJects v v it e et e 917

17.1.9 Barrier Objects o o v e e e e e e e e e e e e e e 917
17.1.10 Using locks, conditions, and semaphores in the with statement 918

17.2 multiprocessing — Process-based parallelism 919
17.2.1 Introduction e 919
1722 Reference o i e 926

17.2.3 Programming guidelines e e e 954
1724 Examples o e e e e e e e e 958

17.3 multiprocessing.shared_memory — Shared memory for direct access across processes . 963
17.4 The concurrent package e 969
17.5 concurrent.futures — Launching parallel tasks 969
17.5.1 Executor Objects v v v i i e e e e e e e e e e e e e 969
17.5.2 ThreadPoolExecutor e 970

17.5.3 ProcessPoolExecutor e 972
1754 Future Objects o e 973
1755 Module Functions e 975
17.5.6 EXCeption Classes v v i v i i e e e e e e e e e e e e e 975

17.6 subprocess — Subprocess Management v u e e e e e e e e e e e 976
17.6.1 Usingthe subprocessModule 976
17.6.2 Security Considerations L e 985
17.6.3 Popen Objects e e e e e e e 985
17.6.4 Windows Popen Helpers e 987

17.6.5 Older high-level APT e e 990

17.6.6 Replacing Older Functions with the subprocess Module 992
17.6.7 Legacy Shell Invocation Functions 995
17.6.8 NOtES . . . o o v e e e 996
17.7 sched—Eventscheduler e 997
17.7.1 Scheduler Objects e 997
17.8 queue — A synchronized queue class 998
17.8.1 Queue ObJECtS v v v v i e e e e e e e e e e e e e 999
17.8.2 SimpleQueue Objects 1001
179 contextvars — Context Variables 1002
17.9.1 Context Variables e 1002
17.9.2 Manual Context Management v v v v v vt e e e e e e e e e 1003
17.9.3 asynClo SUPPOIt . . . v v v v o e 1005
17.10 _thread — Low-level threading APT 1005
18 Networking and Interprocess Communication 1009
18.1 asyncio—AsynchronousI/O e 1009
I8 1.1 Runners e e 1010
18.1.2 Coroutinesand Tasks e 1012
18.1.3 Streams i e e e 1031
18.1.4 Synchronization Primitives e e e 1038
I18.1.5 Subprocesses o v v i i e e e e e e e e e e e e 1044
18.1.6 QuUeues e e e e e 1049
1817 EXCEptons v v it i e e e e e e 1052
18.1.8 EventLoop e 1053
18.1.9 Futures i e 1077
18.1.10 Transports and Protocols o i e e e 1080
I8.1.11 Policies o o i e e e e e 1094
18.1.12 Platform Support e 1098
18.1.13 Extending 1099
18.1.14 High-level APTIndex i i 1100
18.1.15 Low-level APTIndex i e 1103
18.1.16 Developing with asyncio o v v i i it e e e e e 1109
18.2 socket — Low-level networking interface o L. 1112
18.2.1 Socketfamilies L e 1112
1822 Modulecontents e e e e e e 1115
18.2.3 Socket Objects v v v i e e e e e e e e e e e e e 1128
18.2.4 Notes onsocket timeouts o o v it e e e e e 1135
1825 Example o e e e e e 1136
18.3 ss1 — TLS/SSL wrapper for socketobjects L. . 1140
18.3.1 Functions, Constants, and Exceptions, 1140
1832 SSLSockets o o o o e 1152
18.3.3 SSLContexts ¢ v i i it e e e e e e e e e 1156
18.3.4 Certificates o i e e e e e e 1166
18.3.5 Examples e e e e e 1168
18.3.6 Notes on non-blockingsockets Lo oL oL 1170
18.3.77 Memory BIO Support e 1171
18.3.8 SSLSESSION v i i e e e e e e e e 1173
18.3.9 Security considerations Lo e e e e e e e 1173
183.10 TLS 1.3 . . o o e e 1175
18.4 select — WaitingforI/O completiono o, 1176
18.4.1 /dev/poll PollingObjects e 1178
18.4.2 Edge and Level Trigger Polling (epoll) Objects 1179
18.4.3 Polling Objects v i i v e e e e e e e e e e e e e e e 1180
18.4.4 Kqueue Objects e e e 1181
18.4.5 KeventObjects e 1181
18.5 selectors — High-level I/O multiplexing 1183
18.5.1 Introduction e 1183

19

20

18.5.2 ClasseS. . . v v v v i e e e e e e e 1183

18.53 Examples e e e e e e e e e e e 1186
18.6 signal — Set handlers for asynchronousevents Lo 1186
18.6.1 Generalrules L e e e e e e e 1187
18.6.2 Module contents oL e e e e e e e e e 1187
18.6.3 Examples e 1194
18.6.4 NoteonSIGPIPE e 1194
18.6.5 Note on Signal Handlers and Exceptions 1195
18.7 mmap — Memory-mapped filesupport oL o 1196
18.7.1 MADV_*Constants v v v e e e e e e e e e e e e e e e 1200
18.7.2 MAP_* Constants v v v v v e e e e e e e e e e 1200
Internet Data Handling 1203
19.1 email — Anemail and MIME handling package 1203
19.1.1 email.message: Representing an email message 1204
19.1.2 email.parser: Parsingemail messageso u e e 1212
19.1.3 email.generator: Generating MIME documents 1215
19.14 email.policy: Policy Objects vttt 1218
19.1.5 email.errors: Exception and Defectclasses 1225
19.1.6 email.headerregistry: Custom Header Objects 1226
19.1.7 email.contentmanager: Managing MIME Content 1232
19.1.8 email: Examples i e e e e e 1234
19.1.9 email.message.Message: Representing an email message using the compat 32 AP11240
19.1.10 email.mime: Creating email and MIME objects from scratch 1248
19.1.11 email.header: Internationalized headers 1251
19.1.12 email.charset: Representing charactersets 1253
19.1.13 email.encoders: Encoders. o e 1255
19.1.14 email.utils: Miscellaneous utilities 1256
19.1.15 email.iterators:Iterators oo 1259
19.2 json—IJSONencoder and decoder 1260
19.2.1 BasicUsage oo o e 1262
19.2.2 Encodersand Decoders e 1264
19.2.3 EXCEPLONS . . . v v v v o e 1266
19.2.4 Standard Compliance and Interoperability 1266
19.2.5 Command Line Interface 1268
19.3 mailbox — Manipulate mailboxes in various formats 0oL 1269
193.1 Mailbox objects o o it e e e e 1270
1932 Message objectS . . . v v v i it e e e e e e e e e e e e e e e e 1279
19.3.3 EXCEPLIONS . . o v v v v v e e e e e e e e e e e e e e e e e 1287
1934 Examples e 1287
19.4 mimetypes — Map filenames to MIME types oL 1288
19.4.1 MimeTypes Objects o Lo e 1290
19.5 base64 — Basel6, Base32, Base64, Base85 Data Encodings 1292
19.5.1 Security Considerations v vt e e e e e e e e e e e e e 1295
19.6 binascii — Convert between binaryand ASCIT 1295
19.7 quopri — Encode and decode MIME quoted-printabledata 1297
Structured Markup Processing Tools 1299
20.1 html — HyperText Markup Language support 1299
20.2 html.parser — Simple HTML and XHTML parser 1299
20.2.1 Example HTML Parser Application 1300
20.2.2 HTMLParser Methods i 1301
20.2.3 Examples . . . oL . e e e e e e e e e e e e 1302
20.3 html.entities — Definitions of HTML general entities 1304
20.4 XML Processing Modules Lo e 1304
20.4.1 XML vulnerabilitieso 1305
20.4.2 Thedefusedxml Package 1306
20.5 xml.etree.ElementTree — The ElementTree XML APT 1306

xi

20.5.1 Tutorial e e e e e e e e 1307

20.5.2 XPath support o v v o e e e e e e e e e e e e e e 1312
20.53 Reference e e e 1313
20.5.4 Xlnclude support L e e e e e 1317
20.5.5 Reference e e 1318
20.6 xml.dom — The Document Object Model APT. 1326
20.6.1 Module Contents e 1327
20.6.2 Objectsinthe DOM e 1328
20.6.3 Conformance e e 1336
20.7 xml.dom.minidom — Minimal DOM implementation 1336
20.7.1 DOMODbJECtS it e e e e e e e e e e 1338
2072 DOMExample e e 1339
20.7.3 minidom and the DOM standard 1340
20.8 xml.dom.pulldom— Support for building partial DOM trees 1341
20.8.1 DOMEventStream Objects e 1342
20.9 xml.sax — Supportfor SAX2 parserso e e 1343
20.9.1 SAXException Objects it i e e e e e 1344
20.10 xml.sax.handler — Base classes for SAX handlers 1344
20.10.1 ContentHandler Objects i o i et e e e e 1346
20.10.2 DTDHandler Objects i e e 1348
20.10.3 EntityResolver Objects o o oo 1349
20.10.4 ErrorHandler Objects 1349
20.10.5 LexicalHandler Objects i v v it e e e e e e e e e e 1349
20.11 xml.sax.saxutils — SAXUtilities L e 1350
20.12 xml.sax.xmlreader — Interface for XML parsers 1351
20.12.1 XMLReader Objects 1352
20.12.2 IncrementalParser Objects L e 1353
20.12.3 Locator Objects v v v i v e e e e e e e e e e e 1353
20.12.4 InputSource ObJeCts v v v v it e e e e e e e e e e e e e e 1353
20.12.5 The AttributesInterface L o 1354
20.12.6 The AttributesNSInterface 1354
20.13 xml .parsers.expat — Fast XML parsing using Expat 1355
20.13.1 XMLParser Objects o v v v v it e e e e e e e e e 1356
20.13.2 ExpatError EXceptions i e e e e e e e e e 1360
20.13.3 Example L e e e e e e e e e e e e 1360
20.13.4 Content Model Descriptions L e 1361
20.13.5 Expat error constantso L e e e e 1362
21 Internet Protocols and Support 1365
21.1 webbrowser — Convenient web-browser controller 1365
21.1.1 Browser Controller Objects i 1368
21.2 wsgiref — WSGI Utilities and Reference Implementation 1368
21.2.1 wsgiref.util — WSGI environment utilities 1368
21.2.2 wsgiref.headers— WSGIresponse headertools 1370
21.2.3 wsgiref.simple_server —asimple WSGIHTTPserver 1371
21.2.4 wsgiref.validate — WSGI conformance checker 1372
21.2.5 wsgiref.handlers —server/gateway base classes 1373
21.2.6 wsgiref.types — WSGI types for static type checking 1376
21.2.7 Examples e e e e e e e e e e e e 1377
213 urllib—URLhandlingmodules 1378
21.4 urllib.request — Extensible library foropening URLs 1378
21.4.1 RequestObjects oo i e e e e 1383
21.4.2 OpenerDirector Objects o o it e e 1385
21.4.3 BaseHandler Objects i i i it e e e e e e 1386
21.4.4 HTTPRedirectHandler Objects o it it e e 1387
21.4.5 HTTPCookieProcessor Objects vt i i 1388
21.4.6 ProxyHandler Objects e 1388
21.477 HTTPPasswordMgr Objects o o it i e et e 1388

xii

21.5
21.6

21.7
21.8
21.9

21.10

21.11

21.12

21.13

21.14

21.15

21.16

21.17

21.4.8 HTTPPasswordMgrWithPriorAuth Objects 1388

21.4.9 AbstractBasicAuthHandler Objects o i e 1389
21.4.10 HTTPBasicAuthHandler Objects 1389
21.4.11 ProxyBasicAuthHandler Objects 1389
21.4.12 AbstractDigestAuthHandler Objects 1389
21.4.13 HTTPDigestAuthHandler Objects 1389
21.4.14 ProxyDigestAuthHandler Objects v it e e 1389
21.4.15 HTTPHandler Objects o o v it e e e e e e e e e e e e e e e 1389
21.4.16 HTTPSHandler Objects o ittt ee e 1390
21.4.17 FileHandler Objects e 1390
21.4.18 DataHandler Objects oo ittt 1390
21.4.19 FTPHandler Objects v v v i i e e e e e e e e e e e e e e e e e 1390
21.4.20 CacheFTPHandler Objects i i v i et e e e e e e e 1390
21.4.21 UnknownHandler Objects i e 1390
21.4.22 HTTPErrorProcessor Objects o vttt 1391
21.4.23 Examples 1391
21.4.24 Legacyinterface e e e 1393
21425 urllib.request Restrictions e 1396
urllib.response — Response classesusedbyurllib 1396
urllib.parse — Parse URLsinto components 1397
21.6.1 URLParsing e 1397
21.6.2 URL parsing SECUrity v v v v v vttt e e e e e e e e e e e e e e 1402
21.6.3 Parsing ASCIT Encoded Bytes 0 i it 1402
21.6.4 Structured Parse Results o o o 1402
21.6.5 URLQUOtNZ o o vt e e e e e e e e e e e e e 1403
urllib.error — Exception classes raised by urllib.request 1405
urllib.robotparser — Parser forrobots.txt 1406
http—HTTP modules e 1407
21.9.1 HTTPstatuscodes o v i i ittt ittt e e e e e e e 1408
21.9.2 HTTP status Category v v v v v v v vt e e e e e e e e e e e e e 1410
21.9.3 HTTPmethods et e e e e e 1410
http.client — HTTP protocolclient 1411
21.10.1 HTTPConnection ObJects v v v v vt e et et e e e e e e e e e 1414
21.10.2 HTTPResponse Objects v v v v i i e e e e e e e e e e e e e e e e 1416
21.10.3 Examples oo e e e e e e e e e e e e e 1417
21.10.4 HTTPMessage Objects o o o v i it i ittt e e e e e e e 1419
ftplib —FTPprotocolclient L 1419
21.11.1 Reference o o e e e e 1419
poplib —POP3 protocolclient i e e e 1425
21.12.1 POP3 ObJECES . . . v v o o o e e e e e e e e e e e e e e e e 1427
21.122 POP3 Example e e 1428
imaplib —IMAP4 protocolclient. 1428
21.13.1 IMAP4 Objects o e e e e e e e 1430
21.13.2 IMAP4 Example o . e e e e e e e e e 1435
smtplib — SMTP protocol client e e 1435
21.14.1 SMTP Objects o o o e e e e e e e e e e e e 1437
21.142 SMTP Example 1441
uuid — UUID objects accordingto RFC 4122 1442
21.15.1 Command-Line Usage o o v it ittt e e 1445
21152 Example L e e e e e e e e e e e e 1445
21.15.3 Command-Line Example e 1446
socketserver — A framework for network servers oL 0oL 1446
21.16.1 Server Creation NOtES o o v i i it e e e e e e e e e 1447
21.16.2 Server ObJects o v it e e e e e e e e 1448
21.16.3 Request Handler Objects i i i i et e e e 1450
21.16.4 Exampleso e e e e e e e e e e e e e 1451
http.server — HTTPservers o . i e e e e e e e 1454
21.17.1 Security Considerations e 1461

xiii

22

23

24

21.18 http.cookies — HTTP state management v v v v v v v v v v e e e o 1461

21.18.1 Cookie ObJECtS . . . v v v v o e e e e e e e e e e e e e e e e e e 1462
21.18.2 Morsel Objects o o i e e e e e e e 1462
21.18.3 Example o e e e e e e 1463
21.19 http.cookiejar — Cookie handling for HTTP clients 1464
21.19.1 CookieJar and FileCookieJar Objects oo 1466
21.19.2 FileCookielar subclasses and co-operation with web browsers 1468
21.19.3 CookiePolicy Objects o o v i e e e e e e e 1468
21.19.4 DefaultCookiePolicy Objects i e 1469
21.19.5 Cookie Objects 1471
21.19.6 Examples e e e 1472
21.20 xmlrpc — XMLRPC server and client modules 1473
21.21 xmlrpc.client — XML-RPCclientaccess v v i i i i o 1473
21.21.1 ServerProxy Objects o o i e e 1475
21.21.2 DateTime Objects o o e e 1476
21.21.3 Binary ObJects o o ot i e e e e e e e e e 1477
21.21.4 Fault Objects o o i it e e e e e e 1477
21.21.5 ProtocolError Objects v v v v i e e e e e e e e e e e 1478
21.21.6 MultiCall Objects o ottt e e e e e e e e e e 1479
21.21.7 Convenience Functions e 1480
21.21.8 Example of Client Usage oo i i i ittt 1480
21.21.9 Example of Client and Server Usage 1481
21.22 xmlrpc.server — Basic XML-RPCservers. 1481
21.22.1 SimpleXMLRPCServer Objectso ottt 1482
21.22.2 CGIXMLRPCRequestHandler 1485
21.22.3 Documenting XMLRPCsservero o 1486
21.22.4 DocXMLRPCServer Objects o o v vt ittt e e e 1486
21.22.5 DocCGIXMLRPCRequestHandler 1486
21.23 ipaddress — IPv4/IPv6 manipulation library, 1487
21.23.1 Convenience factory functions Lo e 1487
21232 TP AAAresses o o v v i e e e e e e e e e e e e 1488
21.23.3 TP Network definitions i e 1492
21.234 Interface objects L e e e e e 1498
21.23.5 Other Module Level Functions 1499
21.23.6 Custom Exceptions o o i e e e e e e e 1500
Multimedia Services 1501
22.1 wave —Read and write WAV files 1501
22.1.1 Wave_read Objects e e e e 1502
22.1.2 Wave_write ObJeCts v o v i e e e e e e e e e e 1503
22.2 colorsys — Conversions between color systemso 1504
Internationalization 1505
23.1 gettext — Multilingual internationalization services 1505
23.1.1 GNUgettext API 1505
23.1.2 Class-based API e 1506
23.1.3 Internationalizing your programs and modules 1510
23.1.4 Acknowledgements L e e 1513
23.2 locale — Internationalization SEIVICES+« v v v v i v bt e e e e e e e e e 1513
23.2.1 Background, details, hints, tips and caveats 1520
23.2.2 For extension writers and programs that embed Python 1520
23.2.3 Accesstomessage catalogs e e e e e e e e e e 1520
Program Frameworks 1523
24.1 turtle—Turtlegraphics e 1523
24.1.1 Introduction L e e e e e 1523
24.1.2 Getstarted e e e e e e 1523
2413 Tutorial e e e e 1524
2414 HOWIO... « . o i i e e e e e e e e e e e 1526

