
The Python/C API
Release 3.13.0

Guido van Rossum and the Python development team

October 07, 2024

Python Software Foundation
Email: docs@python.org





CONTENTS

1 Introduction 3
1.1 Coding standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Useful macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Objects, Types and Reference Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Reference Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Embedding Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Debugging Builds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 C API Stability 15
2.1 Unstable C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Stable Application Binary Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Limited C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Stable ABI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Limited API Scope and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Limited API Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Platform Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Contents of Limited API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 The Very High Level Layer 43

4 Reference Counting 49

5 Exception Handling 53
5.1 Printing and clearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Raising exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Issuing warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Querying the error indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Signal Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6 Exception Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.7 Exception Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.8 Unicode Exception Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.9 Recursion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.10 Standard Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.11 Standard Warning Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Utilities 69
6.1 Operating System Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 System Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Process Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4 Importing Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.5 Data marshalling support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6 Parsing arguments and building values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

i



6.6.1 Parsing arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6.2 Building values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.7 String conversion and formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.8 PyHash API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.9 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.10 Codec registry and support functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.10.1 Codec lookup API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.10.2 Registry API for Unicode encoding error handlers . . . . . . . . . . . . . . . . . . . . . 92

6.11 PyTime C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.11.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.11.2 Clock Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.11.3 Raw Clock Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.11.4 Conversion functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.12 Support for Perf Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Abstract Objects Layer 97
7.1 Object Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Call Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.1 The tp_call Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2.2 The Vectorcall Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2.3 Object Calling API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2.4 Call Support API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Number Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.4 Sequence Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5 Mapping Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.6 Iterator Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.7 Buffer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.7.1 Buffer structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.7.2 Buffer request types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.7.3 Complex arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.7.4 Buffer-related functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Concrete Objects Layer 125
8.1 Fundamental Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.1.1 Type Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.1.2 The None Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2 Numeric Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2.1 Integer Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2.2 Boolean Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.2.3 Floating-Point Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.2.4 Complex Number Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3 Sequence Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.3.1 Bytes Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.3.2 Byte Array Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3.3 Unicode Objects and Codecs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.3.4 Tuple Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.3.5 Struct Sequence Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.3.6 List Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.4 Container Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.4.1 Dictionary Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.4.2 Set Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.5 Function Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.5.1 Function Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.5.2 Instance Method Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.5.3 Method Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.5.4 Cell Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.5.5 Code Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.5.6 Extra information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

ii



8.6 Other Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.6.1 File Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.6.2 Module Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.6.3 Iterator Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.6.4 Descriptor Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.6.5 Slice Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.6.6 MemoryView objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.6.7 Weak Reference Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.6.8 Capsules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.6.9 Frame Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.6.10 Generator Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.6.11 Coroutine Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.6.12 Context Variables Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.6.13 DateTime Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.6.14 Objects for Type Hinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

9 Initialization, Finalization, and Threads 207
9.1 Before Python Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9.2 Global configuration variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.3 Initializing and finalizing the interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.4 Process-wide parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
9.5 Thread State and the Global Interpreter Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

9.5.1 Releasing the GIL from extension code . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.5.2 Non-Python created threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.5.3 Cautions about fork() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.5.4 High-level API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.5.5 Low-level API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

9.6 Sub-interpreter support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.6.1 A Per-Interpreter GIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
9.6.2 Bugs and caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

9.7 Asynchronous Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
9.8 Profiling and Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.9 Reference tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
9.10 Advanced Debugger Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.11 Thread Local Storage Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

9.11.1 Thread Specific Storage (TSS) API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.11.2 Thread Local Storage (TLS) API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

9.12 Synchronization Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.12.1 Python Critical Section API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

10 Python Initialization Configuration 235
10.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
10.2 PyWideStringList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
10.3 PyStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
10.4 PyPreConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
10.5 Preinitialize Python with PyPreConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
10.6 PyConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
10.7 Initialization with PyConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
10.8 Isolated Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
10.9 Python Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
10.10 Python Path Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
10.11 Py_RunMain() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.12 Py_GetArgcArgv() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.13 Multi-Phase Initialization Private Provisional API . . . . . . . . . . . . . . . . . . . . . . . . . . 255

11 Memory Management 257
11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
11.2 Allocator Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
11.3 Raw Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

iii



11.4 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
11.5 Object allocators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
11.6 Default Memory Allocators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
11.7 Customize Memory Allocators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
11.8 Debug hooks on the Python memory allocators . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
11.9 The pymalloc allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

11.9.1 Customize pymalloc Arena Allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.10 The mimalloc allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.11 tracemalloc C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
11.12 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

12 Object Implementation Support 267
12.1 Allocating Objects on the Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
12.2 Common Object Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

12.2.1 Base object types and macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
12.2.2 Implementing functions and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
12.2.3 Accessing attributes of extension types . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

12.3 Type Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
12.3.1 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
12.3.2 PyTypeObject Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
12.3.3 PyObject Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
12.3.4 PyVarObject Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
12.3.5 PyTypeObject Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
12.3.6 Static Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
12.3.7 Heap Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

12.4 Number Object Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
12.5 Mapping Object Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
12.6 Sequence Object Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
12.7 Buffer Object Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
12.8 Async Object Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
12.9 Slot Type typedefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
12.10 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
12.11 Supporting Cyclic Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

12.11.1 Controlling the Garbage Collector State . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
12.11.2 Querying Garbage Collector State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

13 API and ABI Versioning 317

14 Monitoring C API 319

15 Generating Execution Events 321
15.1 Managing the Monitoring State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

A Glossary 325

B About these documents 341
B.1 Contributors to the Python Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

C History and License 343
C.1 History of the software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
C.2 Terms and conditions for accessing or otherwise using Python . . . . . . . . . . . . . . . . . . . . 344

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.13.0 . . . . . . . . . . . . . . . . . . 344
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 . . . . . . . . . . . . . . 345
C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1 . . . . . . . . . . . . . . . . . . 346
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 . . . . . . . . . . 347
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.13.0 DOCUMEN-

TATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
C.3 Licenses and Acknowledgements for Incorporated Software . . . . . . . . . . . . . . . . . . . . . 348

C.3.1 Mersenne Twister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

iv



C.3.2 Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
C.3.3 Asynchronous socket services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
C.3.4 Cookie management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
C.3.5 Execution tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
C.3.6 UUencode and UUdecode functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
C.3.7 XML Remote Procedure Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
C.3.8 test_epoll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
C.3.9 Select kqueue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
C.3.10 SipHash24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
C.3.11 strtod and dtoa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
C.3.12 OpenSSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
C.3.13 expat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
C.3.14 libffi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
C.3.15 zlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
C.3.16 cfuhash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
C.3.17 libmpdec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
C.3.18 W3C C14N test suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
C.3.19 mimalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
C.3.20 asyncio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
C.3.21 Global Unbounded Sequences (GUS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

D Copyright 363

Index 365

v



vi



The Python/C API, Release 3.13.0

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion to extending-index, which describes the general principles of extension writing but does
not document the API functions in detail.

CONTENTS 1



The Python/C API, Release 3.13.0

2 CONTENTS



CHAPTER

ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter
at a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension
modules for specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to as embedding Python in an application.
Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.
Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most
applications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to
become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards

If you’re writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7.
These guidelines apply regardless of the version of Python you are contributing to. Following these conventions is
not necessary for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#define PY_SSIZE_T_CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>, <limits.
h>, <assert.h> and <stdlib.h> (if available).

Note

Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python.h before any standard headers are included.
It is recommended to always definePY_SSIZE_T_CLEAN before includingPython.h. See Parsing arguments
and building values for a description of this macro.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not
be used by extension writers. Structure member names do not have a reserved prefix.

3

https://peps.python.org/pep-0007/


The Python/C API, Release 3.13.0

Note

User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes the
portability of the user code to future Python versions, which may define additional names beginning with one of
these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/
include/pythonversion/ and exec_prefix/include/pythonversion/, where prefix and
exec_prefix are defined by the corresponding parameters to Python’s configure script and version is '%d.
%d' % sys.version_info[:2]. On Windows, the headers are installed in prefix/include, where
prefix is the installation directory specified to the installer.
To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers
from exec_prefix.
C++ users should note that although the API is defined entirely using C, the header files properly declare the entry
points to be extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.
PyMODINIT_FUNC

Declare an extension module PyInit initialization function. The function return type is PyObject*. The
macro declares any special linkage declarations required by the platform, and for C++ declares the function as
extern "C".
The initialization function must be named PyInit_name, where name is the name of the module, and should
be the only non-static item defined in the module file. Example:

static struct PyModuleDef spam_module = {
PyModuleDef_HEAD_INIT,
.m_name = "spam",
...

};

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create(&spam_module);
}

Py_ABS(x)
Return the absolute value of x.
Added in version 3.3.