Xiv

25

26

24.1.5 Turtle graphics reference e e e
24.1.6 Methods of RawTurtle/Turtle and corresponding functions
24.1.77 Methods of TurtleScreen/Screen and corresponding functions
24.1.8 Publicclasses L e
24.1.9 EXplanation e e e e
24.1.10 Help and configuration e e e
24.1.11 turtledemo —DemoO SCripts v v v v v v i i e e e e e e e e
24.1.12 Changes since Python 2.6 e
24.1.13 Changessince Python 3.0 L
24.2 cmd — Support for line-oriented command interpreterso oL
2421 CmdODbJects o e e e e
2422 CmdExample e e e e e e e e e
243 shlex — Simple lexical analysis e e e
24.3.1 shlex Objects o o i e e e e
2432 ParsingRules e
24.3.3 Improved Compatibility with Shells

Graphical User Interfaces with Tk
25.1 tkinter —Pythoninterface to Tcl/Tk o o
25.1.1 Architecture e e e
25.1.2 Tkinter Modules e e
25.1.3 Tkinter Life Preserver e
25.1.4 Threadingmodel e
25.1.5 Handy Reference e
25.1.6 FileHandlers e
25.2 tkinter.colorchooser — Color choosingdialog
25.3 tkinter.font — Tkinter font wrapper e
254 Tkinter Dialogs o . . e e e e e e e e
25.4.1 tkinter.simpledialog — Standard Tkinter input dialogs
2542 tkinter.filedialog—Fileselectiondialogs
2543 tkinter.commondialog— Dialog window templates
25.5 tkinter.messagebox — Tkinter message prompts v v v v v v e e
25.6 tkinter.scrolledtext — Scrolled Text Widget
257 tkinter.dnd—Draganddropsupport L o o
25.8 tkinter.ttk —Tkthemedwidgets
25.8.1 Using Ttk e e e e
25.82 Tk WIdEELS o v o o e e e e e e e e e e e e e e e
2583 Widget. e
25.8.4 ComboboX e e e
25.8.5 Spinboxo e e e e e
25.8.6 Notebook e e e
25.8.7 Progressbar e e e e
25.8.8 Separator e e e e e e e e e e e
25.8.9 Sizegrip o e e e e
25.8.10 Treeview oo e e e e e e
25.8.11 Ttk Styling« o e
259 IDLE
259.1 MENUS i e e
25.9.2 Editing and Navigation i e e e e e
2593 Startupand Code Execution oL
25.9.4 Helpand Preferences
259.5 adlelib . ..o

Development Tools

26.1 typing—Supportfortypehints L
26.1.1 Specification for the Python Type System
26.1.2 Typealiases o v e e e e e e e e e e e e e e e
26.1.3 NewType o o e e e e e e e e e

XV

26.1.4 Annotating callable objects 1628

26.1.5 GENeriCS i i e e 1629
26.1.6 Annotating tupleso e e e e e e e e e e e 1630
26.1.7 Thetypeof classobjects e 1631
26.1.8 Annotating generators and COroUtiNeS« v oo 1631
26.1.9 User-defined generic types o i it i e e e e e e e e 1632
26.1.10 The ANy type . . . o o o i e e e e e e e e e e e e e e e 1635
26.1.11 Nominal vs structural Subtyping o o v v i et e e e 1636
26.1.12 Module contents e e e e e e e 1637
26.1.13 Deprecation Timeline of Major Features 1676
26.2 pydoc — Documentation generator and online help system 1677
26.3 Python Development Mode e 1678
26.3.1 Effects of the Python DevelopmentMode 1678
26.3.2 ResourceWarning Example L o 1679
26.3.3 Badfile descriptor error example L. 0oL o oo 1680
26.4 doctest — Testinteractive Python examples 1681
26.4.1 Simple Usage: Checking Examples in Docstrings 1683
26.4.2 Simple Usage: Checking ExamplesinaTextFile 1683
2643 HowltWorks 0 o e 1685
2644 Basic APL e 1692
26.4.5 Unittest APL o 1693
264.6 Advanced APL 1695
26.4.7 Debugging e e e e e e e e e e 1701
26.4.8 S0apDOX e e e e e e e e e e 1704
26.5 unittest — Unittesting framework L o L 1705
26.5.1 Basicexampleo e 1706
26.5.2 Command-Line Interface 1707
26.5.3 TestDISCOVEIY . . . v v v v v o e 1708
26.5.4 Organizingtestcode oL e e e e e e e e e 1709
26.5.5 Re-usingoldtestcode e e e 1711
26.5.6 Skipping tests and expected failures 0oL o oL 1711
26.5.7 Distinguishing test iterations using subtests ool 1713
26.5.8 Classesand functions 1714
26.5.9 Classand Module Fixtures e 1733
26.5.10 Signal Handling o e e 1734
26.6 unittest.mock —mockobjectlibraryo oo oo 1735
26.6.1 Quick Guide e 1735
26.6.2 TheMock Class o o it e 1738
26.6.3 Thepatchers o 0 e e e e e e e e e 1754
26.6.4 MagicMock and magic method support Lo 1763
26.6.5 Helpers e e e e 1767
26.6.6 Order of precedence of side_effect, return_valueand wraps 1774
26.7 unittest.mock —gettingstarted L. L. 1776
26.7.1 UsingMock o e e e 1776
26.7.2 PatchDecorators e e e e 1782
26.7.3 Further Examples e 1784
26.8 test — Regression tests package for Python 0oL 1796
26.8.1 Writing Unit Tests for the test package 1796
26.8.2 Running tests using the command-line interface 1798
26.9 test.support — Utilities for the Python testsuite 1798
26.10 test .support.socket_helper — Utilities for socket tests 1808
26.11 test.support.script_helper — Utilities for the Python execution tests 1808
26.12 test.support .bytecode_helper — Support tools for testing correct bytecode generation 1810
26.13 test.support.threading_helper — Utilities for threading tests 1810
26.14 test .support.os_helper — Utilitiesforostests 1811
26.15 test.support.import_helper — Utilities for importtests 1813
26.16 test.support.warnings_helper — Utilities for warnings tests 1814

xvi

27 Debugging and Profiling
27.1 Auditeventstable L e e e e
27.2 bdb —Debugger framework oo
273 faulthandler — Dump the Python traceback, ..
27.3.1 Dumpingthe traceback L
2732 Faulthandlerstate e
27.3.3 Dumping the tracebacks afteratimeout
27.3.4 Dumping the traceback onausersignal L
27.3.5 Issuewithfiledescriptors e
273.6 Example L. e e e e
274 pdb —The Python Debugger
27.4.1 Debugger Commands e e e e e e
27.5 The Python Profilers e e e e e e e
27.5.1 Introductiontothe profilers L
27.5.2 Instant User's Manual e
2753 profileand cProfile Module Reference
2754 The Stats Class o o v i i i e e e
27.5.5 What Is Deterministic Profiling?
27.5.6 LImitations oo e e e e e e e e e e e e e
2757 Calibration. o L. e e e e e e e e e e
27.5.8 Usingacustom timer v v v vt v it e e e e e e e e
27.6 timeit — Measure execution time of small code snippets
27.6.1 Basic Examples e e e e e e e e e
27.6.2 PythonlInterface L e e e
27.6.3 Command-Line Interface L o
27.6.4 Examples e e e e e e e e e e
277 trace — Trace or track Python statement execution
27.7.1 Command-Line Usage 0 i i ittt it e e
27.7.2 Programmatic Interface L e
27.8 tracemalloc — Trace memory allocations
27.8.1 Examples e e e e e e e
27.82 APL . . . e e
28 Software Packaging and Distribution
28.1 ensurepip — Bootstrapping the pipinstaller
28.1.1 Command lineinterface L.
28.1.2 Module APT e
28.2 venv — Creation of virtual environments oo
28.2.1 Creating virtual environments o
2822 Howvenvs work oL L e e e e e e
2823 APL . . . e e
28.2.4 Anexample of extending EnvBuilder Lol
28.3 zipapp — Manage executable Python zip archives
28.3.1 BasicExample e e e e e
28.3.2 Command-Line Interface L
28.3.3 Python APL e
28.3.4 Examples e e e
28.3.5 Specifying the Interpreter o e e e e e
28.3.6 Creating Standalone Applications with zipapp« .. o .
28.3.7 'The Python Zip Application Archive Format
29 Python Runtime Services
29.1 sys — System-specific parameters and functions oL
29.2 sys.monitoring — Execution event monitoring oo e
29.2.1 Toolidentifiers L e e e e e e
2022 BVENLS oo e e e e e e e e e e e e e
29.2.3 Turningeventsonandoff e
29.2.4 Registering callback functions L. L e

1817
1817
1821
1826
1827
1827
1827
1828
1828
1828
1828
1831
1837
1837
1838
1840
1841
1844
1844
1844
1845
1846
1846
1846
1848
1849
1851
1851
1852
1853
1854
1858

1865
1865
1866
1866
1867
1868
1869
1870
1873
1877
1877
1877
1878
1879
1879
1880
1880

1883
1883
1908
1909
1910
1912
1913

Xvii

29.3 sysconfig— Provide access to Python’s configuration information 1914

29.3.1 Configuration variables L e e e e e 1914
2932 Installationpaths. e 1914
2033 Userscheme o o i e e e e e 1915
2934 Homescheme e e e e 1916
29.3.5 Prefixscheme e 1917
29.3.6 Installation path functions e e 1917
29.3.7 Other functions e e e e 1919
29.3.8 Using sysconfigasascript v v v v iv i it e e 1920
294 builtins—Built-inobjects oL L 1920
29.5 __main__ —Top-level code environment oL 1921
2051 _ _name_ == '__main__ ' .. e e e e 1921
2952 __main__.pyinPythonPackages 1923
2053 Import _ MAIN__ .. i e e e e e e e e e e e e e e e e e e e 1924
29.6 warnings—Warningcontrolo Lo 1926
29.6.1 Warning Categories ottt i e e e e e e e e e e e e e e 1926
29.6.2 The Warnings Filter L 1927
29.6.3 Temporarily Suppressing Warnings v v it et e e e e e 1929
29.6.4 Testing Warnings v v i it e e e e e e e e e e e e e e e e 1930
29.6.5 Updating Code For New Versions of Dependencies 1930
29.6.6 Available Functions 1931
29.6.7 Available ConteXxt Managerso ot i e e e e 1933
29.7 dataclasses —DataClasses. v v it e e e e e e e e e e 1933
29.7.1 Module contents e e e e e e e e e e e 1934
29.7.2 PoSt-Init Processing oo e e e e e e e e 1940
29.7.3 Classvariables e e e e e 1940
29.74 Init-only variables 1940
29.7.5 FrozeninStancCes v v it i e e e e e e e e e e e e e 1941
29.7.6 Inheritance L. e e e e 1941
29.7.7 Re-ordering of keyword-only parametersin __init__ () 1941
29.7.8 Default factory functionso Lo 1942
29.7.9 Mutable default values 1942
29.7.10 Descriptor-typed fieldso 1943
29.8 contextlib — Utilities for with-statement contexts 1944
29.8.1 Utilities e e e e e e e 1944
29.8.2 Examplesand Recipes L e 1953
29.8.3 Single use, reusable and reentrant context managers L. .. 1956
29.9 abc— Abstract Base Classes e 1958
29.10 atexit —Exithandlers 1963
29.10.1 atexit Example L e e e e e e e 1964
29.11 traceback — Print or retrieve a stack traceback o oL 1964
29.11.1 TracebackExceptionObjects. 1967
29.11.2 stackSummary Objects oo ittt 1969
29.11.3 FrameSummary ObJects i v v it e e e e e e e e e e 1969
29.11.4 Traceback Examples e e 1970
29.12 ___future__ — Future statement definitions Lo 1972
29.12.1 Module CONtents v v v v i e e e e e e e e e e e e e e 1973
29.13 gc — Garbage Collector interface 1974
29.14 inspect —Inspectliveobjects 1978
29.14.1 Typesand MemberS v v v v v v i e e e e e e e e e e e e e e 1978
29.14.2 Retrieving source COde v i i e e e e e e e e e e e e e e e e 1983
29.14.3 Introspecting callables with the Signature object 1983
29.14.4 Classes and functions o i i e e e e e e 1988
29.14.5 Theinterpreter stacko 1991
29.14.6 Fetching attributes statically e 1993
29.14.7 Current State of Generators, Coroutines, and Asynchronous Generators 1994
29.14.8 Code Objects Bit Flags e 1995
29.149 Bufferflags L e 1996

xviii

30

31

32

29.14.10Command Line Interface
29.15 site — Site-specific configurationhook o o oo
20.15.1 sitecusStomize v i v i i i e e e e e e e e e e e e e e e e
20.15.2 usercustomize e e e e e e e e e e e e e
29.15.3 Readline configuration e
20.15.4 Module ConNtentst e e e e e e e e e e e e e e
29.15.5 Command Line Interface e

Custom Python Interpreters

30.1 code — Interpreter base Classes o e e e e e e e e e e e e
30.1.1 Interactive Interpreter Objects i v v i i e e e e e e
30.1.2 Interactive Console Objects i i i it e e e

30.2 codeop — Compile Pythoncode

Importing Modules
31.1 zipimport — Import modules from Zip archives
31.1.1 zipimporter Objects o e e e e e e e e
31.1.2 Examples e e e e e e
31.2 pkgutil — Package extension utilityo
31.3 modulefinder — Find modulesused by ascript
31.3.1 Example usage of ModuleFinder v i v vt ittt
31.4 runpy — Locating and executing Pythonmodules
31.5 importlib — The implementation of import
31.5.1 Introduction o ..l e e e e e
31.52 Functions i e e e e e
31.5.3 importlib.abc — Abstract base classes related toimport
3154 importlib.machinery —Importersand pathhooks
31.5.5 importlib.util - Utility code for importers
31.5.6 Examples e e
31.6 importlib.resources — Package resource reading, opening and access.
31.6.1 Functional APT
31.7 importlib.resources.abc — Abstract base classes for resources
31.8 importlib.metadata — Accessing package metadata L.
31.8.1 OVEIVIEW . . o v v v v i e e e e e e e e e e e e e
31.8.2 Functional APT e
31.83 Distributionso e e e e e e e
31.8.4 Distribution Discovery e e e e e e e e
31.8.5 Extending the search algorithm o oL
31.9 The initialization of the sys.path module searchpath.
31.9.1 Virtual environmentso u e e e e e e e e e e e
3192 _pthfiles. e e e e e e e e
31.9.3 Embedded Python e e e e

Python Language Services

32.1 ast —Abstract Syntax Trees o o i e e e e e e e e e e e
32.1.1 Abstract Grammar e e e e e e e e e e e e e
3212 Nodeclasses e e e
32.1.3 ast Helpers. o e
32.1.4 Compiler Flags e
32.1.5 Command-Line Usage 0 i ittt e e e e

32.2 symtable — Access to the compiler’ssymboltables.
32.2.1 Generating Symbol Tables L
32.2.2 Examining Symbol Tables
3223 Command-Line Usage o ittt e

32.3 token — Constants used with Python parse trees

32.4 keyword — Testing for Python keywords

32.5 tokenize — Tokenizer for Pythonsource L
32.5.1 TokenizingInput e
32.5.2 Command-Line Usage i i ittt