Py_ALWAYS_INLINE

Ask the compiler to always inline a static inline function. The compiler can ignore it and decides to not inline
the function.
It can be used to inline performance critical static inline functions when building Python in debug mode with
function inlining disabled. For example, MSC disables function inlining when building in debug mode.
Marking blindly a static inline function with Py_ALWAYS_INLINE can result in worse performances (due
to increased code size for example). The compiler is usually smarter than the developer for the cost/benefit
analysis.

4 Chapter 1. Introduction



The Python/C API, Release 3.13.0

If Python is built in debug mode (if the Py_DEBUG macro is defined), the Py_ALWAYS_INLINE macro
does nothing.
It must be specified before the function return type. Usage:

static inline Py_ALWAYS_INLINE int random(void) { return 4; }

Added in version 3.11.
Py_CHARMASK(c)

Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to
an unsigned char.

Py_DEPRECATED(version)
Use this for deprecated declarations. The macro must be placed before the symbol name.
Example:

Py_DEPRECATED(3.8) PyAPI_FUNC(int) Py_OldFunction(void);

Changed in version 3.8: MSVC support was added.
Py_GETENV(s)

Like getenv(s), but returns NULL if -E was passed on the command line (see PyConfig.
use_environment).

Py_MAX(x, y)
Return the maximum value between x and y.
Added in version 3.3.

Py_MEMBER_SIZE(type, member)
Return the size of a structure (type) member in bytes.
Added in version 3.6.

Py_MIN(x, y)
Return the minimum value between x and y.
Added in version 3.3.

Py_NO_INLINE

Disable inlining on a function. For example, it reduces the C stack consumption: useful on LTO+PGO builds
which heavily inline code (see bpo-33720).
Usage:

Py_NO_INLINE static int random(void) { return 4; }

Added in version 3.11.
Py_STRINGIFY(x)

Convert x to a C string. E.g. Py_STRINGIFY(123) returns "123".
Added in version 3.4.

Py_UNREACHABLE()

Use this when you have a code path that cannot be reached by design. For example, in the default: clause
in a switch statement for which all possible values are covered in case statements. Use this in places where
you might be tempted to put an assert(0) or abort() call.
In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable
code. For example, the macro is implemented with __builtin_unreachable() on GCC in release
mode.

1.3. Useful macros 5

https://bugs.python.org/issue?@action=redirect&bpo=33720


The Python/C API, Release 3.13.0

A use for Py_UNREACHABLE() is following a call a function that never returns but that is not declared
_Py_NO_RETURN.
If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used.
For example, under low memory condition or if a system call returns a value out of the expected range. In this
case, it’s better to report the error to the caller. If the error cannot be reported to caller, Py_FatalError()
can be used.
Added in version 3.7.

Py_UNUSED(arg)
Use this for unused arguments in a function definition to silence compiler warnings. Example: int
func(int a, int Py_UNUSED(b)) { return a; }.
Added in version 3.4.

PyDoc_STRVAR(name, str)
Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the
value will be empty.
Use PyDoc_STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.
Example:

PyDoc_STRVAR(pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
// ...
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
// ...

}

PyDoc_STR(str)
Creates a docstring for the given input string or an empty string if docstrings are disabled.
Use PyDoc_STR in specifying docstrings to support building Python without docstrings, as specified in PEP
7.
Example:

static PyMethodDef pysqlite_row_methods[] = {
{"keys", (PyCFunction)pysqlite_row_keys, METH_NOARGS,

PyDoc_STR("Returns the keys of the row.")},
{NULL, NULL}

};

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyObject*. This type
is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated
the same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it
is only fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you
never declare an automatic or static variable of type PyObject, only pointer variables of type PyObject* can
be declared. The sole exception are the type objects; since these must never be deallocated, they are typically static
PyTypeObject objects.
All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of
the well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check(a)
is true if (and only if) the object pointed to by a is a Python list.

6 Chapter 1. Introduction

https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/


The Python/C API, Release 3.13.0

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size;
it counts how many different places there are that have a strong reference to an object. Such a place could be another
object, or a global (or static) C variable, or a local variable in some C function. When the last strong reference to an
object is released (i.e. its reference count becomes zero), the object is deallocated. If it contains references to other
objects, those references are released. Those other objects may be deallocated in turn, if there are no more references
to them, and so on. (There’s an obvious problem with objects that reference each other here; for now, the solution is
“don’t do that.”)
Reference counts are always manipulated explicitly. The normal way is to use the macro Py_INCREF() to take a
new reference to an object (i.e. increment its reference count by one), and Py_DECREF() to release that reference
(i.e. decrement the reference count by one). The Py_DECREF() macro is considerably more complex than the
incref one, since it must check whether the reference count becomes zero and then cause the object’s deallocator to
be called. The deallocator is a function pointer contained in the object’s type structure. The type-specific deallocator
takes care of releasing references for other objects contained in the object if this is a compound object type, such as
a list, as well as performing any additional finalization that’s needed. There’s no chance that the reference count can
overflow; at least as many bits are used to hold the reference count as there are distinct memory locations in virtual
memory (assuming sizeof(Py_ssize_t) >= sizeof(void*)). Thus, the reference count increment is a
simple operation.
It is not necessary to hold a strong reference (i.e. increment the reference count) for every local variable that contains
a pointer to an object. In theory, the object’s reference count goes up by one when the variable is made to point to
it and it goes down by one when the variable goes out of scope. However, these two cancel each other out, so at the
end the reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from
being deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the
object that lives at least as long as our variable, there is no need to take a new strong reference (i.e. increment the
reference count) temporarily. An important situation where this arises is in objects that are passed as arguments to
C functions in an extension module that are called from Python; the call mechanism guarantees to hold a reference
to every argument for the duration of the call.
However, a common pitfall is to extract an object from a list and hold on to it for a while without taking a new
reference. Some other operation might conceivably remove the object from the list, releasing that reference, and
possibly deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code which
could do this; there is a code path which allows control to flow back to the user from a Py_DECREF(), so almost
any operation is potentially dangerous.
A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNum-
ber_, PySequence_ or PyMapping_). These operations always create a new strong reference (i.e. increment
the reference count) of the object they return. This leaves the caller with the responsibility to call Py_DECREF()
when they are done with the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a
reference” means being responsible for calling Py_DECREF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually releasing it by calling Py_DECREF() or Py_XDECREF() when it’s no longer needed—or passing on
this responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing
needs to be done for a borrowed reference.
Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals
a reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that
function assumes that it now owns that reference, and you are not responsible for it any longer.
Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTu-
ple_SetItem(), which steal a reference to the item (but not to the tuple or list into which the item is
put!). These functions were designed to steal a reference because of a common idiom for populating a tuple or list

1.4. Objects, Types and Reference Counts 7



The Python/C API, Release 3.13.0

with newly created objects; for example, the code to create the tuple (1, 2, "three") could look like this
(forgetting about error handling for the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyLong_FromLong(1L));
PyTuple_SetItem(t, 1, PyLong_FromLong(2L));
PyTuple_SetItem(t, 2, PyUnicode_FromString("three"));

Here, PyLong_FromLong() returns a new reference which is immediately stolen by PyTuple_SetItem().
When you want to keep using an object although the reference to it will be stolen, use Py_INCREF() to grab another
reference before calling the reference-stealing function.
Incidentally, PyTuple_SetItem() is the only way to set tuple items; PySequence_SetItem() and Py-
Object_SetItem() refuse to do this since tuples are an immutable data type. You should only use PyTu-
ple_SetItem() for tuples that you are creating yourself.
Equivalent code for populating a list can be written using PyList_New() and PyList_SetItem().
However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_BuildValue(), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject *tuple, *list;

tuple = Py_BuildValue("(iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
references is much saner, since you don’t have to take a new reference just so you can give that reference away (“have
it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all(PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length(target);
if (n < 0)

return -1;
for (i = 0; i < n; i++) {

PyObject *index = PyLong_FromSsize_t(i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {

Py_DECREF(index);
return -1;

}
Py_DECREF(index);

}
return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject_GetItem() and PySequence_GetItem(), always return a new reference (the caller becomes
the owner of the reference).

8 Chapter 1. Introduction



The Python/C API, Release 3.13.0

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage (the type of the object passed as an argument to the function) doesn’t enter into it! Thus, if you
extract an item from a list using PyList_GetItem(), you don’t own the reference — but if you obtain the same
item from the same list using PySequence_GetItem() (which happens to take exactly the same arguments),
you do own a reference to the returned object.
Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
using PyList_GetItem(), and once using PySequence_GetItem().

long
sum_list(PyObject *list)
{

Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)

return -1; /* Not a list */
for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())

/* Integer too big to fit in a C long, bail out */
return -1;

total += value;
}
return total;

}

long
sum_sequence(PyObject *sequence)
{

Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)

return -1; /* Has no length */
for (i = 0; i < n; i++) {

item = PySequence_GetItem(sequence, i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check(item)) {

value = PyLong_AsLong(item);
Py_DECREF(item);
if (value == -1 && PyErr_Occurred())

/* Integer too big to fit in a C long, bail out */
return -1;

total += value;
}
else {

Py_DECREF(item); /* Discard reference ownership */
}

}
return total;

}

1.4. Objects, Types and Reference Counts 9



The Python/C API, Release 3.13.0

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int, long, double and char*. A few structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type, and another is used to describe the value of a
complex number. These will be discussed together with the functions that use them.
type Py_ssize_t

Part of the Stable ABI.A signed integral type such that sizeof(Py_ssize_t) == sizeof(size_t).
C99 doesn’t define such a thing directly (size_t is an unsigned integral type). See PEP 353 for details.
PY_SSIZE_T_MAX is the largest positive value of type Py_ssize_t.

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.
For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator.
If not documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few
functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error
indicator or have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred().
These exceptions are always explicitly documented.
Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded applica-
tion). A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred()
can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, and NULL otherwise. There are a number of functions to set the exception state: PyErr_SetString()
is the most common (though not the most general) function to set the exception state, and PyErr_Clear() clears
the exception state.
The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info();
however, they are not the same: the Python objects represent the last exception being handled by a Python try…
except statement, while the C level exception state only exists while an exception is being passed on between C
functions until it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.
exc_info() and friends.
Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is
to call the function sys.exc_info(), which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.
As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it should not set another exception— that would overwrite the exception
that was just raised, and lose important information about the exact cause of the error.
A simple example of detecting exceptions and passing them on is shown in the sum_sequence() example above.
It so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:

(continues on next page)

10 Chapter 1. Introduction

https://peps.python.org/pep-0353/


The Python/C API, Release 3.13.0

(continued from previous page)
item = dict[key]

except KeyError:
item = 0

dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item(PyObject *dict, PyObject *key)
{

/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {

/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError))

goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong(0L);
if (item == NULL)

goto error;
}
const_one = PyLong_FromLong(1L);
if (const_one == NULL)

goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)

goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */
/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, 0 for success */
}

This example represents an endorsed use of the goto statement in C! It illustrates the use of Py-
Err_ExceptionMatches() and PyErr_Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that may be NULL (note the 'X' in the name; Py_DECREF()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to -1 (failure) and only set
to success after the final call made is successful.

1.5. Exceptions 11



The Python/C API, Release 3.13.0

1.6 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.
The basic initialization function is Py_Initialize(). This initializes the table of loadedmodules, and creates the
fundamental modules builtins, __main__, and sys. It also initializes the module search path (sys.path).
Py_Initialize() does not set the “script argument list” (sys.argv). If this variable is needed by Python code
that will be executed later, setting PyConfig.argv and PyConfig.parse_argv must be set: see Python
Initialization Configuration.
On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py_Initialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python in-
terpreter executable. In particular, it looks for a directory named lib/pythonX.Y relative to the parent directory
where the executable named python is found on the shell command search path (the environment variable PATH).
For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries
are in /usr/local/lib/pythonX.Y. (In fact, this particular path is also the “fallback” location, used when no
executable file named python is found along PATH.) The user can override this behavior by setting the environment
variable PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.
The embedding application can steer the search by setting PyConfig.program_name before calling
Py_InitializeFromConfig(). Note that PYTHONHOME still overrides this and PYTHONPATH is still in-
serted in front of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), and Py_GetProgramFullPath() (all
defined in Modules/getpath.c).
Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make
another call to Py_Initialize()) or the application is simply done with its use of Python and wants to
free memory allocated by Python. This can be accomplished by calling Py_FinalizeEx(). The function
Py_IsInitialized() returns true if Python is currently in the initialized state. More information about these
functions is given in a later chapter. Notice that Py_FinalizeEx() does not free all memory allocated by the
Python interpreter, e.g. memory allocated by extension modules currently cannot be released.

1.7 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These
checks tend to add a large amount of overhead to the runtime so they are not enabled by default.
A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
level profiling of the main interpreter loop. Only the most frequently used builds will be described in the remainder
of this section.
Py_DEBUG

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by a debug build of
Python. Py_DEBUG is enabled in the Unix build by adding --with-pydebug to the ./configure command.
It is also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the
Unix build, compiler optimization is disabled.
In addition to the reference count debugging described below, extra checks are performed, see Python Debug Build.
Defining Py_TRACE_REFS enables reference tracing (see the configure --with-trace-refs option).
When defined, a circular doubly linked list of active objects is maintained by adding two extra fields to every Py-
Object. Total allocations are tracked as well. Upon exit, all existing references are printed. (In interactive mode
this happens after every statement run by the interpreter.)

12 Chapter 1. Introduction



The Python/C API, Release 3.13.0

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

1.7. Debugging Builds 13



The Python/C API, Release 3.13.0

14 Chapter 1. Introduction



CHAPTER

TWO

C API STABILITY

Unless documented otherwise, Python’s C API is covered by the Backwards Compatibility Policy, PEP 387. Most
changes to it are source-compatible (typically by only adding new API). Changing existing API or removing API is
only done after a deprecation period or to fix serious issues.
CPython’s Application Binary Interface (ABI) is forward- and backwards-compatible across a minor release (if these
are compiled the same way; see Platform Considerations below). So, code compiled for Python 3.10.0 will work on
3.10.8 and vice versa, but will need to be compiled separately for 3.9.x and 3.11.x.
There are two tiers of C API with different stability expectations:

• Unstable API, may change in minor versions without a deprecation period. It is marked by the PyUnstable
prefix in names.

• Limited API, is compatible across several minor releases. When Py_LIMITED_API is defined, only this
subset is exposed from Python.h.

These are discussed in more detail below.
Names prefixed by an underscore, such as _Py_InternalState, are private API that can change without notice
even in patch releases. If you need to use this API, consider reaching out to CPython developers to discuss adding
public API for your use case.

2.1 Unstable C API

Any API named with the PyUnstable prefix exposes CPython implementation details, and may change in every
minor release (e.g. from 3.9 to 3.10) without any deprecation warnings. However, it will not change in a bugfix
release (e.g. from 3.10.0 to 3.10.1).
It is generally intended for specialized, low-level tools like debuggers.
Projects that use this API are expected to follow CPython development and spend extra effort adjusting to changes.

2.2 Stable Application Binary Interface

For simplicity, this document talks about extensions, but the Limited API and Stable ABI work the same way for all
uses of the API – for example, embedding Python.

15

https://peps.python.org/pep-0387/
https://discuss.python.org/c/core-dev/c-api/30


The Python/C API, Release 3.13.0

2.2.1 Limited C API

Python 3.2 introduced the Limited API, a subset of Python’s C API. Extensions that only use the Limited API can be
compiled once and work with multiple versions of Python. Contents of the Limited API are listed below.
Py_LIMITED_API

Define this macro before including Python.h to opt in to only use the Limited API, and to select the Limited
API version.
Define Py_LIMITED_API to the value of PY_VERSION_HEX corresponding to the lowest Python version
your extension supports. The extension will work without recompilation with all Python 3 releases from the
specified one onward, and can use Limited API introduced up to that version.
Rather than using the PY_VERSION_HEX macro directly, hardcode a minimum minor version (e.g.
0x030A0000 for Python 3.10) for stability when compiling with future Python versions.
You can also define Py_LIMITED_API to 3. This works the same as 0x03020000 (Python 3.2, the version
that introduced Limited API).

2.2.2 Stable ABI

To enable this, Python provides a Stable ABI: a set of symbols that will remain compatible across Python 3.x versions.
The Stable ABI contains symbols exposed in the Limited API, but also other ones – for example, functions necessary
to support older versions of the Limited API.
On Windows, extensions that use the Stable ABI should be linked against python3.dll rather than a version-
specific library such as python39.dll.
On some platforms, Python will look for and load shared library files named with the abi3 tag (e.g. mymodule.
abi3.so). It does not check if such extensions conform to a Stable ABI. The user (or their packaging tools) need to
ensure that, for example, extensions built with the 3.10+ Limited API are not installed for lower versions of Python.
All functions in the Stable ABI are present as functions in Python’s shared library, not solely as macros. This makes
them usable from languages that don’t use the C preprocessor.