Xix

3253 Examples e e e e e e e e e e e e e e 2095

32.6 tabnanny — Detection of ambiguous indentation0 2097
3277 pyclbr — Python module browser support o 2098
32.77.1 Function Objects e 2099
3272 ClassObjects v v v vt e e e e e 2099
32.8 py_compile — Compile Pythonsourcefiles 2100
32.8.1 Command-Line Interface 2101
329 compileall — Byte-compile Python libraries 2102
32.9.1 Command-line USe v i i i i e e e e e e e e e 2102
32.9.2 Publicfunctions L e e e e e e e 2103
32.10 dis — Disassembler for Python bytecode L 2106
32.10.1 Command-line interface L. e 2106
32.10.2 Bytecode analysis oo . i e e e e e e e e e e e e e 2107
32.10.3 Analysis functions L. e 2108
32.10.4 Python Bytecode Instructions Lo o 2110
32.10.5 Opcode collections i i e e e e 2126
32.11 pickletools — Tools for pickle developers 2127
32.11.1 Command ine usage v v v v i i e e e e e e e e e e e e e 2127
32.11.2 Programmatic Interface L 2128
33 MS Windows Specific Services 2129
33.1 msvcrt — Useful routines from the MS VC++runtime 2129
33.1.1 FileOperations i e e e 2129
33.1.2 Console /O e e e 2130
33.1.3 Other Functions e e 2130
332 winreg— Windows regiStry aCCESS . . . « ¢ ¢t v v bt e e e e e e e e e e e e e e 2132
33.2.1 Functions i e e e e 2132
3322 ConstantSt e e e e e e e e e e e e e e e e e 2137
33.23 Registry Handle Objects e 2140
33.3 winsound — Sound-playing interface for Windows o000 2140
34 Unix Specific Services 2143
34.1 posix — The most common POSIX systemcalls. 2143
34.1.1 Large File Support e e 2143
34.1.2 Notable Module Contentso v vt ittt e e 2144
342 pwd—Thepassworddatabase L e e e e e e e 2144
343 grp—Thegroupdatabase i e e e e e e e 2145
344 termios —POSIXstylettycontrol e 2146
3441 Exampleo L e e e e e e e e 2147
34.5 tty— Terminal control functions e 2147
34.6 pty —Pseudo-terminal utilities e e e 2148
34.6.1 Example e e e e e e e e e e e 2149
347 fcntl—The fcntland ioctlsystemcalls. o oL 2150
34.8 resource — Resource usage informationo Lo 2152
348.1 Resource Limits e 2153
3482 Resource Usage o v v v v i i e e e e e e e e e e e e e 2155
349 syslog—Unixsysloglibraryroutineso v v i i vt e e e e 2157
349.1 Examples e e e e e e e e e 2159
35 Modules command-line interface (CLI) 2161
36 Superseded Modules 2163
36.1 getopt — C-style parser for command line options 2163
36.2 optparse — Parser for command lineoptions e 2165
36.2.1 Background e e e e 2166
36.2.2 Tutorial e e e 2168
36.2.3 Reference Guide L e e e e 2175
36.2.4 Option Callbacks e 2185
36.2.5 Extending OpLRarSe . . v v vt i e e e e e e e e e e e e e e e e e 2189

XX

30.2.6 EXCEPLONS . . . v v v v i e 2191
37 Security Considerations 2193
A Glossary 2195
B About these documents 2211

B.1 Contributors to the Python Documentation, 2211
C History and License 2213

C.1 Historyof the software e e e e e e e e e 2213

C.2 Terms and conditions for accessing or otherwise using Python 2214

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.13.0rc2 2214

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 2215

C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 2216

C.2.4 CWILICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 2217

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.13.0rc2 DOCUMEN-

TATION e 2217

C.3 Licenses and Acknowledgements for Incorporated Software 2218

C.3.1 Mersenne TWISIET v v v i i e e e e e e e e e e e e e e e e e e e 2218

C.3.2 Sockets . . . v i e e e e e e 2219

C.3.3 Asynchronous SOCKet ServiCes v v v v v v v i e e e e e e e e e 2219

C.3.4 Cookiemanagement v v v vt e e e e e e e e e e e e e e e e e 2220

C3.5 Executiontracing i i e e e e e 2220

C.3.6 UUencode and UUdecode functions v ... 2221

C.3.7 XML Remote Procedure Calls it 2221

C.3.8 test_epoll L e e e e e e e e e 2222

C.3.9 Selectkqueue e e e e e 2222

C.3.10 SipHash24 e 2223

C3.11 strtodanddtoa. o . 0 e e e e e e e e e 2223

C3.12 OpenSSL L e e 2224

C3U13 eXpat. . v o v v e e e e e e e e e e e e e e e e e e 2227

C3.04 Hbfl . . . e e 2227

C3.05 zlib . . oo e e e 2228

C.3.16 cfuhash e e 2228

C3.17 Hbmpdec e e 2229

C.3.18 W3C CIANLEStSUItE . . v v v v e e o e 2229

C3.19 mimalloc e e e e 2230

C.3.20 asynClo . . v v v v i e e e e e e e e e e e e e e e e 2230

C.3.21 Global Unbounded Sequences (GUS) 2231
D Copyright 2233
Bibliography 2235
Python Module Index 2237
Index 2241

xXi

XXii

The Python Library Reference, Release 3.13.0rc2

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so
it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is an active collection of hundreds of thousands of components (from indi-
vidual programs and modules to packages and entire application development frameworks), available from the Python
Package Index.

CONTENTS 1

https://pypi.org
https://pypi.org

The Python Library Reference, Release 3.13.0rc2

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like
the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the
core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see module random) and read a section or two. Regardless
of the order in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the
remainder of the manual assumes familiarity with this material.

Let the show begin!

1.1 Notes on availability

¢ An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not make
any claims about its existence on a specific operating system.

* If not separately noted, all functions that claim “Availability: Unix” are supported on macOS and iOS, both of
which build on a Unix core.

* If an availability note contains both a minimum Kernel version and a minimum libc version, then both condi-
tions must hold. For example a feature with note Availability: Linux >= 3.17 with glibc >= 2.27 requires both
Linux 3.17 or newer and glibc 2.27 or newer.

The Python Library Reference, Release 3.13.0rc2

1.1.1 WebAssembly platforms

The WebAssembly platforms wasm32-emscripten (Emscripten) and wasm32-wasi (WASI) provide a subset
of POSIX APIs. WebAssembly runtimes and browsers are sandboxed and have limited access to the host and external
resources. Any Python standard library module that uses processes, threading, networking, signals, or other forms
of inter-process communication (IPC), is either not available or may not work as on other Unix-like systems. File
I/0, file system, and Unix permission-related functions are restricted, too. Emscripten does not permit blocking I/O.
Other blocking operations like sIeep () block the browser event loop.

The properties and behavior of Python on WebAssembly platforms depend on the Emscripten-SDK or WASI-SDK
version, WASM runtimes (browser, NodeJS, wasmtime), and Python build time flags. WebAssembly, Emscripten,
and WASI are evolving standards; some features like networking may be supported in the future.

For Python in the browser, users should consider Pyodide or PyScript. PyScript is built on top of Pyodide, which
itself is built on top of CPython and Emscripten. Pyodide provides access to browsers’ JavaScript and DOM APIs as
well as limited networking capabilities with JavaScript’s XMLHt t pRequest and Fetch APIs.

* Process-related APIs are not available or always fail with an error. That includes APIs that spawn new processes
(fork (),execve ()),wait for processes (waitpid ()),sendsignals (kil1 ()),or otherwise interact with
processes. The subprocess is importable but does not work.

* The socket module is available, but is limited and behaves differently from other platforms. On Emscripten,
sockets are always non-blocking and require additional JavaScript code and helpers on the server to proxy
TCP through WebSockets; see Emscripten Networking for more information. WASI snapshot preview 1 only
permits sockets from an existing file descriptor.

* Some functions are stubs that either don’t do anything and always return hardcoded values.

* Functions related to file descriptors, file permissions, file ownership, and links are limited and don’t support
some operations. For example, WASI does not permit symlinks with absolute file names.

1.1.2 iOS

i0S is, in most respects, a POSIX operating system. File I/O, socket handling, and threading all behave as they
would on any POSIX operating system. However, there are several major differences between iOS and other POSIX
systems.

¢ i0S can only use Python in “embedded” mode. There is no Python REPL, and no ability to execute binaries
that are part of the normal Python developer experience, such as pip. To add Python code to your iOS app,
you must use the Python embedding API to add a Python interpreter to an iOS app created with Xcode. See
the iOS usage guide for more details.

¢ An iOS app cannot use any form of subprocessing, background processing, or inter-process communication.
If an i0S app attempts to create a subprocess, the process creating the subprocess will either lock up, or crash.
An i0S app has no visibility of other applications that are running, nor any ability to communicate with other
running applications, outside of the i10S-specific APIs that exist for this purpose.

* i0S apps have limited access to modify system resources (such as the system clock). These resources will often
be readable, but attempts to modify those resources will usually fail.

* i0S apps have a limited concept of console input and output. stdout and stderr exist, and content written
to stdout and stderr will be visible in logs when running in Xcode, but this content won t be recorded in
the system log. If a user who has installed your app provides their app logs as a diagnostic aid, they will not
include any detail written to stdout or stderr.

iOS apps have no concept of stdin at all. While iOS apps can have a keyboard, this is a software feature,
not something that is attached to stdin.

As a result, Python library that involve console manipulation (such as curses and readline) are not
available on iOS.

4 Chapter 1. Introduction

https://webassembly.org/
https://emscripten.org/
https://wasi.dev/
https://emscripten.org/
https://wasi.dev/
https://wasmtime.dev/
https://pyodide.org/
https://pyscript.net/
https://emscripten.org/docs/porting/networking.html

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed here
in alphabetical order.

Built-in Functions

A E L R
abs () enumerate () len () range ()
aiter() eval () 1list () repr ()
all() exec () locals () reversed()
anext () round ()
any () F M
ascii() filter () map () S

float () max () set ()
B format () memoryview () setattr ()
bin () frozenset () min () slice /()
bool () sorted ()
breakpoint () G N staticmethod ()
bytearray () getattr () next () str()
bytes () globals () sum ()

(0) super ()

C H object ()
callable () hasattr() oct () T
chr () hash () open () tuple ()
classmethod () help () ord () type ()
compile () hex ()
complex () P A%

I pow () vars ()
D id() print ()
delattr () input () property () Z
dict () int () zip ()
dir() isinstance ()
divmod () issubclass () _

iter() __Import__ ()

abs (x)

Return the absolute value of a number. The argument may be an integer, a floating-point number, or an object
implementing __abs__ (). If the argument is a complex number, its magnitude is returned.

The Python Library Reference, Release 3.13.0rc2

aiter (async_iterable)

Return an asynchronous iterator for an asynchronous iterable. Equivalent to calling x .__aiter__ ().
Note: Unlike iter (), aiter () has no 2-argument variant.
Added in version 3.10.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

awaitable anext (async_iterator)

awaitable anext (async_iterator, default)
When awaited, return the next item from the given asynchronous iterator, or default if given and the iterator is
exhausted.

This is the async variant of the next () builtin, and behaves similarly.

This callsthe __anext__ () method of async_iterator, returning an awaitable. Awaiting this returns the next
value of the iterator. If default is given, it is returned if the iterator is exhausted, otherwise St opAsyncIt—
erationis raised.

Added in version 3.10.

any (iterable)

Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

ascii (object)

As repr (), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u, or \U escapes. This generates a string similar to
that returned by repr () in Python 2.

bin (x)

Convert an integer number to a binary string prefixed with “Ob”. The result is a valid Python expression. If x is
not a Python int object, it has to define an ___index___ () method that returns an integer. Some examples:

>>> bin (3)
'Ob11"

>>> bin (-10)
'-0b1010"'

If the prefix “Ob” is desired or not, you can use either of the following ways.

>>> format (14, '#b'), format (14, 'b')
('0b1110', '1110")

>>> f'{14:4b}', £'{14:b}"'

('0b1110', '1110")

See also format () for more information.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.0rc2

class bool (object=False, /)

Return a Boolean value, i.e. one of True or False. The argument is converted using the standard fruth
testing procedure. If the argument is false or omitted, this returns False; otherwise, it returns True. The
bool class is a subclass of int (see Numeric Types — int, float, complex). It cannot be subclassed further.
Its only instances are False and True (see Boolean Type - bool).

Changed in version 3.7: The parameter is now positional-only.

breakpoint (*args, **kws)

This function drops you into the debugger at the call site. Specifically, it calls sys.breakpointhook (),
passing args and kws straight through. By default, sys.breakpointhook () calls pdb.
set_trace () expecting no arguments. In this case, it is purely a convenience function so you don’t have to
explicitly import pdb or type as much code to enter the debugger. However, sys.breakpointhook ()
can be set to some other function and breakpoint () will automatically call that, allowing you to drop
into the debugger of choice. If sys.breakpointhook () is not accessible, this function will raise Run—
timeError.

By default, the behavior of hreakpoint () can be changed with the PYTHONBREAKPOINT environment
variable. See sys.breakpointhook () for usage details.

Note that this is not guaranteed if sys.breakpointhook () has been replaced.
Raises an auditing event builtins.breakpoint with argument breakpointhook.
Added in version 3.7.

class bytearray (source=b")
class bytearray (source, encoding)
class bytearray (source, encoding, errors)

Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as
most methods that the byt es type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

« If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode ().

« If it is an integer, the array will have that size and will be initialized with null bytes.

« Ifitis an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

« If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size O is created.
See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes (source=b")
class bytes (source, encoding)
class bytes (source, encoding, errors)

Return a new “bytes” object which is an immutable sequence of integers in therange 0 <= x < 256. bytes
is an immutable version of bytearray — it has the same non-mutating methods and the same indexing and
slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().
Bytes objects can also be created with literals, see strings.

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytearray Op-
erations.

The Python Library Reference, Release 3.13.0rc2

callable (object)

Return True if the object argument appears callable, F'a 1 se if not. If this returns True, it is still possible
that a call fails, but if it is False, calling object will never succeed. Note that classes are callable (calling a
class returns a new instance); instances are callable if their classhasa___call__ () method.

Added in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.
chr (i)

Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string 'a ', while chr (8364) returns the string '€ '. This is the inverse of ord ().

The valid range for the argument is from O through 1,114,111 (Ox10FFFF in base 16). ValueError will be
raised if i is outside that range.

@classmethod

Transform a method into a class method.

A class method receives the class as an implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2):

The @classmethod form is a function decorator — see function for details.

A class method can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The
instance is ignored except for its class. If a class method is called for a derived class, the derived class object
is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in
this section. For more information on class methods, see types.

Changed in version 3.9: Class methods can now wrap other descriptors such as property ().

Changed in version 3.10: Class methods now inherit the method attributes (__module_ , _ name__,
_ _qualname_ ,_ doc__and __annotations__)and have anew __ wrapped___ attribute.

Deprecated since version 3.11, removed in version 3.13: Class methods can no longer wrap other descriptors
such as property ().

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)

Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source
can either be a normal string, a byte string, or an AST object. Refer to the ast module documentation for
information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (' <string>"' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec ' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single"' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which compiler options should be activated and which
future features should be allowed. If neither is present (or both are zero) the code is compiled with the same
flags that affect the code that is calling compi le (). If the flags argument is given and dont_inherit is not (or
is zero) then the compiler options and the future statements specified by the flags argument are used in addition
to those that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it — the
flags (future features and compiler options) in the surrounding code are ignored.

Compiler options and future statements are specified by bits which can be bitwise ORed together to specify
multiple options. The bitfield required to specify a given future feature can be found as the compiler flag
attribute on the _Feature instance in the __ future__ module. Compiler flags can be found in ast
module, with PyCF_ prefix.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.0rc2

The argument optimize specifies the optimization level of the compiler; the default value of —1 selects the op-
timization level of the interpreter as given by —O options. Explicit levels are O (no optimization; ___debug__
is true), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and ValueError if the source con-
tains null bytes.

If you want to parse Python code into its AST representation, see ast . parse ().

Raises an auditing event compi le with arguments source and £ilename. This event may also be raised
by implicit compilation.

© Note

When compiling a string with multi-line code in 'single' or 'eval' mode, input must be terminated
by at least one newline character. This is to facilitate detection of incomplete and complete statements in
the code module.

A\ Warning

It is possible to crash the Python interpreter with a sufficiently large/complex string when compiling to an
AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also, input in 'exec' mode does not
have to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

Added in version 3.8: ast .PyCF_ALLOW_TOP_LEVEL_AWAIT can now be passed in flags to enable sup-
port for top-level await, async for,and async with.

class complex (number=0, /)

class complex (string, /)

class complex (real=0, imag=0)
Convert a single string or number to a complex number, or create a complex number from real and imaginary
parts.

Examples:

-
>>> complex ('+1.23")

(1.23+073)

>>> complex('-4.53")

-4.57

>>> complex ('-1.23+4.53")
(=1.23+4.57)

>>> complex ('"\t(-1.23+4.5J)\n')
(-1.23+4.57)

>>> complex ('-Infinity+NaNj"')
(-inf+nanij)

>>> complex (1.23)

(1.23+03)

>>> complex (imag=-4.5)

-4.57

>>> complex(-1.23, 4.5)
(=1.234+4.573)

If the argument is a string, it must contain either a real part (in the same format as for f1oat ()) or an imag-
inary part (in the same format but witha 'j' or 'J"' suffix), or both real and imaginary parts (the sign of

The Python Library Reference, Release 3.13.0rc2

the imaginary part is mandatory in this case). The string can optionally be surrounded by whitespaces and the
round parentheses ' (' and ') ', which are ignored. The string must not contain whitespace between '+"',
'—',the 'j' or 'J" suffix, and the decimal number. For example, complex ('1+273") is fine, but com—
plex ('l + 23j'") raises ValueError. More precisely, the input must conform to the complexvalue
production rule in the following grammar, after parentheses and leading and trailing whitespace characters are
removed:

complexvalue = floatvalue |
floatvalue ("3" | "J") |
floatvalue sign absfloatvalue ("j" | "Jd")

If the argument is a number, the constructor serves as a numeric conversion like i nt and f1oat. For a general
Python object x, complex (x) delegatestox.___complex__ ().If___complex__ () isnotdefined then
itfallsbackto_ float_ ().If _ float__ () is not defined then it falls back to __index__ ().

If two arguments are provided or keyword arguments are used, each argument may be any numeric type (in-
cluding complex). If both arguments are real numbers, return a complex number with the real component real
and the imaginary component imag. If both arguments are complex numbers, return a complex number with
the real component real.real-imag.imag and the imaginary component real . imag+imag.real.
If one of arguments is a real number, only its real component is used in the above expressions.

If all arguments are omitted, returns 0 j.
The complex type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.8: Falls back to __index__ () if __complex__ () and __float__ () are not
defined.

delattr (object, name)

This is arelative of setattr (). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr (x, 'foobar') isequivalenttodel x.foobar. name need not be a Python identifier (see
setattr()).

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)

Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in 1ist, set, and t uple classes, as well as the col Ilect i ons module.

dir ()
dir (object)

Without arguments, return the list of names in the current local scope. With an argument, attempt to return a
list of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or __getattribute__ () function to
customize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict___ attribute, if defined, and from its type object. The resulting list is not necessarily complete and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

« If the object is a module object, the list contains the names of the module’s attributes.

10

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.0rc2

« If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

* Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recur-
sively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

-

L

>>> import struct

>>> dir () # show the names in the module namespace

['"__builtins_ ', '_ _name_ ', 'struct']

>>> dir (struct) # show the names in the struct module

['Struct', '__all__ ', '_ _builtins__ ', '_ _cached__ ', '__doc__"', '_ file_ ',
' _initializing__ ', '__loader__ ', '__name__', '_ _package_ ',

'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',
'unpack', 'unpack_from']
>>> class Shape:
def _ dir_ (self):
return ['area', 'perimeter', 'location']

>>> s = Shape()
>>> dir(s)
['area', 'location', 'perimeter']

O Note

Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to supply an
interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and
its detailed behavior may change across releases. For example, metaclass attributes are not in the result list
when the argument is a class.

divmod (a, b)

Take two (non-complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % b). For floating-point numbers the result is
(g, a % b),wheregisusuallymath.floor (a / b) butmay be 1 less than that. Inanycase g * b

+ a % bisveryclosetoa,if a % Db isnon-zero it has the same sign as b,and 0 <= abs(a % b) <
abs (b).

enumerate (iterable, start=0)

Return an enumerate object. iferable must be a sequence, an iferator, or some other object which supports
iteration. The ___next__ () method of the iterator returned by enumerate () returns a tuple containing a
count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list (enumerate (seasons))

[(O, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list (enumerate (seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate (iterable, start=0):
n = start
for elem in iterable:
yield n, elem
n += 1

eval

(source, /, globals=None, locals=None)

Parameters

11

The Python Library Reference, Release 3.13.0rc2

* source (str | code object) — A Python expression.
* globals (dict | None) — The global namespace (default: None).
* locals (mapping | None) — The local namespace (default: None).

Returns
The result of the evaluated expression.

Raises
Syntax errors are reported as exceptions.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals mappings as global and local namespace. If the globals dictionary is present and
does not contain a value for the key __builtins__, a reference to the dictionary of the built-in module
builtins isinserted under that key before expression is parsed. That way you can control what builtins are
available to the executed code by inserting your own ___builtins__ dictionary into globals before passing
itto eval (). If the locals mapping is omitted it defaults to the globals dictionary. If both mappings are
omitted, the expression is executed with the globals and locals in the environment where eval () is called.
Note, eval() will only have access to the nested scopes (non-locals) in the enclosing environment if they are
already referenced in the scope that is calling eval () (e.g. viaanonlocal statement).

Example:

>>> x =1
>>> eval ('
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case, pass a code object instead of a string. If the code object has been compiled with 'exec' as the
mode argument, eval ()'s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and 1o-
cals () functions return the current global and local dictionary, respectively, which may be useful to pass
around for use by eval () or exec ().

If the given source is a string, then leading and trailing spaces and tabs are stripped.

See ast.literal_eval () for a function that can safely evaluate strings with expressions containing only
literals.

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

Changed in version 3.13: The globals and locals arguments can now be passed as keywords.

Changed in version 3.13: The semantics of the default locals namespace have been adjusted as described for
the Tocals () builtin.

exec (source, /, globals=None, locals=None, *, closure=None)

This function supports dynamic execution of Python code. source must be either a string or a code object. If
it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error
occurs).! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to be
valid as file input (see the section file-input in the Reference Manual). Be aware that the nonlocal, yield,
and return statements may not be used outside of function definitions even within the context of code passed
to the exec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary (and not a subclass of dictionary), which will be used for both the global and
the local variables. If globals and locals are given, they are used for the global and local variables, respectively.
If provided, locals can be any mapping object. Remember that at the module level, globals and locals are the
same dictionary.

I Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.0rc2

© Note

When exec gets two separate objects as globals and locals, the code will be executed as if it were embedded
in a class definition. This means functions and classes defined in the executed code will not be able to
access variables assigned at the top level (as the “top level” variables are treated as class variables in a class
definition).

If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins are
available to the executed code by inserting your own ___builtins__ dictionary into globals before passing
itto exec ().

The closure argument specifies a closure—a tuple of cellvars. It’s only valid when the object is a code object
containing free variables. The length of the tuple must exactly match the number of free variables referenced
by the code object.

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

© Note

The built-in functions globals () and Iocals () return the current global and local namespace, re-
spectively, which may be useful to pass around for use as the second and third argument to exec ().

© Note

The default locals act as described for function 1ocals () below. Pass an explicit locals dictionary if you
need to see effects of the code on locals after function exec () returns.

Changed in version 3.11: Added the closure parameter.
Changed in version 3.13: The globals and locals arguments can now be passed as keywords.

Changed in version 3.13: The semantics of the default locals namespace have been adjusted as described for
the Jocals () builtin.
filter (function, iterable)

Construct an iterator from those elements of iterable for which function is true. iterable may be either a
sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iferable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function (item)) if functionis not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function is false.

class float (number=0.0, /)
class float (string, /)
Return a floating-point number constructed from a number or a string.

Examples:

>>> float ('+1.23")
1.23
>>> float (' -12345\n")
(continues on next page)

13

The Python Library Reference, Release 3.13.0rc2

(continued from previous page)

-12345.0

>>> float ('1e-003")
0.001

>>> float ('+1E6"'")
1000000.0

>>> float ('-Infinity'")
—-inf

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional signmaybe '+ ' or '—"';a ' +' sign has no effect on the value produced.
The argument may also be a string representing a NaN (not-a-number), or positive or negative infinity. More
precisely, the input must conform to the £1o0at value production rule in the following grammar, after leading
and trailing whitespace characters are removed:

sign RES R

infinity = "Infinity" | "inf"

nan = "nan"

digit = <a Unicode decimal digit, i.e. characters in Unicode general categc
digitpart u= digit (["_"] digit)*

number = [digitpart] "." digitpart | digitpart ["."]

exponent = ("e" | "E") [sign] digitpart

floatnumber = number [exponent]

absfloatvalue = floatnumber | infinity | nan

floatvalue = [sign] absfloatvalue

Case is not significant, so, for example, “inf”, “Inf”, “INFINITY”, and “iNfINity” are all acceptable spellings
for positive infinity.

Otherwise, if the argument is an integer or a floating-point number, a floating-point number with the same
value (within Python’s floating-point precision) is returned. If the argument is outside the range of a Python
float, an OverflowError will be raised.

For a general Python object x, f1oat (x) delegatestox.___float__ ().If __float__ () isnotdefined
then it falls back to ___index__ ().

If no argument is given, O . O is returned.

The float type is described in Numeric Types — int, float, complex.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: The parameter is now positional-only.

Changed in version 3.8: Falls back to __index__ () if __float__ () is not defined.

format (value, format_spec="")

Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument; however, there is a standard formatting syntax that is
used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st (value).

A callto format (value, format_spec) is translated to type (value) ._ format__ (value,
format_spec) which bypasses the instance dictionary when searching for the value’s __format__ ()
method. A TypeError exception is raised if the method search reaches object and the format_spec is
non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__ (format_spec) raises TypeError if format_spec
is not an empty string.

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.0rc2

class frozenset (iterable=set())

Return a new frozenset object, optionally with elements taken from iferable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the col lections
module.

getattr (object, name)

getattr (object, name, default)

Return the value of the named attribute of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, 'foobar')
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised. name need not be a Python identifier (see setattr ()).

O Note

Since private name mangling happens at compilation time, one must manually mangle a private attribute’s
(attributes with two leading underscores) name in order to retrieve it with getattr ().

globals ()
Return the dictionary implementing the current module namespace. For code within functions, this is set when
the function is defined and remains the same regardless of where the function is called.

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether
it raises an At t ributeError or not.)

hash (object)

Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

© Note

For objects with custom __hash__ () methods, note that hash () truncates the return value based on
the bit width of the host machine.

help ()
help (request)

Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

Note that if a slash(/) appears in the parameter list of a function when invoking help (), it means that the
parameters prior to the slash are positional-only. For more info, see the FAQ entry on positional-only param-
eters.

This function is added to the built-in namespace by the s it e module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are
now more comprehensive and consistent.
hex (x)

Convert an integer number to a lowercase hexadecimal string prefixed with “Ox”. If x is not a Python int
object, it has to define an __index__ () method that returns an integer. Some examples:

15

The Python Library Reference, Release 3.13.0rc2

>>> hex (255)
'Oxff!

>>> hex (-42)
'-0x2a'’

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you
can use either of the following ways:

>>> ! ' % 255, ! ' % 255, ! '
('oxff', 'ff', 'FF')

>>> format (255, '#x'), format (255, 'x'), format (255, 'X'")
('oxff', '"ff', 'FF')

>>> f'{255:4x}', f£'{255:x}', f£'{255:X}"'

('oxff', 'ff', 'FEF')

o\

255

See also format () for more information.

See also int () for converting a hexadecimal string to an integer using a base of 16.

© Note

To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.
CPython implementation detail: This is the address of the object in memory.

Raises an auditing event builtins . id with argument id.

input ()

input (prompt)
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is
read, EOFError is raised. Example:

>>> s = input ('--—> ')
—-—> Monty Python's Flying Circus
>>> g

"Monty Python's Flying Circus"

If the readl i ne module was loaded, then i nput () will use it to provide elaborate line editing and history
features.

Raises an auditing event builtins . input with argument prompt before reading input

Raises an auditing event builtins.input/result with the result after successfully reading input.

class int (number=0, /)
class int (string, /, base=10)
Return an integer object constructed from a number or a string, or return O if no arguments are given.

Examples:

>>> int (123.45)
123
>>> int ('123")
(continues on next page)

16 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.0rc2

(continued from previous page)

123

>>> int (' -12_345\n")

-12345

>>> int ('FACE', 16)

64206

>>> int ('Oxface', 0)

64206

>>> int ('01110011"', base=2)

115

If the argument defines __int__ (), int (x) returns x.__int__ (). If the argument defines __in-
dex__ (), it returns x.__index__ (). If the argument defines __ trunc__ (), it returns x.

__trunc__ (). For floating-point numbers, this truncates towards zero.

If the argument is not a number or if base is given, then it must be a string, bytes, or bytearray instance
representing an integer in radix base. Optionally, the string can be preceded by + or — (with no space in
between), have leading zeros, be surrounded by whitespace, and have single underscores interspersed between
digits.

A base-n integer string contains digits, each representing a value from 0 to n-1. The values 0-9 can be repre-
sented by any Unicode decimal digit. The values 10-35 can be represented by a to z (or A to Z). The default
base is 10. The allowed bases are 0 and 2-36. Base-2, -8, and -16 strings can be optionally prefixed with
0b/0B, 00/00, or 0x/0X, as with integer literals in code. For base 0, the string is interpreted in a similar way
to an integer literal in code, in that the actual base is 2, 8, 10, or 16 as determined by the prefix. Base 0 also
disallows leading zeros: int ('010', O0) isnotlegal, while int ('010') and int ('010"', 8) are.

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.___index_
method, that method is called to obtain an integer for the base. Previous versions used base.__int_
instead of base.___index_ .

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: The first parameter is now positional-only.

Changed in version 3.8: Falls back to __index__ () if __int__ () is not defined.
Changed in version 3.11: The delegation to __trunc__ () is deprecated.

Changed in version 3.11: int string inputs and string representations can be limited to help avoid denial of
service attacks. A ValueError israised when the limit is exceeded while converting a string to an int or
when converting an int into a string would exceed the limit. See the integer string conversion length limitation
documentation.

isinstance (object, classinfo)

Return True if the object argument is an instance of the classinfo argument, or of a (direct, indirect, or virfual)
subclass thereof. If object is not an object of the given type, the function always returns False. If classinfo is a
tuple of type objects (or recursively, other such tuples) or a Union Type of multiple types, return True if object
is an instance of any of the types. If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised. TypeError may not be raised for an invalid type if an earlier check succeeds.

Changed in version 3.10: classinfo can be a Union Type.

issubclass (class, classinfo)

Return True if class is a subclass (direct, indirect, or virtual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects (or recursively, other such tuples) or a Union Type, in which
case return True if class is a subclass of any entry in classinfo. In any other case, a TypeError exception
is raised.

Changed in version 3.10: classinfo can be a Union Type.

iter (object)

17

The Python Library Reference, Release 3.13.0rc2

iter (object, sentinel)

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iter-
able protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ ()
method with integer arguments starting at 0). If it does not support either of those protocols, TypeError is
raised. If the second argument, sentinel, is given, then object must be a callable object. The iterator created in
this case will call object with no arguments for each call to its ___next___ () method; if the value returned is

equal to sentinel, St opIteration will be raised, otherwise the value will be returned.

See also Ilterator Types.

One useful application of the second form of iter () is to build a block-reader. For example, reading fixed-

width blocks from a binary database file until the end of file is reached:

from functools import partial
with open('mydata.db', 'rb') as f:

for block in iter (partial (f.read, 64), b''"):
process_block (block)

len (s)

Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple,

CPython implementation detail: 1en raises OverflowError on lengths larger than sys.maxsize,

list, or range) or a collection (such as a dictionary, set, or frozen set).

such as range (2 ** 100).

class list

class list (iterable)

Rather than being a function, 11 st is actually a mutable sequence type, as documented in Lists and Sequence

Types — list, tuple, range.

locals ()

Return a mapping object representing the current local symbol table, with variable names as the
keys, and their currently bound references as the values.

At module scope, as well as when using exec () or eval () with a single namespace, this function
returns the same namespace as globals ().

At class scope, it returns the namespace that will be passed to the metaclass constructor.

When using exec () or eval () with separate local and global arguments, it returns the local
namespace passed in to the function call.

In all of the above cases, each call to Locals () in a given frame of execution will return the
same mapping object. Changes made through the mapping object returned from locals () will
be visible as assigned, reassigned, or deleted local variables, and assigning, reassigning, or deleting
local variables will immediately affect the contents of the returned mapping object.

In an optimized scope (including functions, generators, and coroutines), each call to 1ocals ()
instead returns a fresh dictionary containing the current bindings of the function’s local variables
and any nonlocal cell references. In this case, name binding changes made via the returned dict
are not written back to the corresponding local variables or nonlocal cell references, and assigning,
reassigning, or deleting local variables and nonlocal cell references does not affect the contents of
previously returned dictionaries.

Calling 1ocals () as part of a comprehension in a function, generator, or coroutine is equivalent
to calling it in the containing scope, except that the comprehension’s initialised iteration variables
will be included. In other scopes, it behaves as if the comprehension were running as a nested
function.

Calling 1ocals () as part of a generator expression is equivalent to calling it in a nested generator
function.

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.0rc2

Changed in version 3.12: The behaviour of 1ocals () in a comprehension has been updated as described in
PEP 709.

Changed in version 3.13: As part of PEP 667, the semantics of mutating the mapping objects returned from
this function are now defined. The behavior in optimized scopes is now as described above. Aside from being
defined, the behaviour in other scopes remains unchanged from previous versions.

map (function, iterable, *iterables)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterables
arguments are passed, function must take that many arguments and is applied to the items from all iterables in
parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the
function inputs are already arranged into argument tuples, see itertools.starmap ().

max (iterable, *, key=None)

max (iterable, *, default, key=None)

max (argl, arg2, *args, key=None)
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If
two or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist . sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0]
and heapg.nlargest (1, iterable, key=keyfunc).

Changed in version 3.4: Added the default keyword-only parameter.
Changed in version 3.8: The key can be None.

class memoryview (object)

Return a “memory view” object created from the given argument. See Memory Views for more information.
min (iterable, *, key=None)
min (iterable, *, default, key=None)
min (argl, arg2, *args, key=None)

Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned. If
two or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist . sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted (iterable, key=keyfunc) [0] and heapqg.
nsmallest (1, iterable, key=keyfunc).

Changed in version 3.4: Added the default keyword-only parameter.
Changed in version 3.8: The key can be None.

next (iterator)
next (iterator, default)

Retrieve the next item from the iterator by calling its ___next__ () method. If default is given, it is returned
if the iterator is exhausted, otherwise StopTteration is raised.