2.2.3 Limited API Scope and Performance

The goal for the LimitedAPI is to allow everything that is possible with the full CAPI, but possibly with a performance
penalty.
For example, while PyList_GetItem() is available, its “unsafe” macro variant PyList_GET_ITEM() is not.
The macro can be faster because it can rely on version-specific implementation details of the list object.
Without Py_LIMITED_API defined, some C API functions are inlined or replaced by macros. Defining
Py_LIMITED_API disables this inlining, allowing stability as Python’s data structures are improved, but possi-
bly reducing performance.
By leaving out the Py_LIMITED_API definition, it is possible to compile a Limited API extension with a version-
specific ABI. This can improve performance for that Python version, but will limit compatibility. Compiling with
Py_LIMITED_API will then yield an extension that can be distributed where a version-specific one is not available
– for example, for prereleases of an upcoming Python version.

16 Chapter 2. C API Stability



The Python/C API, Release 3.13.0

2.2.4 Limited API Caveats

Note that compiling with Py_LIMITED_API is not a complete guarantee that code conforms to the Limited API or
the Stable ABI. Py_LIMITED_API only covers definitions, but an API also includes other issues, such as expected
semantics.
One issue that Py_LIMITED_API does not guard against is calling a function with arguments that are invalid in
a lower Python version. For example, consider a function that starts accepting NULL for an argument. In Python
3.9, NULL now selects a default behavior, but in Python 3.8, the argument will be used directly, causing a NULL
dereference and crash. A similar argument works for fields of structs.
Another issue is that some struct fields are currently not hidden when Py_LIMITED_API is defined, even though
they’re part of the Limited API.
For these reasons, we recommend testing an extension with all minor Python versions it supports, and preferably to
build with the lowest such version.
We also recommend reviewing documentation of all used API to check if it is explicitly part of the Limited API.
Even with Py_LIMITED_API defined, a few private declarations are exposed for technical reasons (or even unin-
tentionally, as bugs).
Also note that the Limited API is not necessarily stable: compiling with Py_LIMITED_APIwith Python 3.8 means
that the extension will run with Python 3.12, but it will not necessarily compile with Python 3.12. In particular, parts
of the Limited API may be deprecated and removed, provided that the Stable ABI stays stable.

2.3 Platform Considerations

ABI stability depends not only on Python, but also on the compiler used, lower-level libraries and compiler options.
For the purposes of the Stable ABI, these details define a “platform”. They usually depend on the OS type and
processor architecture
It is the responsibility of each particular distributor of Python to ensure that all Python versions on a particular
platform are built in a way that does not break the Stable ABI. This is the case with Windows and macOS releases
from python.org and many third-party distributors.

2.4 Contents of Limited API

Currently, the Limited API includes the following items:

• PY_VECTORCALL_ARGUMENTS_OFFSET

• PyAIter_Check()

• PyArg_Parse()

• PyArg_ParseTuple()

• PyArg_ParseTupleAndKeywords()

• PyArg_UnpackTuple()

• PyArg_VaParse()

• PyArg_VaParseTupleAndKeywords()

• PyArg_ValidateKeywordArguments()

• PyBaseObject_Type

• PyBool_FromLong()

• PyBool_Type

2.3. Platform Considerations 17



The Python/C API, Release 3.13.0

• PyBuffer_FillContiguousStrides()

• PyBuffer_FillInfo()

• PyBuffer_FromContiguous()

• PyBuffer_GetPointer()

• PyBuffer_IsContiguous()

• PyBuffer_Release()

• PyBuffer_SizeFromFormat()

• PyBuffer_ToContiguous()

• PyByteArrayIter_Type

• PyByteArray_AsString()

• PyByteArray_Concat()

• PyByteArray_FromObject()

• PyByteArray_FromStringAndSize()

• PyByteArray_Resize()

• PyByteArray_Size()

• PyByteArray_Type

• PyBytesIter_Type

• PyBytes_AsString()

• PyBytes_AsStringAndSize()

• PyBytes_Concat()

• PyBytes_ConcatAndDel()

• PyBytes_DecodeEscape()

• PyBytes_FromFormat()

• PyBytes_FromFormatV()

• PyBytes_FromObject()

• PyBytes_FromString()

• PyBytes_FromStringAndSize()

• PyBytes_Repr()

• PyBytes_Size()

• PyBytes_Type

• PyCFunction

• PyCFunctionFast

• PyCFunctionFastWithKeywords

• PyCFunctionWithKeywords

• PyCFunction_GetFlags()

• PyCFunction_GetFunction()

• PyCFunction_GetSelf()

• PyCFunction_New()

• PyCFunction_NewEx()

18 Chapter 2. C API Stability



The Python/C API, Release 3.13.0

• PyCFunction_Type

• PyCMethod_New()

• PyCallIter_New()

• PyCallIter_Type

• PyCallable_Check()

• PyCapsule_Destructor

• PyCapsule_GetContext()

• PyCapsule_GetDestructor()

• PyCapsule_GetName()

• PyCapsule_GetPointer()

• PyCapsule_Import()

• PyCapsule_IsValid()

• PyCapsule_New()

• PyCapsule_SetContext()

• PyCapsule_SetDestructor()

• PyCapsule_SetName()

• PyCapsule_SetPointer()

• PyCapsule_Type

• PyClassMethodDescr_Type

• PyCodec_BackslashReplaceErrors()

• PyCodec_Decode()

• PyCodec_Decoder()

• PyCodec_Encode()

• PyCodec_Encoder()

• PyCodec_IgnoreErrors()

• PyCodec_IncrementalDecoder()

• PyCodec_IncrementalEncoder()

• PyCodec_KnownEncoding()

• PyCodec_LookupError()

• PyCodec_NameReplaceErrors()

• PyCodec_Register()

• PyCodec_RegisterError()

• PyCodec_ReplaceErrors()

• PyCodec_StreamReader()

• PyCodec_StreamWriter()

• PyCodec_StrictErrors()

• PyCodec_Unregister()

• PyCodec_XMLCharRefReplaceErrors()

• PyComplex_FromDoubles()

2.4. Contents of Limited API 19



The Python/C API, Release 3.13.0

• PyComplex_ImagAsDouble()

• PyComplex_RealAsDouble()

• PyComplex_Type

• PyDescr_NewClassMethod()

• PyDescr_NewGetSet()

• PyDescr_NewMember()

• PyDescr_NewMethod()

• PyDictItems_Type

• PyDictIterItem_Type

• PyDictIterKey_Type

• PyDictIterValue_Type

• PyDictKeys_Type

• PyDictProxy_New()

• PyDictProxy_Type

• PyDictRevIterItem_Type

• PyDictRevIterKey_Type

• PyDictRevIterValue_Type

• PyDictValues_Type

• PyDict_Clear()

• PyDict_Contains()

• PyDict_Copy()

• PyDict_DelItem()

• PyDict_DelItemString()

• PyDict_GetItem()

• PyDict_GetItemRef()

• PyDict_GetItemString()

• PyDict_GetItemStringRef()

• PyDict_GetItemWithError()

• PyDict_Items()

• PyDict_Keys()

• PyDict_Merge()

• PyDict_MergeFromSeq2()

• PyDict_New()

• PyDict_Next()

• PyDict_SetItem()

• PyDict_SetItemString()

• PyDict_Size()

• PyDict_Type

• PyDict_Update()

20 Chapter 2. C API Stability



The Python/C API, Release 3.13.0

• PyDict_Values()

• PyEllipsis_Type

• PyEnum_Type

• PyErr_BadArgument()

• PyErr_BadInternalCall()

• PyErr_CheckSignals()

• PyErr_Clear()

• PyErr_Display()

• PyErr_DisplayException()

• PyErr_ExceptionMatches()

• PyErr_Fetch()

• PyErr_Format()

• PyErr_FormatV()

• PyErr_GetExcInfo()

• PyErr_GetHandledException()

• PyErr_GetRaisedException()

• PyErr_GivenExceptionMatches()

• PyErr_NewException()

• PyErr_NewExceptionWithDoc()

• PyErr_NoMemory()

• PyErr_NormalizeException()

• PyErr_Occurred()

• PyErr_Print()

• PyErr_PrintEx()

• PyErr_ProgramText()

• PyErr_ResourceWarning()

• PyErr_Restore()

• PyErr_SetExcFromWindowsErr()

• PyErr_SetExcFromWindowsErrWithFilename()

• PyErr_SetExcFromWindowsErrWithFilenameObject()

• PyErr_SetExcFromWindowsErrWithFilenameObjects()

• PyErr_SetExcInfo()

• PyErr_SetFromErrno()

• PyErr_SetFromErrnoWithFilename()

• PyErr_SetFromErrnoWithFilenameObject()

• PyErr_SetFromErrnoWithFilenameObjects()

• PyErr_SetFromWindowsErr()

• PyErr_SetFromWindowsErrWithFilename()

• PyErr_SetHandledException()

2.4. Contents of Limited API 21



The Python/C API, Release 3.13.0

• PyErr_SetImportError()

• PyErr_SetImportErrorSubclass()

• PyErr_SetInterrupt()

• PyErr_SetInterruptEx()

• PyErr_SetNone()

• PyErr_SetObject()

• PyErr_SetRaisedException()

• PyErr_SetString()

• PyErr_SyntaxLocation()

• PyErr_SyntaxLocationEx()

• PyErr_WarnEx()

• PyErr_WarnExplicit()

• PyErr_WarnFormat()

• PyErr_WriteUnraisable()

• PyEval_AcquireThread()

• PyEval_EvalCode()

• PyEval_EvalCodeEx()

• PyEval_EvalFrame()

• PyEval_EvalFrameEx()

• PyEval_GetBuiltins()

• PyEval_GetFrame()

• PyEval_GetFrameBuiltins()

• PyEval_GetFrameGlobals()

• PyEval_GetFrameLocals()

• PyEval_GetFuncDesc()

• PyEval_GetFuncName()

• PyEval_GetGlobals()

• PyEval_GetLocals()

• PyEval_InitThreads()

• PyEval_ReleaseThread()

• PyEval_RestoreThread()

• PyEval_SaveThread()

• PyExc_ArithmeticError

• PyExc_AssertionError

• PyExc_AttributeError

• PyExc_BaseException

• PyExc_BaseExceptionGroup

• PyExc_BlockingIOError

• PyExc_BrokenPipeError

22 Chapter 2. C API Stability



The Python/C API, Release 3.13.0

• PyExc_BufferError

• PyExc_BytesWarning

• PyExc_ChildProcessError

• PyExc_ConnectionAbortedError

• PyExc_ConnectionError

• PyExc_ConnectionRefusedError

• PyExc_ConnectionResetError

• PyExc_DeprecationWarning

• PyExc_EOFError

• PyExc_EncodingWarning

• PyExc_EnvironmentError

• PyExc_Exception

• PyExc_FileExistsError

• PyExc_FileNotFoundError

• PyExc_FloatingPointError

• PyExc_FutureWarning

• PyExc_GeneratorExit

• PyExc_IOError

• PyExc_ImportError

• PyExc_ImportWarning

• PyExc_IndentationError

• PyExc_IndexError

• PyExc_InterruptedError

• PyExc_IsADirectoryError

• PyExc_KeyError

• PyExc_KeyboardInterrupt

• PyExc_LookupError

• PyExc_MemoryError

• PyExc_ModuleNotFoundError

• PyExc_NameError

• PyExc_NotADirectoryError

• PyExc_NotImplementedError

• PyExc_OSError

• PyExc_OverflowError

• PyExc_PendingDeprecationWarning

• PyExc_PermissionError

• PyExc_ProcessLookupError

• PyExc_RecursionError

• PyExc_ReferenceError

2.4. Contents of Limited API 23



The Python/C API, Release 3.13.0

• PyExc_ResourceWarning

• PyExc_RuntimeError

• PyExc_RuntimeWarning

• PyExc_StopAsyncIteration

• PyExc_StopIteration

• PyExc_SyntaxError

• PyExc_SyntaxWarning

• PyExc_SystemError

• PyExc_SystemExit

• PyExc_TabError

• PyExc_TimeoutError

• PyExc_TypeError

• PyExc_UnboundLocalError

• PyExc_UnicodeDecodeError

• PyExc_UnicodeEncodeError

• PyExc_UnicodeError

• PyExc_UnicodeTranslateError

• PyExc_UnicodeWarning

• PyExc_UserWarning

• PyExc_ValueError

• PyExc_Warning

• PyExc_WindowsError

• PyExc_ZeroDivisionError

• PyExceptionClass_Name()

• PyException_GetArgs()

• PyException_GetCause()

• PyException_GetContext()

• PyException_GetTraceback()

• PyException_SetArgs()

• PyException_SetCause()

• PyException_SetContext()

• PyException_SetTraceback()

• PyFile_FromFd()

• PyFile_GetLine()

• PyFile_WriteObject()

• PyFile_WriteString()

• PyFilter_Type

• PyFloat_AsDouble()

• PyFloat_FromDouble()

24 Chapter 2. C API Stability



The Python/C API, Release 3.13.0

• PyFloat_FromString()

• PyFloat_GetInfo()

• PyFloat_GetMax()

• PyFloat_GetMin()

• PyFloat_Type

• PyFrameObject

• PyFrame_GetCode()

• PyFrame_GetLineNumber()

• PyFrozenSet_New()

• PyFrozenSet_Type

• PyGC_Collect()

• PyGC_Disable()

• PyGC_Enable()

• PyGC_IsEnabled()

• PyGILState_Ensure()

• PyGILState_GetThisThreadState()

• PyGILState_Release()

• PyGILState_STATE

• PyGetSetDef

• PyGetSetDescr_Type

• PyImport_AddModule()

• PyImport_AddModuleObject()

• PyImport_AddModuleRef()

• PyImport_AppendInittab()

• PyImport_ExecCodeModule()

• PyImport_ExecCodeModuleEx()

• PyImport_ExecCodeModuleObject()

• PyImport_ExecCodeModuleWithPathnames()

• PyImport_GetImporter()

• PyImport_GetMagicNumber()

• PyImport_GetMagicTag()

• PyImport_GetModule()

• PyImport_GetModuleDict()

• PyImport_Import()

• PyImport_ImportFrozenModule()

• PyImport_ImportFrozenModuleObject()

• PyImport_ImportModule()

• PyImport_ImportModuleLevel()

• PyImport_ImportModuleLevelObject()

2.4. Contents of Limited API 25



The Python/C API, Release 3.13.0

• PyImport_ImportModuleNoBlock()

• PyImport_ReloadModule()

• PyIndex_Check()

• PyInterpreterState

• PyInterpreterState_Clear()

• PyInterpreterState_Delete()

• PyInterpreterState_Get()

• PyInterpreterState_GetDict()

• PyInterpreterState_GetID()

• PyInterpreterState_New()

• PyIter_Check()

• PyIter_Next()

• PyIter_Send()

• PyListIter_Type

• PyListRevIter_Type

• PyList_Append()

• PyList_AsTuple()

• PyList_GetItem()

• PyList_GetItemRef()

• PyList_GetSlice()

• PyList_Insert()

• PyList_New()

• PyList_Reverse()

• PyList_SetItem()

• PyList_SetSlice()

• PyList_Size()

• PyList_Sort()

• PyList_Type

• PyLongObject

• PyLongRangeIter_Type

• PyLong_AsDouble()

• PyLong_AsInt()

• PyLong_AsLong()

• PyLong_AsLongAndOverflow()

• PyLong_AsLongLong()

• PyLong_AsLongLongAndOverflow()

• PyLong_AsSize_t()

• PyLong_AsSsize_t()

• PyLong_AsUnsignedLong()

26 Chapter 2. C API Stability



The Python/C API, Release 3.13.0

• PyLong_AsUnsignedLongLong()

• PyLong_AsUnsignedLongLongMask()

• PyLong_AsUnsignedLongMask()

• PyLong_AsVoidPtr()

• PyLong_FromDouble()

• PyLong_FromLong()

• PyLong_FromLongLong()

• PyLong_FromSize_t()

• PyLong_FromSsize_t()

• PyLong_FromString()

• PyLong_FromUnsignedLong()

• PyLong_FromUnsignedLongLong()

• PyLong_FromVoidPtr()

• PyLong_GetInfo()

• PyLong_Type

• PyMap_Type

• PyMapping_Check()

• PyMapping_GetItemString()

• PyMapping_GetOptionalItem()

• PyMapping_GetOptionalItemString()

• PyMapping_HasKey()

• PyMapping_HasKeyString()

• PyMapping_HasKeyStringWithError()

• PyMapping_HasKeyWithError()

• PyMapping_Items()

• PyMapping_Keys()

• PyMapping_Length()

• PyMapping_SetItemString()

• PyMapping_Size()

• PyMapping_Values()

• PyMem_Calloc()

• PyMem_Free()

• PyMem_Malloc()

• PyMem_RawCalloc()

• PyMem_RawFree()

• PyMem_RawMalloc()

• PyMem_RawRealloc()

• PyMem_Realloc()

• PyMemberDef

2.4. Contents of Limited API 27



The Python/C API, Release 3.13.0

• PyMemberDescr_Type

• PyMember_GetOne()

• PyMember_SetOne()

• PyMemoryView_FromBuffer()

• PyMemoryView_FromMemory()

• PyMemoryView_FromObject()

• PyMemoryView_GetContiguous()

• PyMemoryView_Type

• PyMethodDef

• PyMethodDescr_Type

• PyModuleDef

• PyModuleDef_Base

• PyModuleDef_Init()