19

https://peps.python.org/pep-0709/
https://peps.python.org/pep-0667/

The Python Library Reference, Release 3.13.0rc2

class object

Return a new featureless object. object is a base for all classes. It has methods that are common to all
instances of Python classes. This function does not accept any arguments.

© Note

object doesnothavea _ dict__,soyoucan’tassign arbitrary attributes to an instance of the ob ject
class.

oct (x)

Convert an integer number to an octal string prefixed with “0o”. The result is a valid Python expression. If x
is not a Python int object, it has to define an __index__ () method that returns an integer. For example:

>>> oct (8)
'0010"

>>> oct (=56)
'-0070"

If you want to convert an integer number to an octal string either with the prefix “0o” or not, you can use either
of the following ways.

>>> ! ''% 10, ''% 10

('0o12', '12")

>>> format (10, '#o0'), format (10, 'o')
('0o12', '12")

>>> f'{10:4#0}', £'{10:0}"

('0o012', '12")

See also format () for more information.

open (file, mode="r", buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)

Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised. See
tut-files for more examples of how to use this function.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of the file to
be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed when
the returned I/O object is closed unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ' r' which means
open for reading in text mode. Other common values are 'w' for writing (truncating the file if it already
exists), 'x ' for exclusive creation, and 'a ' for appending (which on some Unix systems, means that all writes
append to the end of the file regardless of the current seek position). In text mode, if encoding is not specified
the encoding used is platform-dependent: locale.getencoding () is called to get the current locale
encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available
modes are:

Character Meaning

r' open for reading (default)

w' open for writing, truncating the file first

'x! open for exclusive creation, failing if the file already exists
a' open for writing, appending to the end of file if it exists
b! binary mode

't text mode (default)

'+ open for updating (reading and writing)

The default mode is ' r' (open for reading text, a synonym of 'rt'). Modes 'w+"' and 'w+b' open and
truncate the file. Modes 'r+' and ' r+b' open the file with no truncation.

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.0rc2

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b"' in the mode argument) return contents as byt es objects without any decoding. In text mode
(the default, or when 't ' is included in the mode argument), the contents of the file are returned as st r, the
bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.

© Note

Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is done
by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed
in binary mode), 1 to select line buffering (only usable when writing in text mode), and an integer > 1 to
indicate the size in bytes of a fixed-size chunk buffer. Note that specifying a buffer size this way applies
for binary buffered I/O, but Text IOWrapper (i.e., files opened with mode="r+") would have another
buffering. To disable buffering in Text IOWrapper, consider using the write_through flag for io.
TextIOWrapper.reconfigure (). When no buffering argument is given, the default buffering policy
works as follows:

* Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on i 0. DEFAULT_BUFFER_SIZE.On
many systems, the buffer will typically be 4096 or 8192 bytes long.

* “Interactive” text files (files for which i satty () returns True) use line buffering. Other text files use
the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text
mode. The default encoding is platform dependent (whatever 1ocale.getencoding () returns), but any
text encoding supported by Python can be used. See the codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be
used in binary mode. A variety of standard error handlers are available (listed under Error Handlers), though
any error handling name that has been registered with codecs. register_error () is also valid. The
standard names include:

* 'strict' toraisea ValueError exception if there is an encoding error. The default value of None
has the same effect.

* 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
e 'replace' causes areplacement marker (such as ' ? ') to be inserted where there is malformed data.

e 'surrogateescape' will represent any incorrect bytes as low surrogate code units ranging from
U+DC80 to U+DCFF. These surrogate code units will then be turned back into the same bytes when the
surrogateescape error handler is used when writing data. This is useful for processing files in an
unknown encoding.

e 'xmlcharrefreplace' is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference & #nnn; .

* 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

* 'namereplace' (also only supported when writing) replaces unsupported characters with \N{ . . . }
escape sequences.

newline determines how to parse newline characters from the stream. It can be None, '', "\n"', '"\r', and
"\r\n"'. It works as follows:

* When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in
theinputcanendin "\n', "\r',or '\r\n"', and these are translated into ' \n ' before being returned
to the caller. If itis ' ', universal newlines mode is enabled, but line endings are returned to the caller
untranslated. If it has any of the other legal values, input lines are only terminated by the given string,
and the line ending is returned to the caller untranslated.

21

The Python Library Reference, Release 3.13.0rc2

* When writing output to the stream, if newline is None, any ' \n' characters written are translated to

the system default line separator, os. 1inesep. If newlineis ' ' or '\n', no translation takes place.
If newline is any of the other legal values, any ' \n' characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will
be kept open when the file is closed. If a filename is given closefd must be True (the default); otherwise, an

error will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os . open

as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os. open () function to open a file relative to a given

directory:

-

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener (path, flags):
return os.open (path, flags, dir_fd=dir_f£fd)

>>> with open('spamspam.txt', 'w', opener=opener) as

f:

print ('This will be written to somedir/spamspam.txt', file=f)

>>> os.close (dir_fd) # don't leak a file descriptor

J

The type of file object returned by the open () function depends on the mode. When open () is used
to open a file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a subclass of io. Text IOBase
(specifically io. Text IOWrapper). When used to open a file in a binary mode with buffering, the returned
class is a subclass of i0.BufferedIOBase. The exact class varies: in read binary mode, it returns an

io.BufferedReader;in write binary and append binary modes, it returns an i0. Bufferediiriter,
and in read/write mode, it returns an io.BufferedRandom. When buffering is disabled, the raw stream,

a subclass of 10.RawIOBase, 10.FileIO0,isreturned.

See also the file handling modules, such as £ileinput, io (where open () is declared), os, os.path,

tempfile,and shutil.

Raises an auditing event open with arguments path, mode, flags.

The mode and £1lags arguments may have been modified or inferred from the original call.

Changed in version 3.3:
¢ The opener parameter was added.
e The 'x' mode was added.

e TOError used to be raised, it is now an alias of OSError.

e FFileExistsError is now raised if the file opened in exclusive creation mode (' x ') already exists.

Changed in version 3.4:
* The file is now non-inheritable.

Changed in version 3.5:

« If the system call is interrupted and the signal handler does not raise an exception, the function now retries
the system call instead of raising an TnterruptedError exception (see PEP 475 for the rationale).

e The 'namereplace"' error handler was added.
Changed in version 3.6:

» Support added to accept objects implementing os . PathLike.

* On Windows, opening a console buffer may return a subclass of io.RawIOBase other than io.

FileIO.

22

Chapter 2. Built-in Functions

https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.13.0rc2

Changed in version 3.11: The 'U' mode has been removed.

ord (c)

Given a string representing one Unicode character, return an integer representing the Unicode code point of
that character. For example, ord ('a"') returns the integer 97 and ord ('€ ') (Euro sign) returns 8364.
This is the inverse of chr ().

pow (base, exp, mod=None)

Return base to the power exp; if mod is present, return base to the power exp, modulo mod (computed more

efficiently than pow (base, exp) % mod). The two-argument form pow (base, exp) isequivalent to
using the power operator: base* *exp.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, pow (10, 2) returns 100, but pow (10, -2) returns 0.01. For a negative base of type
int or float and a non-integral exponent, a complex result is delivered. For example, pow (-9, 0.5)
returns a value close to 3. Whereas, for a negative base of type int or £1oat with an integral exponent, a
float result is delivered. For example, pow (-9, 2.0) returns 81. 0.

For int operands base and exp, if mod is present, mod must also be of integer type and mod must be nonzero.
If mod is present and exp is negative, base must be relatively prime to mod. In that case, pow (inv_base,
—-exp, mod) is returned, where inv_base is an inverse to base modulo mod.

Here’s an example of computing an inverse for 38 modulo 97:

>>> pow (38, -1, mod=97)
23

>>> 23 * 38 & 97 ==
True

Changed in version 3.8: For int operands, the three-argument form of pow now allows the second argument
to be negative, permitting computation of modular inverses.

Changed in version 3.8: Allow keyword arguments. Formerly, only positional arguments were supported.

print (*objects, sep="", end="\n', file=None, flush=False)

Print objects to the text stream file, separated by sep and followed by end. sep, end, file, and flush, if present,
must be given as keyword arguments.

All non-keyword arguments are converted to strings like st = () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no objects are given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None, sys.
stdout will be used. Since printed arguments are converted to text strings, print () cannot be used with
binary mode file objects. For these, use file.write (...) instead.

Output buffering is usually determined by file. However, if flush is true, the stream is forcibly flushed.
Changed in version 3.3: Added the flush keyword argument.
class property (fget=None, fset=None, fdel=None, doc=None)

Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function
for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def _ init_ (self):
self._x = None

(continues on next page)

23

The Python Library Reference, Release 3.13.0rc2

(continued from previous page)
def getx(self):
return self._x

def setx(self, wvalue):
self. _x = value

def delx(self):
del self._x

property (getx, setx, delx, "I'm the 'x' property.")

If c is an instance of C, c . x will invoke the getter, c.x = value will invoke the setter, and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget’s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot:
def _ init_ (self):
self._voltage

= 100000
@property
def voltage (self):
"""Get the current voltage."""
return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with the
same name, and it sets the docstring for voltage to “Get the current voltage.”

@getter
@setter

@deleter

A property object has getter, setter, and deleter methods usable as decorators that create a
copy of the property with the corresponding accessor function set to the decorated function. This is best
explained with an example:

class C:
def _ init_ (self):
self._x = None

@property

def x(self):
"N TIm the 'x!' property.””"
return self._x

@x.setter
def x(self, wvalue):
self._x = value

@x.deleter
def x(self):
del self._x

J

This code is exactly equivalent to the first example. Be sure to give the additional functions the same
name as the original property (x in this case.)

The returned property object also has the attributes fget, fset, and £del corresponding to the con-
structor arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

24

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.13.0rc2

name

Attribute holding the name of the property. The name of the property can be changed at runtime.
Added in version 3.13.

class range (stop)
class range (start, stop, step=1)

Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and
Sequence Types — list, tuple, range.

repr (object)

Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval () ; otherwise,
the representation is a string enclosed in angle brackets that contains the name of the type of the object together
with additional information often including the name and address of the object. A class can control what this
function returns for its instances by defining a __repr__ () method. If sys.displayhook () is not
accessible, this function will raise Runt imeError.

This class has a custom representation that can be evaluated:

g
class Person:

def _ init__ (self, name, age):
self.name = name
self.age = age

def _ repr__ (self):
return f"Person('{self.name}', self.age /)"

L

reversed (seq)

Return a reverse iterator. seq must be an object which hasa __reversed__ () method or supports the se-
quence protocol (the __len__ () methodandthe __getitem__ () method with integer arguments starting
at 0).

round (number, ndigits=None)
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns

the nearest integer to its input.

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example,
both round (0.5) and round (-0.5) are 0, and round (1.5) is 2). Any integer value is valid for
ndigits (positive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise,
the return value has the same type as number.

For a general Python object number, round delegates to number.__round__.

O Note

The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives 2.67
instead of the expected 2 . 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t
be represented exactly as a float. See tut-fp-issues for more information.

class set

class set (iterable)
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set and
Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, 1ist, tuple, and dict classes, as well as the col—
lections module.

25

The Python Library Reference, Release 3.13.0rc2

setattr (object, name, value)

This is the counterpart of getattr (). The arguments are an object, a string, and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided
the object allows it. For example, setattr (x, 'foobar', 123) isequivalentto x.foobar = 123.

name need not be a Python identifier as defined in identifiers unless the object chooses to enforce that, for
example in a custom __getattribute__ () orvia __slots__. An attribute whose name is not an
identifier will not be accessible using the dot notation, but is accessible through getattr () etc..

© Note

Since private name mangling happens at compilation time, one must manually mangle a private attribute’s
(attributes with two leading underscores) name in order to set it with setattr ().

class slice (stop)

class slice (start, stop, step=None)

Return a slice object representing the set of indices specified by range (start, stop, step). The start
and step arguments default to None.

start
stop

step

Slice objects have read-only data attributes start, st op, and st ep which merely return the argument
values (or their default). They have no other explicit functionality; however, they are used by NumPy and
other third-party packages.

Slice objects are also generated when extended indexing syntax is used. For example:
al[start:stop:step] or a[start:stop, 1]. See itertools.islice () for an alter-
nate version that returns an iterator.

Changed in version 3.12: Slice objects are now hashable (provided start, stop, and step are hashable).

sorted (iterable, /, *, key=None, reverse=False)

Return a new sorted list from the items in iterable.
Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each element in iterable
(for example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

The sort algorithm uses only < comparisons between items. While definingan ___1t__ () method will suffice
for sorting, PEP 8 recommends that all six rich comparisons be implemented. This will help avoid bugs when
using the same data with other ordering tools such as max () that rely on a different underlying method. Im-
plementing all six comparisons also helps avoid confusion for mixed type comparisons which can call reflected
the _ gt__ () method.

For sorting examples and a brief sorting tutorial, see sortinghowto.

@staticmethod

Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

26

Chapter 2. Built-in Functions

https://peps.python.org/pep-0008/

The Python Library Reference, Release 3.13.0rc2

class C:
@staticmethod
def f(argl, arg2, argN):

The @staticmethod form is a function decorator — see function for details.

A static method can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()).
Moreover, the static method descriptor is also callable, so it can be used in the class definition (such as £ ()).

Static methods in Python are similar to those found in Java or C++. Also, see c1assmethod () for a variant
that is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something with its
result. This is needed in some cases where you need a reference to a function from a class body and you want
to avoid the automatic transformation to instance method. For these cases, use this idiom:

def regular_function() :

class C:
method = staticmethod (regular_function)

For more information on static methods, see types.

Changed in version 3.10: Static methods now inherit the method attributes (__module__, _ name__,
_ _qualname_ , __doc__and _ _annotations__), have a new __wrapped___ attribute, and are
now callable as regular functions.

class str (object=")
class str (object=b", encoding="utf-8', errors='strict’)

Return a st r version of object. See st r () for details.

Str.

str is the built-in string class. For general information about strings, see 7ext Sequence Type

sum (iterable, /, start=0)
Sums start and the items of an iterable from left to right and returns the total. The iferable’s items are normally
numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence
of strings is by calling ' ' . join (sequence). To add floating-point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using itertools.chain ().

Changed in version 3.8: The start parameter can be specified as a keyword argument.

Changed in version 3.12: Summation of floats switched to an algorithm that gives higher accuracy and better
commutativity on most builds.

class super

class super (type, object_or_type=None)
Return a proxy object that delegates method calls to a parent or sibling class of #ype. This is useful for accessing
inherited methods that have been overridden in a class.

The object_or_type determines the method resolution order to be searched. The search starts from the class
right after the rype.

For example, if __mro___ of object_or_typeisD -> B -> C -> A —> object and the value of rype
is B, then super () searches C —> A -> object.

The __mro___ attribute of the class corresponding to object_or_type lists the method resolution search order
used by both getattr () and super (). The attribute is dynamic and can change whenever the inheritance
hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type?2,
type) must be true (this is useful for classmethods).

27

The Python Library Reference, Release 3.13.0rc2

When called directly within an ordinary method of a class, both arguments may be omitted (“zero-argument
super () 7). In this case, type will be the enclosing class, and obj will be the first argument of the immediately
enclosing function (typically sel1f). (This means that zero-argument super () will not work as expected
within nested functions, including generator expressions, which implicitly create nested functions.)

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This
use case is unique to Python and is not found in statically compiled languages or languages that only support
single inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes im-
plement the same method. Good design dictates that such implementations have the same calling signature in
every case (because the order of calls is determined at runtime, because that order adapts to changes in the
class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super () .method (arg) # This does the same thing as:
super (C, self).method (arg)

In addition to method lookups, super () also works for attribute lookups. One possible use case for this is
calling descriptors in a parent or sibling class.

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such
as super () .__getitem__ (name). It does so by implementing its own __getattribute__ ()
method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class
being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

class tuple

class tuple (iterable)

Rather than being a function, tuple is actually an immutable sequence type, as documented in Tuples and
Sequence Types — list, tuple, range.

class type (object)

class type (name, bases, dict, **kwds)

With one argument, return the type of an object. The return value is a type object and generally the same object
as returned by object._ _class__ .

The isinstance () built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class statement.
The name string is the class name and becomes the ___name___ attribute. The bases tuple contains the base
classes and becomes the __bases___ attribute; if empty, ob ject, the ultimate base of all classes, is added.
The dict dictionary contains attribute and method definitions for the class body; it may be copied or wrapped
before becoming the __ dict___ attribute. The following two statements create identical ¢ ype objects:

>>> class X:
a=1

>>> X = type('X', (), dict(a=1))

See also Type Objects.

28

Chapter 2. Built-in Functions

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.13.0rc2

Keyword arguments provided to the three argument form are passed to the appropriate metaclass machinery
(usually __init_subclass__ ()) in the same way that keywords in a class definition (besides metaclass)
would.

See also class-customization.

Changed in version 3.6: Subclasses of type which don’t override type.__new__ may no longer use the
one-argument form to get the type of an object.

vars ()
vars (object)

Returnthe dict__ attribute for a module, class, instance, or any other object witha ___dict___ attribute.

Objects such as modules and instances have an updateable __ dict__ attribute; however, other ob-
jects may have write restrictions on their __dict__ attributes (for example, classes use a types.
MappingProxyType to prevent direct dictionary updates).

Without an argument, vars () acts like Jocals ().

A TypeError exception is raised if an object is specified but it doesn’t have a __ dict__ attribute (for
example, if its class defines the ___slots___ attribute).

Changed in version 3.13: The result of calling this function without an argument has been updated as described
for the Jocals () builtin.

zip (*iterables, strict=False)

Iterate over several iterables in parallel, producing tuples with an item from each one.

Example:

>>> for item in zip([1, 2, 31, ['sugar', 'spice', 'everything nice']):
print (item)

(1, 'sugar')
(2, 'spice')
(3, 'everything nice')

More formally: zip () returns an iterator of tuples, where the i-th tuple contains the i-th element from each
of the argument iterables.

Another way to think of zip () is that it turns rows into columns, and columns into rows. This is similar to
transposing a matrix.

zip () is lazy: The elements won’t be processed until the iterable is iterated on, e.g. by a for loop or by
wrapping ina 1ist.

One thing to consider is that the iterables passed to zip () could have different lengths; sometimes by de-
sign, and sometimes because of a bug in the code that prepared these iterables. Python offers three different
approaches to dealing with this issue:

* Bydefault, zip () stops when the shortest iterable is exhausted. It will ignore the remaining items in the
longer iterables, cutting off the result to the length of the shortest iterable:

[(0, "fee'), (1, "fi'), (2, 'fo')]

>>> list (zip(range(3), ['fee', 'fi', 'fo', 'fum'])) }

e zip () is often used in cases where the iterables are assumed to be of equal length. In such cases, it’s
recommended to use the st rict=True option. Its output is the same as regular zip ():

((ta', 1), ('b', 2), ('c', 3)]

>>> list(zip(('a', 'b', 'c"), (1, 2, 3), strict=True)) }

Unlike the default behavior, it raises a ValueError if one iterable is exhausted before the others:

29

https://en.wikipedia.org/wiki/Transpose

The Python Library Reference, Release 3.13.0rc2

>>> for item in zip(range(3), ['fee', 'fi', 'fo', 'fum'], strict=True):
print (item)

(0, 'fee')
(L, '"fi")
(2, '"fo')
T

raceback (most recent call last):

ValueError: zip() argument 2 is longer than argument 1

Without the st rict=True argument, any bug that results in iterables of different lengths will be si-
lenced, possibly manifesting as a hard-to-find bug in another part of the program.

« Shorter iterables can be padded with a constant value to make all the iterables have the same length. This
isdone by itertools.zip_longest ().

Edge cases: With a single iterable argument, zip () returns an iterator of 1-tuples. With no arguments, it
returns an empty iterator.

Tips and tricks:

¢ The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for cluster-
ing a data series into n-length groups using zip (* [iter (s)] *n, strict=True). This repeats
the same iterator n times so that each output tuple has the result of n calls to the iterator. This has the
effect of dividing the input into n-length chunks.

e zip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> vy = [4, 5, 6]

>>> list (zip(x, V))

(1, 4), (2, 5, (3, 6)]

>>> %2, y2 = zip(*zip(x, y))

>>> x == list(x2) and y == list (y2)
True

Changed in version 3.10: Added the st rict argument.

__import___ (name, globals=None, locals=None, fromlist=(), level=0)

© Note

This is an advanced function that is not needed in everyday Python programming, unlike importlib.
import_module ().

This function is invoked by the import statement. It can be replaced (by importing the bui 1t ins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but
doing so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same
goals and does not cause issues with code which assumes the default import implementation is in use. Direct
useof ___import__ () is also discouraged in favor of importlib. import_module ().

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at all
and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. O (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the
module calling __ import__ () (see PEP 328 for the details).

When the name variable is of the form package .module, normally, the top-level package (the name up till
the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is

30

Chapter 2. Built-in Functions

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0328/

The Python Library Reference, Release 3.13.0rc2

given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

[spam = __import__ ('spam', globals(), locals(), []1, 0) }

The statement import spam.ham results in this call:

[spam = __import__ ('spam.ham', globals(), locals(), [], 0) }

Note how ___import___ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __ _import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage'], 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam. ham module is returned from ___import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value
to 0).

Changed in version 3.9: When the command line options —E or —I are being used, the environment variable
PYTHONCASEOKX is now ignored.

31

The Python Library Reference, Release 3.13.0rc2

32 Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False

The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

An object frequently used to represent the absence of a value, as when default arguments are not passed to
a function. Assignments to None are illegal and raise a SyntaxError. None is the sole instance of the
NoneType type.

NotImplemented

A special value which should be returned by the binary special methods (e.g. __eqg (), __1t__ (),
__add__ () rsub__ (), etc.) to indicate that the operation is not implemented with respect to the
other type; may be returned by the in-place binary special methods (e.g. __imul__ (),__iand__ (),etc.)
for the same purpose. It should not be evaluated in a boolean context. Not Implemented is the sole instance
of the t ypes. Not ImplementedType type.

[J—

© Note

When a binary (or in-place) method returns Not Implemented the interpreter will try the reflected
operation on the other type (or some other fallback, depending on the operator). If all attempts return
Not Implemented, the interpreter will raise an appropriate exception. Incorrectly returning Not Im—
plemented will result in a misleading error message or the Not Implemented value being returned
to Python code.

See Implementing the arithmetic operations for examples.

© Note

NotImplementedError and Not Implemented are not interchangeable, even though they have
similar names and purposes. See Not ImplementedError for details on when to use it.

Changed in version 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of
Python.

Ellipsis

The same as the ellipsis literal “. . .”. Special value used mostly in conjunction with extended slicing syntax
for user-defined container data types. E11ipsis is the sole instance of the t ypes.FE11ipsisType type.

__debug__

This constant is true if Python was not started with an —O option. See also the assert statement.

33

The Python Library Reference, Release 3.13.0rc2

© Note

The names None, False, True and ___debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not
be used in programs.
quit (code=None)
exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemEx1it with the specified exit code.
help
Object that when printed, prints the message “Type help() for interactive help, or help(object) for help about
object.”, and when called, acts as described el sewhere.
copyright
credits

Objects that when printed or called, print the text of copyright or credits, respectively.

license

Object that when printed, prints the message “Type license() to see the full license text”, and when called,
displays the full license text in a pager-like fashion (one screen at a time).

34 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared for
equality, tested for truth value, and converted to a string (with the repr () function or the slightly different st r ()
function). The latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i £ or while condition or as operand of the Boolean operations
below.

By default, an object is considered true unless its class defines either a __bool__ () method that returns False
ora___len__ () method that returns zero, when called with the object.' Here are most of the built-in objects
considered false:

¢ constants defined to be false: None and False
* zero of any numeric type: 0, 0.0, 0J, Decimal (0),Fraction (0, 1)
¢ empty sequences and collections: ' ', (), [1,{}, set (), range (0)

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes
X Or y if x is true, then x, else y (D)
x and y if xis false, then x, else y 2)
not x if x is false, then True, else False (3)

Notes:
(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.

(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

! Additional information on these special methods may be found in the Python Reference Manual (customization).

35

The Python Library Reference, Release 3.13.0rc2

(3) not has a lower priority than non-Boolean operators, so not a == Db is interpreted as not (a == b),
and a == not b is a syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= zisequivalenttox < y
and y <= z,except that y is evaluated only once (but in both cases z is not evaluated at all when x < vy is found
to be false).

This table summarizes the comparison operations:

Operation Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

I= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. The == operator is always defined
but for some object types (for example, class objects) is equivalent to is. The <, <=, > and >= operators are only
defined where they make sense; for example, they raise a TypeError exception when one of the arguments is a
complex number.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __1t__ (), __le_ (),__gt__ (),and __ge__ () (in general,
__1t___ () and __eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects
and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported by types that are iterable or
implement the ___contains__ () method.

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating-point numbers, and complex numbers. In addition, Booleans
are a subtype of integers. Integers have unlimited precision. Floating-point numbers are usually implemented using
double in C; information about the precision and internal representation of floating-point numbers for the machine
on which your program is running is available in sys. f1oat_ info. Complex numbers have a real and imaginary
part, which are each a floating-point number. To extract these parts from a complex number z, use z.real and
z . imag. (The standard library includes the additional numeric types fractions.Fract ion, for rationals, and
decimal.Decimal, for floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent
sign yield floating-point numbers. Appending ' j ' or ' J' to a numeric literal yields an imaginary number (a complex
number with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary
parts.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point,

36 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.0rc2

which is narrower than complex. A comparison between numbers of different types behaves as though the exact
values of those numbers were being compared.”

The constructors int (), float (),and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations (for priorities of the operations, see operator-
summary):

Operation Result Notes Full documen-
tation
X + y sum of x and y
X -y difference of x and y
X *y product of x and y
x /y quotient of x and y
x //y floored quotient of x and y (H(©2)
X %y remainder of x / y 2)
-x X negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)®6) int()
float (x) x converted to floating point 4)(6) float ()
complex (re, a complex number with real part re, imaginary part im. im (6) complex ()
im) defaults to zero.
@ conjugate of the complex number ¢
conjugate ()
divmod (x, V) the pair (x // vy, x % vy) 2) divmod ()
pow (x, V) X to the power y 5) pow ()
X ** y X to the power y (®)]
Notes:

(1) Also referred to as integer division. For operands of type int, the result has type int. For operands of type
float, the result has type f1oat. In general, the result is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//21is 0, (-1) //2is-1,1// (=2)
is-1,and (-1)// (-2) is 0.

(2) Not for complex numbers. Instead convert to floats using abs () if appropriate.

(3) Conversion from float to int truncates, discarding the fractional part. See functions math. floor ()
and math.ceil () for alternative conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

(5) Python defines pow (0, 0) and O ** 0 to be 1, as is common for programming languages.

(6) The numeric literals accepted include the digits O to 9 or any Unicode equivalent (code points with the Nd
property).
See the Unicode Standard for a complete list of code points with the Nd property.

All numbers.Real types (int and f1oat) also include the following operations:

Operation Result

math.trunc (x) xtruncatedto Integral

round (x[, n]) xrounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math. floor (x) the greatest Integral <=x

math.ceil (x) the least Tntegral >=x

2 Asa consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 37

https://unicode.org/Public/UNIDATA/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.13.0rc2

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types
Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out
in two’s complement with an infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bitwise operations sorted in ascending priority:

Operation Result Notes
X |y bitwise or of x and y)

X Ny bitwise exclusive or of xandy (4)

X & y bitwise and of x and y “4)

x << n x shifted left by n bits (HR2)
X >> n x shifted right by 7 bits (H(3)
~X the bits of x inverted

Notes:
(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow (2, n).
(3) A right shift by » bits is equivalent to floor division by pow (2, n).

(4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement representa-
tion (a working bit-width of 1 + max (x.bit_length(), y.bit_length()) or more) is sufficient
to get the same result as if there were an infinite number of sign bits.

4.4.2 Additional Methods on Integer Types
The int type implements the numbers. Integral abstract base class. In addition, it provides a few more methods:

int.bit_length ()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin(n)
'-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, then x . bit_length () isthe unique positive integer k such that 2* * (k—1)
<= abs (x) < 2**k. Equivalently, when abs (x) is small enough to have a correctly rounded logarithm,
thenk = 1 + int (log(abs(x), 2)).If xiszero,then x.bit_length () returns O.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) —--> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sSign
return len (s) # len('100101') ——> 6

Added in version 3.1.

38 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.0rc2

int

int

.bit_count ()

Return the number of ones in the binary representation of the absolute value of the integer. This is also known
as the population count. Example:

>> n = 19

>>> bin (n)

'0b10011"

>>> n.bit_count ()

3

>>> (-n) .bit_count ()
3

Equivalent to:

def bit_count (self):

return bin(self) .count ("1")
. J

Added in version 3.10.

.to_bytes (length=1, byteorder="big', *, signed=False)

Return an array of bytes representing an integer.

(>>> (1024) .to_bytes (2, byteorder='big')

b'\x04\x00"'

>>> (1024) .to_bytes (10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='big', signed=True)
b'\xfE\XEE\XEA\XEA\XEF\XEE\XEE\xEff\xfc\x00"

>>> x = 1000

>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03"'

.

The integer is represented using length bytes, and defaults to 1. An OverflowError is raised if the integer
is not representable with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to "big". If
byteorder is "big", the most significant byte is at the beginning of the byte array. If byteorderis "1ittle™",
the most significant byte is at the end of the byte array.

The signed argument determines whether two’s complement is used to represent the integer. If signed isFalse
and a negative integer is given, an OverflowError is raised. The default value for signed is False.

The default values can be used to conveniently turn an integer into a single byte object:

>>> (65) .to_bytes ()
b'A'

However, when using the default arguments, don’t try to convert a value greater than 255 or you’'ll get an
OverflowError.

Equivalent to:

(def to_bytes(n, length=1, byteorder='big', signed=False) :
if byteorder == 'little':
order = range (length)
elif byteorder == 'big':
order = reversed(range (length))
else:
raise ValueError ("byteorder must be either 'little' or 'big'")

return bytes((n >> i*8) & O0xff for i in order)

L J

Added in version 3.2.

4.4.

Numeric Types — int, float, complex 39

The Python Library Reference, Release 3.13.0rc2

Changed in version 3.11: Added default argument values for length and byteorder.

classmethod int.from_bytes (bytes, byteorder="big', *, signed=False)

Return the integer represented by the given array of bytes.

>>> int.from_bytes (b'\x00\x10', byteorder='big')

16

>>> int.from_bytes (b'\x00\x10', byteorder='little')

4096

>>> int.from_bytes (b'\x£fc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=False)
64512

>>> int.from_ _bytes ([255, 0, 0], byteorder='big')

16711680

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to "big". If
byteorder is "big", the most significant byte is at the beginning of the byte array. If byteorderis "1ittle™",
the most significant byte is at the end of the byte array. To request the native byte order of the host system, use
sys.byteorder as the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.

Equivalent to:

(def from_bytes (bytes, byteorder='big', signed=False) :
if byteorder == 'little':
little_ordered = list (bytes)
elif byteorder == 'big':
little_ordered = list (reversed(bytes))
else:
raise ValueError ("byteorder must be either 'little' or 'big'")

n = sum(b << 1*8 for i, b in enumerate (little_ordered))
if signed and little_ordered and (little_ordered[-1] & 0x80):
n —= 1 << 8*len(little_ordered)

return n

Added in version 3.2.
Changed in version 3.11: Added default argument value for byteorder.

int.as_integer_ratio()

Return a pair of integers whose ratio is equal to the original integer and has a positive denominator. The integer
ratio of integers (whole numbers) is always the integer as the numerator and 1 as the denominator.

Added in version 3.8.

int.is_integer ()

Returns True. Exists for duck type compatibility with f1oat.is_integer ().

Added in version 3.12.

40 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.0rc2

4.4.3 Additional Methods on Float

The float type implements the numbers . Real abstract base class. float also has the following additional methods.

float.as_integer_ratio ()
Return a pair of integers whose ratio is exactly equal to the original float. The ratio is in lowest terms and has
a positive denominator. Raises OverflowError on infinities and a ValueError on NaNs.
float.is_integer ()

Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0) .is_integer()
True

>>> (3.2).is_integer ()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.
float .hex()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent.
classmethod float.fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace.

Note that f1oat .hex () is an instance method, while f1oat . fromhex () is a class method.

A hexadecimal string takes the form:

[[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of float.hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format
character or Java’s Double.toHexString are accepted by float . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3 . a7p10 represents the floating-point number (3
+ 10./16 + 7./16**2) * 2.0**10,0r 3740.0:

>>> float.fromhex ('0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex (3740.0)
'0x1.d4380000000000p+11"

4.4. Numeric Types — int, float, complex 41

The Python Library Reference, Release 3.13.0rc2

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x
== vy (see the __hash__ () method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number,
and hence applies to all instances of int and fractions.Fraction, and all finite instances of f1oat and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P
is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedisP = 2**31 — 1 on machines with 32-bit C longs
andP = 2**61 — 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / nisanonnegative rational number and n is not divisible by P, define hash (x) asm *
invmod(n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

e If x = m / n isa nonnegative rational number and n is divisible by P (but m is not) then n has no
inverse modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value
sys.hash_info.inf.

e If x = m / nisanegative rational number define hash (x) as ~hash (-x) . If the resulting hash is -1,
replace it with —2.

e The particular values sys.hash_info.inf and —sys.hash_info.inf are used as hash values for
positive infinity or negative infinity (respectively).

* For a complex number z, the hash values of the real and imaginary parts are combined by comput-
ing hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2**sys.
hash_info.width so that it lies in range (-2** (sys.hash_info.width - 1), 2**(sys.
hash_info.width - 1)). Again, if the result is —1, it’s replaced with —2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash
of a rational number, f1oat, or complex:

import sys, math

def hash_fraction(m, n):
"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

mn

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)

while m $ P == n $ P ==
m, n=m// P, n//P

if n $ P ==
hash_value = sys.hash_info.inf

else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
if m < O:

hash_value = —-hash_value
if hash_value == -1:

hash_value = -2

return hash_value

def hash_float (x):
"""Compute the hash of a float x."""
(continues on next page)

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.0rc2

(continued from previous page)

if math.isnan (x):

return object._ _hash__ (x)
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

def hash_complex(z) :
"""Compute the hash of a complex number z."""

hash_value = hash_float (z.real) + sys.hash_info.imag * hash_float (z.imaqg)
do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)

hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:
hash_value = -2

return hash_value

4.5 Boolean Type - bool

Booleans represent truth values. The bool type has exactly two constant instances: True and False.