• PyModuleDef_Type

• PyModule_Add()

• PyModule_AddFunctions()

• PyModule_AddIntConstant()

• PyModule_AddObject()

• PyModule_AddObjectRef()

• PyModule_AddStringConstant()

• PyModule_AddType()

• PyModule_Create2()

• PyModule_ExecDef()

• PyModule_FromDefAndSpec2()

• PyModule_GetDef()

• PyModule_GetDict()

• PyModule_GetFilename()

• PyModule_GetFilenameObject()

• PyModule_GetName()

• PyModule_GetNameObject()

• PyModule_GetState()

• PyModule_New()

• PyModule_NewObject()

• PyModule_SetDocString()

• PyModule_Type

• PyNumber_Absolute()

• PyNumber_Add()

• PyNumber_And()

• PyNumber_AsSsize_t()

28 Chapter 2. C API Stability



The Python/C API, Release 3.13.0

• PyNumber_Check()

• PyNumber_Divmod()

• PyNumber_Float()

• PyNumber_FloorDivide()

• PyNumber_InPlaceAdd()

• PyNumber_InPlaceAnd()

• PyNumber_InPlaceFloorDivide()

• PyNumber_InPlaceLshift()

• PyNumber_InPlaceMatrixMultiply()

• PyNumber_InPlaceMultiply()

• PyNumber_InPlaceOr()

• PyNumber_InPlacePower()

• PyNumber_InPlaceRemainder()

• PyNumber_InPlaceRshift()

• PyNumber_InPlaceSubtract()

• PyNumber_InPlaceTrueDivide()

• PyNumber_InPlaceXor()

• PyNumber_Index()

• PyNumber_Invert()

• PyNumber_Long()

• PyNumber_Lshift()

• PyNumber_MatrixMultiply()

• PyNumber_Multiply()

• PyNumber_Negative()

• PyNumber_Or()

• PyNumber_Positive()

• PyNumber_Power()

• PyNumber_Remainder()

• PyNumber_Rshift()

• PyNumber_Subtract()

• PyNumber_ToBase()

• PyNumber_TrueDivide()

• PyNumber_Xor()

• PyOS_AfterFork()

• PyOS_AfterFork_Child()

• PyOS_AfterFork_Parent()

• PyOS_BeforeFork()

• PyOS_CheckStack()

• PyOS_FSPath()

2.4. Contents of Limited API 29



The Python/C API, Release 3.13.0

• PyOS_InputHook

• PyOS_InterruptOccurred()

• PyOS_double_to_string()

• PyOS_getsig()

• PyOS_mystricmp()

• PyOS_mystrnicmp()

• PyOS_setsig()

• PyOS_sighandler_t

• PyOS_snprintf()

• PyOS_string_to_double()

• PyOS_strtol()

• PyOS_strtoul()

• PyOS_vsnprintf()

• PyObject

• PyObject.ob_refcnt

• PyObject.ob_type

• PyObject_ASCII()

• PyObject_AsFileDescriptor()

• PyObject_Bytes()

• PyObject_Call()

• PyObject_CallFunction()

• PyObject_CallFunctionObjArgs()

• PyObject_CallMethod()

• PyObject_CallMethodObjArgs()

• PyObject_CallNoArgs()

• PyObject_CallObject()

• PyObject_Calloc()

• PyObject_CheckBuffer()

• PyObject_ClearWeakRefs()

• PyObject_CopyData()

• PyObject_DelAttr()

• PyObject_DelAttrString()

• PyObject_DelItem()

• PyObject_DelItemString()

• PyObject_Dir()

• PyObject_Format()

• PyObject_Free()

• PyObject_GC_Del()

• PyObject_GC_IsFinalized()

30 Chapter 2. C API Stability



The Python/C API, Release 3.13.0

• PyObject_GC_IsTracked()

• PyObject_GC_Track()

• PyObject_GC_UnTrack()

• PyObject_GenericGetAttr()

• PyObject_GenericGetDict()

• PyObject_GenericSetAttr()

• PyObject_GenericSetDict()

• PyObject_GetAIter()

• PyObject_GetAttr()

• PyObject_GetAttrString()

• PyObject_GetBuffer()

• PyObject_GetItem()

• PyObject_GetIter()

• PyObject_GetOptionalAttr()

• PyObject_GetOptionalAttrString()

• PyObject_GetTypeData()

• PyObject_HasAttr()

• PyObject_HasAttrString()

• PyObject_HasAttrStringWithError()

• PyObject_HasAttrWithError()

• PyObject_Hash()

• PyObject_HashNotImplemented()

• PyObject_Init()

• PyObject_InitVar()

• PyObject_IsInstance()

• PyObject_IsSubclass()

• PyObject_IsTrue()

• PyObject_Length()

• PyObject_Malloc()

• PyObject_Not()

• PyObject_Realloc()

• PyObject_Repr()

• PyObject_RichCompare()

• PyObject_RichCompareBool()

• PyObject_SelfIter()

• PyObject_SetAttr()

• PyObject_SetAttrString()

• PyObject_SetItem()

• PyObject_Size()

2.4. Contents of Limited API 31



The Python/C API, Release 3.13.0

• PyObject_Str()

• PyObject_Type()

• PyObject_Vectorcall()

• PyObject_VectorcallMethod()

• PyProperty_Type

• PyRangeIter_Type

• PyRange_Type

• PyReversed_Type

• PySeqIter_New()

• PySeqIter_Type

• PySequence_Check()

• PySequence_Concat()

• PySequence_Contains()

• PySequence_Count()

• PySequence_DelItem()

• PySequence_DelSlice()

• PySequence_Fast()

• PySequence_GetItem()

• PySequence_GetSlice()

• PySequence_In()

• PySequence_InPlaceConcat()

• PySequence_InPlaceRepeat()

• PySequence_Index()

• PySequence_Length()

• PySequence_List()

• PySequence_Repeat()

• PySequence_SetItem()

• PySequence_SetSlice()

• PySequence_Size()

• PySequence_Tuple()

• PySetIter_Type

• PySet_Add()

• PySet_Clear()

• PySet_Contains()

• PySet_Discard()

• PySet_New()

• PySet_Pop()

• PySet_Size()

• PySet_Type

32 Chapter 2. C API Stability



The Python/C API, Release 3.13.0

• PySlice_AdjustIndices()

• PySlice_GetIndices()

• PySlice_GetIndicesEx()

• PySlice_New()

• PySlice_Type

• PySlice_Unpack()

• PyState_AddModule()

• PyState_FindModule()

• PyState_RemoveModule()

• PyStructSequence_Desc

• PyStructSequence_Field

• PyStructSequence_GetItem()

• PyStructSequence_New()

• PyStructSequence_NewType()

• PyStructSequence_SetItem()

• PyStructSequence_UnnamedField

• PySuper_Type

• PySys_Audit()

• PySys_AuditTuple()

• PySys_FormatStderr()

• PySys_FormatStdout()

• PySys_GetObject()

• PySys_GetXOptions()

• PySys_ResetWarnOptions()

• PySys_SetArgv()

• PySys_SetArgvEx()

• PySys_SetObject()

• PySys_WriteStderr()

• PySys_WriteStdout()

• PyThreadState

• PyThreadState_Clear()

• PyThreadState_Delete()

• PyThreadState_Get()

• PyThreadState_GetDict()

• PyThreadState_GetFrame()

• PyThreadState_GetID()

• PyThreadState_GetInterpreter()

• PyThreadState_New()

• PyThreadState_SetAsyncExc()

2.4. Contents of Limited API 33



The Python/C API, Release 3.13.0

• PyThreadState_Swap()

• PyThread_GetInfo()

• PyThread_ReInitTLS()

• PyThread_acquire_lock()

• PyThread_acquire_lock_timed()

• PyThread_allocate_lock()

• PyThread_create_key()

• PyThread_delete_key()

• PyThread_delete_key_value()

• PyThread_exit_thread()

• PyThread_free_lock()

• PyThread_get_key_value()

• PyThread_get_stacksize()

• PyThread_get_thread_ident()

• PyThread_get_thread_native_id()

• PyThread_init_thread()

• PyThread_release_lock()

• PyThread_set_key_value()

• PyThread_set_stacksize()

• PyThread_start_new_thread()

• PyThread_tss_alloc()

• PyThread_tss_create()

• PyThread_tss_delete()

• PyThread_tss_free()

• PyThread_tss_get()

• PyThread_tss_is_created()

• PyThread_tss_set()

• PyTraceBack_Here()

• PyTraceBack_Print()

• PyTraceBack_Type

• PyTupleIter_Type

• PyTuple_GetItem()

• PyTuple_GetSlice()

• PyTuple_New()

• PyTuple_Pack()