The built-in function bool () converts any value to a boolean, if the value can be interpreted as a truth value (see
section Truth Value Testing above).

For logical operations, use the boolean operators and, or and not. When applying the bitwise operators &, |, * to
two booleans, they return a bool equivalent to the logical operations “and”, “or”, “xor”. However, the logical operators

and, or and ! = should be preferred over &, | and *.

Deprecated since version 3.12: The use of the bitwise inversion operator ~ is deprecated and will raise an error in
Python 3.16.

boolisasubclass of int (see Numeric Types — int, float, complex). In many numeric contexts, False and True
behave like the integers 0 and 1, respectively. However, relying on this is discouraged; explicitly convert using i nt ()
instead.

4.6 lterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iferable support:

container.__iter__ ()

Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for
those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure
which supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of
the type structure for Python objects in the Python/C APL.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter__ ()

Return the iterator object itself. This is required to allow both containers and iterators to be used with the for

4.5. Boolean Type - bool 43

The Python Library Reference, Release 3.13.0rc2

and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APIL.

iterator.__next__ ()

Return the next item from the iterator. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
APL

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s ___next___ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.6.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (technically,
a generator object) supplying the __iter__ () and _ _next__ () methods. More information about generators
can be found in the documentation for the yield expression.

4.7 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for processing
of binary data and text strings are described in dedicated sections.

4.7.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations on
custom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and ¢ are sequences of the same
type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and
* (repetition) operations have the same priority as the corresponding numeric operations.”

Operation Result Notes
X in s True if an item of s is equal to x, else False (1)

X not in s False if an item of s is equal to x, else True (D)

s + t the concatenation of s and ¢ 6)(7)
S * norn * s equivalent to adding s to itself n times 2)(7)
s[1i] ith item of s, origin 0 3)
s[i:]] slice of s from i to j 3)4)
s[i:j:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index (x[, i[, index of the first occurrence of x in s (at or after index i and before index (8)
jin)

s.count (x) total number of occurrences of x in s

3 They must have since the parser can’t tell the type of the operands.

44 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.0rc2

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically
by comparing corresponding elements. This means that to compare equal, every element must compare equal and the
two sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Forward and reversed iterators over mutable sequences access values using an index. That index will continue to
march forward (or backward) even if the underlying sequence is mutated. The iterator terminates only when an
IndexErrorora StopIteration is encountered (or when the index drops below zero).

Notes:

(1) While the in and not in operations are used only for simple containment testing in the general case, some
specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:

>>> llgg" in "eggs n
True

(2) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note that
items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python
programmers; consider:

>>> lists = [[]] * 3
>>> lists

(1, 1, [11

>>> lists[0].append(3)
>>> lists

(31, 31, [311

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
* 3 are references to this single empty list. Modifying any of the elements of 11ist s modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for 1 in range(3)]
>>> lists[0].append(3)

>>> lists[1].append(5)

>>> lists([2].append(7)

>>> lists

[r31, 51, [711]

Further explanation is available in the FAQ entry fag-multidimensional-list.

(3) If i or jis negative, the index is relative to the end of sequence s: len (s) + iorlen(s) + jissubstituted.
But note that —0 is still 0.

(4) The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j.Ifiorjis
greater than len (s),use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If
i is greater than or equal to j, the slice is empty.

(5) The slice of s from i to j with step k is defined as the sequence of items with index x = i + n*k such that 0
<= n < (j-1i)/k. In other words, the indices are i, i+k, i+2*k, i+3*k and so on, stopping when j is
reached (but never including j). When k is positive, i and j are reduced to 1en (s) if they are greater. When

k is negative, i and j are reduced to 1len (s) — 1 if they are greater. If i or j are omitted or None, they
become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is treated
like 1.

(6) Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime
cost, you must switch to one of the alternatives below:

* if concatenating st r objects, you can build a list and use str. join () at the end or else write to an
io.StringIO instance and retrieve its value when complete

* if concatenating byt es objects, you can similarly use bytes. join () or io.BytesIO,or you can
do in-place concatenation with a bytearray object. bytearray objects are mutable and have an
efficient overallocation mechanism

4.7. Sequence Types — list, tuple, range 45

The Python Library Reference, Release 3.13.0rc2

* if concatenating t uple objects, extend a 1 i st instead
« for other types, investigate the relevant class documentation

(7) Some sequence types (such as range) only support item sequences that follow specific patterns, and hence
don’t support sequence concatenation or repetition.

(8) indexraises ValueError when x is not found in s. Not all implementations support passing the additional
arguments 7 and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra
arguments is roughly equivalent to using s [1:7j] . index (x), only without copying any data and with the
returned index being relative to the start of the sequence rather than the start of the slice.

4.7.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by mutable
sequence types is support for the hash () built-in.

This support allows immutable sequences, such as t up 1 e instances, to be used as di ct keys and stored in set and
frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.7.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collections.abc.
MutableSequence ABCis provided to make it easier to correctly implement these operations on custom sequence

types.
In the table s is an instance of a mutable sequence type, ¢ is any iterable object and x is an arbitrary object that meets

any type and value restrictions imposed by s (for example, bytearray only accepts integers that meet the value
restriction 0 <= x <= 255).

Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:3] =t slice of s from i to j is replaced by the contents of the iterable ¢
del s[i:73] sameas s[i:3] = []
s[i:j:k] =t the elements of s [1:7:k] are replaced by those of ¢ (D)
del s[i:7J:k] removes the elements of s [1:J:k] from the list
s.append (x) appends x to the end of the sequence (same as s[len(s) :len(s)] =

[x]1)
s.clear () removes all items from s (same as del s[:]) 5)
s.copy () creates a shallow copy of s (same as s[:]) 5)
s.extend (t) extends s with the contents of r (for the most part the same as
+= t s[len(s):len(s)] = t)
S *=n updates s with its contents repeated n times (6)
s.insert (i, inserts x into s at the index given by i (same as s [1:1] = [x])
s.pop () or retrieves the item at i and also removes it from s 2)
pop (1)
s.remove (x) removes the first item from s where s [1] is equal to x 3)
s.reverse () reverses the items of s in place @

Notes:

(1) If k is not equal to 1, # must have the same length as the slice it is replacing.

(2) The optional argument i defaults to -1, so that by default the last item is removed and returned.

(3) remove () raises ValueError when x is not found in s.

46

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.0rc2

(4) The reverse () method modifies the sequence in place for economy of space when reversing a large se-
quence. To remind users that it operates by side effect, it does not return the reversed sequence.

(5) clear () and copy () are included for consistency with the interfaces of mutable containers that don’t
support slicing operations (such as dict and set). copy () is not part of the collections.abc.
MutableSequence ABC, but most concrete mutable sequence classes provide it.

Added in version 3.3: clear () and copy () methods.

(6) The value n is an integer, or an object implementing __index__ (). Zero and negative values of x clear the
sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n
under Common Sequence Operations.

4.7.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of
similarity will vary by application).
class list ([itemble])

Lists may be constructed in several ways:
» Using a pair of square brackets to denote the empty list: []
» Using square brackets, separating items with commas: [a], [a, b, c]
¢ Using a list comprehension: [x for x in iterable]
» Using the type constructor: 1ist () or 1ist (iterable)

The constructor builds a list whose items are the same and in the same order as iferable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is
made and returned, similarto iterable[:]. Forexample, 1ist ('abc"') returns ['a', 'b', 'c']
and 1ist ((1, 2, 3)) returns [1, 2, 3].If noargument is given, the constructor creates a new
empty list, [].

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:

sort (*, key=None, reverse=False)

This method sorts the list in place, using only < comparisons between items. Exceptions are not sup-
pressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be
left in a partially modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element
(for example, key=str.lower). The key corresponding to each item in the list is calculated once
and then used for the entire sorting process. The default value of None means that list items are sorted
directly without calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key
function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted () to
explicitly request a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

4.7. Sequence Types — list, tuple, range 47

The Python Library Reference, Release 3.13.0rc2

For sorting examples and a brief sorting tutorial, see sortinghowto.

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or
even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the
duration, and raises ValueError if it can detect that the list has been mutated during a sort.

4.7.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples pro-
duced by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homogeneous
data is needed (such as allowing storage in a set or dict instance).

class tuple ([itemble])

Tuples may be constructed in a number of ways:
» Using a pair of parentheses to denote the empty tuple: ()
» Using a trailing comma for a singleton tuple: a, or (a,)
e Separating items with commas: a, b, cor (a, b, c)
e Using the tuple () built-in: tuple () or tuple (iterable)

The constructor builds a tuple whose items are the same and in the same order as iferable’s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is
returned unchanged. For example, tuple ('abc') returns ('a', 'b', 'c') and tuple([1, 2,
3]) returns (1, 2, 3).If noargument is given, the constructor creates a new empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional,
except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, f (a, b,
c) is a function call with three arguments, while £ ((a, b, c)) isa function call with a 3-tuple as the sole
argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

4.7.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number
of times in for loops.

class range (stop)

class range (start, stop[, step])

The arguments to the range constructor must be integers (either built-in int or any object that implements
the __index__ () special method). If the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r [1] = start + step*i
where i >= Oandr[i] < stop.

For a negative step, the contents of the range are still determined by the formular [1] = start + step*i,
but the constraintsare i >= Oandr[i] > stop.

A range object will be empty if r [0] does not meet the value constraint. Ranges do support negative indices,
but these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as
len ()) mayraise OverflowError.

Range examples:

48 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.0rc2

>>> list (range (10))

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

[+, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list (range (0))

>>> list (range (1, 0))

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact
that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will
usually violate that pattern).

start
The value of the start parameter (or O if the parameter was not supplied)
stop

The value of the stop parameter

step
The value of the step parameter (or 1 if the parameter was not supplied)
The advantage of the range type over aregular 1 ist or tuple isthat a range object will always take the same

(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and
step values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range (0, 20, 2)
>>> r

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare equal
might have different start, stop and step attributes, for example range (0) == range(2, 1, 3) or
range (0, 3, 2) == range(0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test i nt objects for
membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘=="and ‘!="to compare range objects based on the sequence of values they define
(instead of comparing based on object identity).

Added the start, stop and step attributes.

4.7. Sequence Types — list, tuple, range 49

The Python Library Reference, Release 3.13.0rc2

> See also

 The linspace recipe shows how to implement a lazy version of range suitable for floating-point applications.

4.8 Text Sequence Type — str

Textual data in Python is handled with st r objects, or strings. Strings are immutable sequences of Unicode code
points. String literals are written in a variety of ways:

 Single quotes: 'allows embedded "double" quotes'
* Double quotes: "allows embedded 'single' quotes"
e Triple quoted: ' ' 'Three single quotes''',"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted
to a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”
prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st r constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty
string s, s[0] == s[0:1].

There is also no mutable string type, but str. join () or io.StringIO can be used to efficiently construct
strings from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted
on string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

class str (object=")
class str (object=b", encoding="utf-8', errors='strict')

Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior
of str () depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, str (object) returns type (object) .__str__ (object),
which is the “informal” or nicely printable string representation of object. For string objects, this is the string
itself. If object does not have a __str___ () method, then st r () falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytesor bytearray).
In this case, if object is a bytes (or bytearray) object, then str (bytes, encoding, errors)
is equivalent to bytes.decode (encoding, errors). Otherwise, the bytes object underlying the
buffer object is obtained before calling bytes. decode (). See Binary Sequence Types — bytes, bytearray,
memoryview and bufferobjects for information on buffer objects.

Passing a bytes object to str () without the encoding or errors arguments falls under the first case of
returning the informal string representation (see also the —b command-line option to Python). For example:

>>> str(b'Zoot!")
llblZOOt! ™rn

For more information on the st r class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the f-strings and Format String Syntax sections. In addition,
see the Text Processing Services section.

50 Chapter 4. Built-in Types

https://code.activestate.com/recipes/579000-equally-spaced-numbers-linspace/

The Python Library Reference, Release 3.13.0rc2

4.8.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see
str.format (), Format String Syntax and Custom String Formatting) and the other based on C printf style
formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the
cases it can handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various
text related utilities (including regular expression support in the re module).

str.capitalize ()
Return a copy of the string with its first character capitalized and the rest lowercased.

Changed in version 3.8: The first character is now put into titlecase rather than uppercase. This means that
characters like digraphs will only have their first letter capitalized, instead of the full character.

str.casefold ()

Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions
in a string. For example, the German lowercase letter 'R ' is equivalent to "ss". Since it is already lowercase,
lower () would do nothing to 'R '; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 ‘Default Case Folding’ of the Unicode Standard.
Added in version 3.3.

str.center (widih, fillchar |)
Return centered in a string of length widrh. Padding is done using the specified fillchar (default is an ASCII
space). The original string is returned if width is less than or equal to 1en (s).

str.count (sub[, smrt[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional argu-

ments start and end are interpreted as in slice notation.

If sub is empty, returns the number of empty strings between characters which is the length of the string plus
one.
str.encode (encoding="utf-8', errors='strict')

Return the string encoded to by tes.
encoding defaults to 'ut £-8"; see Standard Encodings for possible values.

errors controls how encoding errors are handled. If 'strict' (the default), a UnicodeError excep-
tion is raised. Other possible values are 'ignore', 'replace’, 'xmlcharrefreplace’', 'back-
slashreplace' and any other name registered via codecs. register_error (). See Error Handlers
for details.

For performance reasons, the value of errors is not checked for validity unless an encoding error actually occurs,
Python Development Mode is enabled or a debug build is used.

Changed in version 3.1: Added support for keyword arguments.

Changed in version 3.9: The value of the errors argument is now checked in Python Development Mode and in
debug mode.

str.endswith (suﬁix[, start[, end]])

Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

4.8. Text Sequence Type — str 51

https://www.unicode.org/versions/Unicode15.1.0/ch03.pdf

The Python Library Reference, Release 3.13.0rc2

str.expandtabs (fabsize=8)

str

str.

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. Tab positions occur every fabsize characters (default is 8, giving tab
positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string
is examined character by character. If the character is a tab (\t), one or more space characters are inserted in
the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If
the character is a newline (\n) or return (\ r), it is copied and the current column is reset to zero. Any other
character is copied unchanged and the current column is incremented by one regardless of how the character
is represented when printed.

>>> '01\t012\t0123\t01234"' .expandtabs ()

'01 012 0123 01234"
>>> '01\t012\t0123\t01234"' .expandtabs (4)
'01 012 0123 01234"

.find (sub[, start[, end]])

Return the lowest index in the string where substring sub is found within the slice s [start : end]. Optional
arguments start and end are interpreted as in slice notation. Return —1 if sub is not found.

O Note

The find () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> 'Py' in 'Python'
True

format (*args, **kwargs)

Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces { }. Each replacement field contains either the numeric index of a
positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement
field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 1is ".format (1+2)
'The sum of 1 + 2 is 3!

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

© Note

When formatting a number (int, float, complex, decimal.Decimal and subclasses) with the
n type (ex: '{:n}'.format (1234)), the function temporarily sets the LC_CTYPE locale to the
LC_NUMERIC locale to decode decimal_point and thousands_sep fields of localeconv ()
if they are non-ASCII or longer than 1 byte, and the LC_NUMERIC locale is different than the LC_CTYPE
locale. This temporary change affects other threads.

Changed in version 3.7: When formatting a number with the n type, the function sets temporarily the
LC_CTYPE locale to the LC_NUMERIC locale in some cases.

str.format_map (mapping, /)

Similar to str.format (**mapping), except that mapping is used directly and not copied to a dict.

This is useful if for example mapping is a dict subclass:

>>> class Default (dict) :

def _ missing__ (self, key):
return key
(continues on next page)

52

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.0rc2

str

str.

str.

str.

str

str.

str.

str

str.

(continued from previous page)

>>> ! was born in '.format_map (Default (name="'Guido"))
'Guido was born in country'

Added in version 3.2.

.index (sub[, start[, end]])

Like find (), butraise ValueError when the substring is not found.

isalnum ()

Return True if all characters in the string are alphanumeric and there is at least one character, False
otherwise. A character c is alphanumeric if one of the following returns True: c.isalpha(), c.
isdecimal (), c.isdigit (),orc.isnumeric ().

isalpha ()

Return True if all characters in the string are alphabetic and there is at least one character, False otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those
with general category property being one of “Lm”, “Lt”, “Lu”, “LI”, or “Lo”. Note that this is different from the
Alphabetic property defined in the section 4.10 ‘Letters, Alphabetic, and Ideographic’ of the Unicode Standard.

isascii ()
Return True if the string is empty or all characters in the string are ASCII, False otherwise. ASCII char-
acters have code points in the range U+0000-U+007F.

Added in version 3.7.

.isdecimal ()

Return True if all characters in the string are decimal characters and there is at least one character, False
otherwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.
isdigit ()

Return True if all characters in the string are digits and there is at least one character, False otherwise.
Digits include decimal characters and digits that need special handling, such as the compatibility superscript
digits. This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.
isidentifier ()

Return True if the string is a valid identifier according to the language definition, section identifiers.

keyword. iskeyword () can be used to test whether string s is a reserved identifier, such as def and
class.