• PyTuple_SetItem()

• PyTuple_Size()

• PyTuple_Type

• PyTypeObject

34 Chapter 2. C API Stability



The Python/C API, Release 3.13.0

• PyType_ClearCache()

• PyType_FromMetaclass()

• PyType_FromModuleAndSpec()

• PyType_FromSpec()

• PyType_FromSpecWithBases()

• PyType_GenericAlloc()

• PyType_GenericNew()

• PyType_GetFlags()

• PyType_GetFullyQualifiedName()

• PyType_GetModule()

• PyType_GetModuleByDef()

• PyType_GetModuleName()

• PyType_GetModuleState()

• PyType_GetName()

• PyType_GetQualName()

• PyType_GetSlot()

• PyType_GetTypeDataSize()

• PyType_IsSubtype()

• PyType_Modified()

• PyType_Ready()

• PyType_Slot

• PyType_Spec

• PyType_Type

• PyUnicodeDecodeError_Create()

• PyUnicodeDecodeError_GetEncoding()

• PyUnicodeDecodeError_GetEnd()

• PyUnicodeDecodeError_GetObject()

• PyUnicodeDecodeError_GetReason()

• PyUnicodeDecodeError_GetStart()

• PyUnicodeDecodeError_SetEnd()

• PyUnicodeDecodeError_SetReason()

• PyUnicodeDecodeError_SetStart()

• PyUnicodeEncodeError_GetEncoding()

• PyUnicodeEncodeError_GetEnd()

• PyUnicodeEncodeError_GetObject()

• PyUnicodeEncodeError_GetReason()

• PyUnicodeEncodeError_GetStart()

• PyUnicodeEncodeError_SetEnd()

• PyUnicodeEncodeError_SetReason()

2.4. Contents of Limited API 35



The Python/C API, Release 3.13.0

• PyUnicodeEncodeError_SetStart()

• PyUnicodeIter_Type

• PyUnicodeTranslateError_GetEnd()

• PyUnicodeTranslateError_GetObject()

• PyUnicodeTranslateError_GetReason()

• PyUnicodeTranslateError_GetStart()

• PyUnicodeTranslateError_SetEnd()

• PyUnicodeTranslateError_SetReason()

• PyUnicodeTranslateError_SetStart()

• PyUnicode_Append()

• PyUnicode_AppendAndDel()

• PyUnicode_AsASCIIString()

• PyUnicode_AsCharmapString()

• PyUnicode_AsDecodedObject()

• PyUnicode_AsDecodedUnicode()

• PyUnicode_AsEncodedObject()

• PyUnicode_AsEncodedString()

• PyUnicode_AsEncodedUnicode()

• PyUnicode_AsLatin1String()

• PyUnicode_AsMBCSString()

• PyUnicode_AsRawUnicodeEscapeString()

• PyUnicode_AsUCS4()

• PyUnicode_AsUCS4Copy()

• PyUnicode_AsUTF16String()

• PyUnicode_AsUTF32String()

• PyUnicode_AsUTF8AndSize()

• PyUnicode_AsUTF8String()

• PyUnicode_AsUnicodeEscapeString()

• PyUnicode_AsWideChar()

• PyUnicode_AsWideCharString()

• PyUnicode_BuildEncodingMap()

• PyUnicode_Compare()

• PyUnicode_CompareWithASCIIString()

• PyUnicode_Concat()

• PyUnicode_Contains()

• PyUnicode_Count()

• PyUnicode_Decode()

• PyUnicode_DecodeASCII()

• PyUnicode_DecodeCharmap()

36 Chapter 2. C API Stability



The Python/C API, Release 3.13.0

• PyUnicode_DecodeCodePageStateful()

• PyUnicode_DecodeFSDefault()

• PyUnicode_DecodeFSDefaultAndSize()

• PyUnicode_DecodeLatin1()

• PyUnicode_DecodeLocale()

• PyUnicode_DecodeLocaleAndSize()

• PyUnicode_DecodeMBCS()

• PyUnicode_DecodeMBCSStateful()

• PyUnicode_DecodeRawUnicodeEscape()

• PyUnicode_DecodeUTF16()

• PyUnicode_DecodeUTF16Stateful()

• PyUnicode_DecodeUTF32()

• PyUnicode_DecodeUTF32Stateful()

• PyUnicode_DecodeUTF7()

• PyUnicode_DecodeUTF7Stateful()

• PyUnicode_DecodeUTF8()

• PyUnicode_DecodeUTF8Stateful()

• PyUnicode_DecodeUnicodeEscape()

• PyUnicode_EncodeCodePage()

• PyUnicode_EncodeFSDefault()

• PyUnicode_EncodeLocale()

• PyUnicode_EqualToUTF8()

• PyUnicode_EqualToUTF8AndSize()

• PyUnicode_FSConverter()

• PyUnicode_FSDecoder()

• PyUnicode_Find()

• PyUnicode_FindChar()

• PyUnicode_Format()

• PyUnicode_FromEncodedObject()

• PyUnicode_FromFormat()

• PyUnicode_FromFormatV()

• PyUnicode_FromObject()

• PyUnicode_FromOrdinal()

• PyUnicode_FromString()

• PyUnicode_FromStringAndSize()

• PyUnicode_FromWideChar()

• PyUnicode_GetDefaultEncoding()

• PyUnicode_GetLength()

• PyUnicode_InternFromString()

2.4. Contents of Limited API 37



The Python/C API, Release 3.13.0

• PyUnicode_InternInPlace()

• PyUnicode_IsIdentifier()

• PyUnicode_Join()

• PyUnicode_Partition()

• PyUnicode_RPartition()

• PyUnicode_RSplit()

• PyUnicode_ReadChar()

• PyUnicode_Replace()

• PyUnicode_Resize()

• PyUnicode_RichCompare()

• PyUnicode_Split()

• PyUnicode_Splitlines()

• PyUnicode_Substring()

• PyUnicode_Tailmatch()

• PyUnicode_Translate()

• PyUnicode_Type

• PyUnicode_WriteChar()

• PyVarObject

• PyVarObject.ob_base

• PyVarObject.ob_size

• PyVectorcall_Call()

• PyVectorcall_NARGS()

• PyWeakReference

• PyWeakref_GetObject()

• PyWeakref_GetRef()

• PyWeakref_NewProxy()

• PyWeakref_NewRef()

• PyWrapperDescr_Type

• PyWrapper_New()

• PyZip_Type

• Py_AddPendingCall()

• Py_AtExit()

• Py_BEGIN_ALLOW_THREADS

• Py_BLOCK_THREADS

• Py_BuildValue()

• Py_BytesMain()

• Py_CompileString()

• Py_DecRef()

• Py_DecodeLocale()

38 Chapter 2. C API Stability



The Python/C API, Release 3.13.0

• Py_END_ALLOW_THREADS

• Py_EncodeLocale()

• Py_EndInterpreter()

• Py_EnterRecursiveCall()

• Py_Exit()

• Py_FatalError()

• Py_FileSystemDefaultEncodeErrors

• Py_FileSystemDefaultEncoding

• Py_Finalize()

• Py_FinalizeEx()

• Py_GenericAlias()

• Py_GenericAliasType

• Py_GetBuildInfo()

• Py_GetCompiler()

• Py_GetConstant()

• Py_GetConstantBorrowed()

• Py_GetCopyright()

• Py_GetExecPrefix()

• Py_GetPath()

• Py_GetPlatform()

• Py_GetPrefix()

• Py_GetProgramFullPath()

• Py_GetProgramName()

• Py_GetPythonHome()

• Py_GetRecursionLimit()

• Py_GetVersion()

• Py_HasFileSystemDefaultEncoding

• Py_IncRef()

• Py_Initialize()

• Py_InitializeEx()

• Py_Is()

• Py_IsFalse()

• Py_IsFinalizing()

• Py_IsInitialized()

• Py_IsNone()

• Py_IsTrue()

• Py_LeaveRecursiveCall()

• Py_Main()

• Py_MakePendingCalls()

2.4. Contents of Limited API 39



The Python/C API, Release 3.13.0

• Py_NewInterpreter()

• Py_NewRef()

• Py_ReprEnter()

• Py_ReprLeave()

• Py_SetProgramName()

• Py_SetPythonHome()

• Py_SetRecursionLimit()

• Py_UCS4

• Py_UNBLOCK_THREADS

• Py_UTF8Mode

• Py_VaBuildValue()

• Py_Version

• Py_XNewRef()