Example:

>>> from keyword import iskeyword

>>> 'hello'.isidentifier (), iskeyword('hello')
(True, False)

>>> 'def'.isidentifier (), iskeyword('def')
(True, True)

.islower ()

Return True if all cased characters* in the string are lowercase and there is at least one cased character,
False otherwise.
isnumeric ()

Return True if all characters in the string are numeric characters, and there is at least one character, False
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “LI” (Letter, lowercase), or “Lt” (Letter,
titlecase).

4.8. Text Sequence Type — str 53

https://www.unicode.org/versions/Unicode15.1.0/ch04.pdf

The Python Library Reference, Release 3.13.0rc2

str.

str.

str

str.

str.

str

str.

str

property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

isprintable ()

Return True if all characters in the string are printable or the string is empty, False otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting
the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those
which should not be escaped when repr () is invoked on a string. It has no bearing on the handling of strings
written to sys. stdout or sys.stderr.)

isspace ()
Return True if there are only whitespace characters in the string and there is at least one character, False
otherwise.

A character is whitespace if in the Unicode character database (see unicodedat a), either its general category
is Zs (“Separator, space”), or its bidirectional class is one of WS, B, or S.

.istitle ()
Return True if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return False
otherwise.
isupper ()

Return True if all cased characters’2¢ 334

False otherwise.

in the string are uppercase and there is at least one cased character,

>>> 'BANANA'.isupper ()
True
>>> 'banana'.isupper ()

False

>>> 'baNana'.isupper ()
False

>>> ' ' isupper ()
False

join (iterable)

Return a string which is the concatenation of the strings in iterable. A TypeError will be raised if there
are any non-string values in iterable, including by tes objects. The separator between elements is the string
providing this method.

.1just (width|, filichar |)

Return the string left justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1en (s) .

lower ()

Page 53, 4

Return a copy of the string with all the cased characters converted to lowercase.

The lowercasing algorithm used is described in section 3.13 ‘Default Case Folding’ of the Unicode Standard.

.1lstrip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious '.1lstrip()
'spacious !

>>> 'www.example.com'.lstrip('cmowz.")
'example.com'

See str.removeprefix () for a method that will remove a single prefix string rather than all of a set of
characters. For example:

54

Chapter 4. Built-in Types

https://www.unicode.org/versions/Unicode15.1.0/ch03.pdf

The Python Library Reference, Release 3.13.0rc2

>>> 'Arthur: three!'.lstrip('Arthur: ')

'ee!!
>>> 'Arthur: three!'.removeprefix ('Arthur: ")
'three!'

static str.maketrans (x[, y[, z]])
This static method returns a translation table usable for st r. translate ().
If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings

of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted
to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character
in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to None in the result.

str.partition (sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings.

str.removeprefix (prefix, /)

If the string starts with the prefix string, return string[len (prefix) :]. Otherwise, return a copy of the
original string:

>>> 'TestHook'.removeprefix('Test')
'Hook'

>>> 'BaseTestCase'.removeprefix ('Test')
'BaseTestCase'

Added in version 3.9.

str.removesuffix (suffix, /)

If the string ends with the suffix string and that suffix is not empty, return string[:-len (suffix)].
Otherwise, return a copy of the original string:

>>> 'MiscTests'.removesuffix('Tests')
'Misc'

>>> '"TmpDirMixin'.removesuffix ('Tests')
'TmpDirMixin'

Added in version 3.9.

str.replace (old, new, count=-1)

Return a copy of the string with all occurrences of substring old replaced by new. If count is given, only the
first count occurrences are replaced. If count is not specified or —1, then all occurrences are replaced.

Changed in version 3.13: count is now supported as a keyword argument.

str.rfind (sub[, start[, end]])

Return the highest index in the string where substring sub is found, such that sub is contained within
s [start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

str.rindex (sub[, start[, end]])
Like rfind () butraises ValueError when the substring sub is not found.

str.rjust (width[, ﬁllchar])

Return the string right justified in a string of length widrh. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1len (s).

4.8. Text Sequence Type — str 55

The Python Library Reference, Release 3.13.0rc2

str

str.

str.

str.

.rpartition (sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

rsplit (sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaves like split () which is described in detail below.

rstrip([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.rstrip()

! spacious'

>>> 'mississippi'.rstrip('ipz')
'mississ'’

See str.removesuffix () for a method that will remove a single suffix string rather than all of a set of
characters. For example:

>>> 'Monty Python'.rstrip(' Python')

IMI
>>> 'Monty Python'.removesuffix (' Python')
'Monty'

split (sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit

splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1,
then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, '1,,2"'.split (', ") returns ['1', '', '2']). The sep argument may consist of multiple
characters as a single delimiter (to split with multiple delimiters, use re. split ()). Splitting an empty string
with a specified separator returns [''].

For example:

p
>>> '1,2,3"'.split(',")

['1', '2" '3']

>>> '1,2,3'.split(',"', maxsplit=1)
['1" '2,3'}

>> '1,2,,3,"'.split (', ")

['1|, '2|, 'l, |3|’ lV]

>>> '1<>2<>3<4" .split ('<>")

['1', '2', '3<4|:|

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].

For example:

>>> '1 2 3'.split ()

['1" '2" '3']

>>> '1 2 3'.split (maxsplit=1)
['1|, '2 3!]

>>> ! 1 2 3 '.split ()
['1!, '2', '3']

56

Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.0rc2

str.splitlines (keepends=False)
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal
newlines.

Representation Description

\n Line Feed

\r Carriage Return

\r\n Carriage Return + Line Feed
\v or \x0b Line Tabulation

\f or \x0c Form Feed

\xlc File Separator

\x1d Group Separator

\xle Record Separator

\x85 Next Line (C1 Control Code)
\u2028 Line Separator

\u2029 Paragraph Separator

Changed in version 3.2: \v and \ £ added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines/()

['ab c¢', "', 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
['ab c\n', '\n', 'de fg\r', 'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> "" splitlines()

[]

>>> "One line\n".splitlines/()
['One line']

For comparison, split ('\n') gives:

>>> "' . split('\n")

['']

>>> 'Two lines\n'.split('\n'")
['"Two lines', '']

str.startswith (preﬁx[, start[, end]])

Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string
at that position.

str.strip([chars])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.strip()
'spacious’

>>> 'www.example.com'.strip ('cmowz.")
'example'

4.8. Text Sequence Type — str 57

The Python Library Reference, Release 3.13.0rc2

str.

str.

str.

str.

str.

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed
from the leading end until reaching a string character that is not contained in the set of characters in chars. A
similar action takes place on the trailing end. For example:

>>> comment_string = "#....... Section 3.2.1 Issue #32 U
>>> comment_string.strip('.#! ")
'Section 3.2.1 Issue #32'

swapcase ()

Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not
necessarily true that s. swapcase () . swapcase () == s.

title()

Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

For example:

'Hello World'

R

>>> 'Hello world'.title () J

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they're bill's friends from the UK".title ()
"They'Re Bill'S Friends From The Uk"

The string.capwords () function does not have this problem, as it splits words on spaces only.

Alternatively, a workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+ (' [A-Za—-z]+)?",
lambda mo: mo.group (0) .capitalize(),
s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

L

translate (fable)

Return a copy of the string in which each character has been mapped through the given translation table. The
table must be an object that implements indexing via __getitem__ (), typically a mapping or sequence.
When indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode
ordinal or a string, to map the character to one or more other characters; return None, to delete the character
from the return string; or raise a LookupError exception, to map the character to itself.

You can use str.maketrans () to create a translation map from character-to-character mappings in dif-
ferent formats.

See also the codecss module for a more flexible approach to custom character mappings.

upper ()

Return a copy of the string with all the cased characters™3%# converted to uppercase. Note that s .
upper () .isupper () might be False if s contains uncased characters or if the Unicode category of
the resulting character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 ‘Default Case Folding’ of the Unicode Standard.
z£ill (width)
Return a copy of the string left filled with ASCII ' 0 ' digits to make a string of length width. A leading sign

58

Chapter 4. Built-in Types

https://www.unicode.org/versions/Unicode15.1.0/ch03.pdf

The Python Library Reference, Release 3.13.0rc2

prefix (' +'/'—") is handled by inserting the padding after the sign character rather than before. The original
string is returned if width is less than or equal to len (s).

For example:

>>> "42" z£fill (5)
'00042"

>>> "—42" z£fill (5)
'-0042"

4.8.2 printf-style String Formatting

© Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). Using the newer formatted string literals, the st .
format () interface, or femplate strings may help avoid these errors. Each of these alternatives provides their
own trade-offs and benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting
or interpolation operator. Given format % wvalues (where format is a string), $ conversion specifications in
format are replaced with zero or more elements of values. The effect is similar to using the sprint £ () function

in the C language. For example:

o

>>> print (' has quote types.' % ('Python', 2))
Python has 2 quote types.

If format requires a single argument, values may be a single non-tuple object.> Otherwise, values must be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%"' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified asan ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as '*' (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the '% "' character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print (' has quote types.' %
. {'language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.8. Text Sequence Type — str 59

The Python Library Reference, Release 3.13.0rc2

Flag Meaning

"#' The value conversion will use the “alternate form” (where defined below).

'0' The conversion will be zero padded for numeric values.

= The converted value is left adjusted (overrides the ' 0' conversion if both are given).

(aspace) A blank should be left before a positive number (or empty string) produced by a signed conversion.
'+' Asign character ('+' or '-') will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python —so e.g. $1d is identical
to %d.

The conversion types are:

Con- Meaning Notes

version

'd’ Signed integer decimal.

vit Signed integer decimal.

Tgl Signed octal value. @))

'u' Obsolete type — it is identical to 'd'. (6)

'x! Signed hexadecimal (lowercase). 2)

X! Signed hexadecimal (uppercase). 2)

te! Floating-point exponential format (lowercase). 3)

'E' Floating-point exponential format (uppercase). 3)

'£! Floating-point decimal format. 3)

'F! Floating-point decimal format. 3)

'g' Floating-point format. Uses lowercase exponential format if exponent is less than -4 or notless (4)
than precision, decimal format otherwise.

'G' Floating-point format. Uses uppercase exponential format if exponent is less than -4 or not (4)

less than precision, decimal format otherwise.

Tg" Single character (accepts integer or single character string).
'r! String (converts any Python object using repr ()).)
's'! String (converts any Python object using st ()).)
'a' String (converts any Python object using ascii ()). 5)
0% No argument is converted, results ina ' %' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier (' 0o ') to be inserted before the first digit.

(2) The alternate form causes a leading ' Ox ' or ' 0X' (depending on whether the 'x ' or 'X' format was used)
to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.
(5) If precision is N, the output is truncated to N characters.
(6) See PEP 237.
Since Python strings have an explicit length, $s conversions do not assume that '\ 0" is the end of the string.

Changed in version 3.1: % £ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g
conversions.

60 Chapter 4. Built-in Types

https://peps.python.org/pep-0237/

The Python Library Reference, Release 3.13.0rc2

4.9 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by mem—
oryview which uses the buffer protocol to access the memory of other binary objects without needing to make a

copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

4.9.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII
text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and
are closely related to string objects in a variety of other ways.

class bytes ([source[, encoding[, errors]]])
Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:

» Single quotes: b'still allows embedded "double" quotes'
* Double quotes: b"still allows embedded 'single' quotes"
e Triple quoted: b' ' '3 single quotes''',b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any
binary values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See
strings for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to violate
this restriction will trigger ValueError). This is done deliberately to emphasise that while many binary
formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms,
this is not generally the case for arbitrary binary data (blindly applying text processing algorithms to binary
data formats that are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
¢ A zero-filled bytes object of a specified length: bytes (10)
* From an iterable of integers: bytes (range (20))
» Copying existing binary data via the buffer protocol: bytes (obj)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytes type has an additional class method to read data in
that format:

classmethod fromhex (string)

This byt es class method returns a bytes object, decoding the given string object. The string must contain
two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex ('2Ef0 F1f2 ")
b' \xfO\xf1\xf2"

Changed in version 3.7: bytes. fromhex () now skips all ASCII whitespace in the string, not just
spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

4.9. Binary Sequence Types — bytes, bytearray, memoryview 61

The Python Library Reference, Release 3.13.0rc2

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> b'\xf0\x£f1\x£f2'.hex ()
'fOf1f2"

If you want to make the hex string easier to read, you can specify a single character separator sep parameter
to include in the output. By default, this separator will be included between each byte. A second optional
bytes_per_sep parameter controls the spacing. Positive values calculate the separator position from the
right, negative values from the left.

>>> value = b'\x£f0\x£f1\x£f2'
>>> value.hex ('-")

'fO-f1-f2"

>>> value.hex('_', 2)
'fO_f1f2"

>>> b'UUDDLRLRAB' .hex (' ', -4)

'55554444 4c524c52 4142"

Added in version 3.5.

Changed in version 3.8: bytes.hex () now supports optional sep and bytes_per_sep parameters to
insert separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b [0] will be an integer, while
b[0:1] will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytes objects uses the literal format (b'..."') since it is often more useful than e.g.
bytes ([46, 46, 46]). You can always convert a bytes object into a list of integers using 1ist (b).

4.9.2 Bytearray Objects

bytearray objects are a mutable counterpart to byt es objects.

class bytearray ([source[, encoding[, errors]]])

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the con-
structor:

* Creating an empty instance: bytearray ()

 Creating a zero-filled instance with a given length: bytearray (10)

* From an iterable of integers: bytearray (range (20))

» Copying existing binary data via the buffer protocol: bytearray (b'Hi!")

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common
bytes and bytearray operations described in Byfes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used

format for describing binary data. Accordingly, the bytearray type has an additional class method to read data
in that format:

classmethod fromhex (string)

This bytearray class method returns bytearray object, decoding the given string object. The string
must contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytearray.fromhex ('2Ef0 F1£f2 ")
bytearray (b' . \xf0\xf1\xf2")

62 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.0rc2

Changed in version 3.7: bytearray. fromhex () now skips all ASCII whitespace in the string, not
just spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray (b'\x£f0\x£f1\x£f2') .hex ()
'fOf1£2"

Added in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), bytearray.hex () now supports optional sep
and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b [0] will be an integer,
while b[0:1] will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and
slicing will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (oytearray (b' ... ")) since it is often more
useful than e.g. bytearray ([46, 46, 46]). You can always convert a bytearray object into a list of integers
using 1ist (b).

4.9.3 Bytes and Bytearray Operations
Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands

of the same type, but with any bytes-like object. Due to this flexibility, they can be freely mixed in operations without
causing errors. However, the return type of the result may depend on the order of operands.

© Note

The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on strings
don’t accept bytes as their arguments. For example, you have to write:

a = "abc"
b = a.replace("a", "f")

and:
a = b"abc"
b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be
avoided when working with arbitrary binary data. These restrictions are covered below.

O Note

Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format may
lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.
bytes.count (sub[, start[, end]])
bytearray.count (sub[, start[, end]])

Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.

4.9. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.13.0rc2

If sub is empty, returns the number of empty slices between characters which is the length of the bytes object
plus one.

Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.
bytes.removeprefix (prefix, /)
bytearray.removeprefix (prefix, /)

If the binary data starts with the prefix string, return bytes [len (prefix) :]. Otherwise, return a copy
of the original binary data:

>>> b'TestHook'.removeprefix (b'Test')
b'Hook'

>>> b'BaseTestCase'.removeprefix (b'Test"')
b'BaseTestCase'

The prefix may be any bytes-like object.

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

Added in version 3.9.

bytes.removesuffix (suffix, /)
bytearray.removesuffix (suffix, /)

If the binary data ends with the suffix string and that suffix is not empty, return bytes [:-len (suffix)].
Otherwise, return a copy of the original binary data:

>>> b'MiscTests'.removesuffix(b'Tests")
b'Misc'

>>> pb'TmpDirMixin'.removesuffix (b'Tests')
b'TmpDirMixin'

The suffix may be any bytes-like object.

© Note

The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

Added in version 3.9.
bytes.decode (encoding="utf-8', errors='strict')
bytearray.decode (encoding='utf-8', errors='strict’)
Return the bytes decoded to a st r.
encoding defaults to 'ut £-8"'; see Standard Encodings for possible values.

errors controls how decoding errors are handled. If 'strict' (the default), a UnicodeError exception
is raised. Other possible values are 'ignore', 'replace'’, and any other name registered via codecs.
register_error (). See Error Handlers for details.

For performance reasons, the value of errors is not checked for validity unless a decoding error actually occurs,
Python Development Mode is enabled or a debug build is used.

64 Chapter 4. Built-in Types

The Python Library Reference, Release 3.13.0rc2

© Note

Passing the encoding argument to st r allows decoding any byfes-like object directly, without needing to
make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

Changed in version 3.9: The value of the errors argument is now checked in Python Development Mode and in
debug mode.

bytes.endswith (suﬁix[, start[, end]])

bytearray.endswith (suﬁ‘ix[, start[, end]])

Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be
a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The suffix(es) to search for may be any bytes-like object.
bytes.find (sub[, start[, end]])

bytearra