• Py_buffer

• Py_intptr_t

• Py_ssize_t

• Py_uintptr_t

• allocfunc

• binaryfunc

• descrgetfunc

• descrsetfunc

• destructor

• getattrfunc

• getattrofunc

• getbufferproc

• getiterfunc

• getter

• hashfunc

• initproc

• inquiry

• iternextfunc

• lenfunc

• newfunc

• objobjargproc

• objobjproc

• releasebufferproc

• reprfunc

• richcmpfunc

• setattrfunc

40 Chapter 2. C API Stability



The Python/C API, Release 3.13.0

• setattrofunc

• setter

• ssizeargfunc

• ssizeobjargproc

• ssizessizeargfunc

• ssizessizeobjargproc

• symtable

• ternaryfunc

• traverseproc

• unaryfunc

• vectorcallfunc

• visitproc

2.4. Contents of Limited API 41



The Python/C API, Release 3.13.0

42 Chapter 2. C API Stability



CHAPTER

THREE

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.
Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions
which accept them as parameters.
Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled
carefully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that
the Python runtime is using.
int Py_Main(int argc, wchar_t **argv)

Part of the Stable ABI. The main program for the standard interpreter. This is made available for programs
which embed Python. The argc and argv parameters should be prepared exactly as those which are passed to
a C program’s main() function (converted to wchar_t according to the user’s locale). It is important to note
that the argument list may be modified (but the contents of the strings pointed to by the argument list are not).
The return value will be 0 if the interpreter exits normally (i.e., without an exception), 1 if the interpreter exits
due to an exception, or 2 if the parameter list does not represent a valid Python command line.
Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the
process, as long as PyConfig.inspect is zero.

int Py_BytesMain(int argc, char **argv)
Part of the Stable ABI since version 3.8. Similar to Py_Main() but argv is an array of bytes strings.
Added in version 3.8.

int PyRun_AnyFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_AnyFileFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving the flags argument set to
NULL.

int PyRun_AnyFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix
pseudo-terminal), return the value of PyRun_InteractiveLoop(), otherwise return the re-
sult of PyRun_SimpleFile(). filename is decoded from the filesystem encoding (sys.
getfilesystemencoding()). If filename is NULL, this function uses "???" as the filename. If closeit
is true, the file is closed before PyRun_SimpleFileExFlags() returns.

43



The Python/C API, Release 3.13.0

int PyRun_SimpleString(const char *command)
This is a simplified interface to PyRun_SimpleStringFlags() below, leaving the PyCompiler-
Flags* argument set to NULL.

int PyRun_SimpleStringFlags(const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main__ module according to the flags argument.
If __main__ does not already exist, it is created. Returns 0 on success or -1 if an exception was raised. If
there was an error, there is no way to get the exception information. For the meaning of flags, see below.
Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the
process, as long as PyConfig.inspect is zero.

int PyRun_SimpleFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving closeit set to 0 and flags
set to NULL.

int PyRun_SimpleFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags(), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file, it is decoded from filesystem encoding and error
handler. If closeit is true, the file is closed before PyRun_SimpleFileExFlags() returns.

Note

On Windows, fp should be opened as binary mode (e.g. fopen(filename, "rb")). Otherwise,
Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags() below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags
argument. The user will be prompted using sys.ps1 and sys.ps2. filename is decoded from the filesystem
encoding and error handler.
Returns 0 when the input was executed successfully, -1 if there was an exception, or an error code from the
errcode.h include file distributed as part of Python if there was a parse error. (Note that errcode.h is
not included by Python.h, so must be included specifically if needed.)

int PyRun_InteractiveLoop(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags() below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.ps1 and sys.ps2. filename is decoded from the filesystem encoding and error
handler. Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook)(void)
Part of the Stable ABI. Can be set to point to a function with the prototype int func(void). The function
will be called when Python’s interpreter prompt is about to become idle and wait for user input from the
terminal. The return value is ignored. Overriding this hook can be used to integrate the interpreter’s prompt
with other event loops, as done in the Modules/_tkinter.c in the Python source code.
Changed in version 3.12: This function is only called from the main interpreter.

char *(*PyOS_ReadlineFunctionPointer)(FILE*, FILE*, const char*)
Can be set to point to a function with the prototype char *func(FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’s
prompt. The function is expected to output the string prompt if it’s not NULL, and then read a line of input

44 Chapter 3. The Very High Level Layer



The Python/C API, Release 3.13.0

from the provided standard input file, returning the resulting string. For example, The readline module
sets this hook to provide line-editing and tab-completion features.
The result must be a string allocated by PyMem_RawMalloc() or PyMem_RawRealloc(), or NULL if
an error occurred.
Changed in version 3.4: The result must be allocated by PyMem_RawMalloc() or
PyMem_RawRealloc(), instead of being allocated by PyMem_Malloc() or PyMem_Realloc().
Changed in version 3.12: This function is only called from the main interpreter.

PyObject *PyRun_String(const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags() below, leaving flags
set to NULL.

PyObject *PyRun_StringFlags(const char *str, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)

Return value: New reference. Execute Python source code from str in the context specified by the objects
globals and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any
object that implements the mapping protocol. The parameter start specifies the start token that should be used
to parse the source code.
Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject *PyRun_File(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving
closeit set to 0 and flags set to NULL.

PyObject *PyRun_FileEx(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals, int
closeit)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving flags
set to NULL.

PyObject *PyRun_FileFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving
closeit set to 0.

PyObject *PyRun_FileExFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
int closeit, PyCompilerFlags *flags)

Return value: New reference. Similar to PyRun_StringFlags(), but the Python source code is read from
fp instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem
encoding and error handler. If closeit is true, the file is closed before PyRun_FileExFlags() returns.

PyObject *Py_CompileString(const char *str, const char *filename, int start)
Return value: New reference. Part of the Stable ABI. This is a simplified interface to
Py_CompileStringFlags() below, leaving flags set to NULL.

PyObject *Py_CompileStringFlags(const char *str, const char *filename, int start, PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to Py_CompileStringExFlags() below,
with optimize set to -1.

PyObject *Py_CompileStringObject(const char *str, PyObject *filename, int start, PyCompilerFlags *flags,
int optimize)

Return value: New reference. Parse and compile the Python source code in str, returning the resulting code
object. The start token is given by start; this can be used to constrain the code which can be compiled and should
be Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename is
used to construct the code object and may appear in tracebacks or SyntaxError exception messages. This
returns NULL if the code cannot be parsed or compiled.
The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization
level of the interpreter as given by -O options. Explicit levels are 0 (no optimization; __debug__ is true), 1
(asserts are removed, __debug__ is false) or 2 (docstrings are removed too).

45



The Python/C API, Release 3.13.0

Added in version 3.4.
PyObject *Py_CompileStringExFlags(const char *str, const char *filename, int start, PyCompilerFlags

*flags, int optimize)
Return value: New reference. Like Py_CompileStringObject(), but filename is a byte string decoded
from the filesystem encoding and error handler.
Added in version 3.2.

PyObject *PyEval_EvalCode(PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. Part of the Stable ABI. This is a simplified interface to PyE-
val_EvalCodeEx(), with just the code object, and global and local variables. The other arguments are
set to NULL.

PyObject *PyEval_EvalCodeEx(PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args, int
argcount, PyObject *const *kws, int kwcount, PyObject *const *defs, int
defcount, PyObject *kwdefs, PyObject *closure)

Return value: New reference. Part of the Stable ABI. Evaluate a precompiled code object, given a particular
environment for its evaluation. This environment consists of a dictionary of global variables, a mapping object
of local variables, arrays of arguments, keywords and defaults, a dictionary of default values for keyword-only
arguments and a closure tuple of cells.

PyObject *PyEval_EvalFrame(PyFrameObject *f)
Return value: New reference. Part of the Stable ABI. Evaluate an execution frame. This is a simplified interface
to PyEval_EvalFrameEx(), for backward compatibility.

PyObject *PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
Return value: New reference. Part of the Stable ABI. This is the main, unvarnished function of Python in-
terpretation. The code object associated with the execution frame f is executed, interpreting bytecode and
executing calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes
an exception to immediately be thrown; this is used for the throw() methods of generator objects.
Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

int PyEval_MergeCompilerFlags(PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py_CompileString().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use with Py_CompileString(). This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString().
This is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In
this case, from __future__ import can modify flags.
Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to 0, and any modifica-
tion due to from __future__ import is discarded.
int cf_flags

Compiler flags.

46 Chapter 3. The Very High Level Layer



The Python/C API, Release 3.13.0

int cf_feature_version
cf_feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSION.
The field is ignored by default, it is used if and only if PyCF_ONLY_AST flag is set in cf_flags.

Changed in version 3.8: Added cf_feature_version field.
int CO_FUTURE_DIVISION

This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP
238.

47

https://peps.python.org/pep-0238/
https://peps.python.org/pep-0238/


The Python/C API, Release 3.13.0

48 Chapter 3. The Very High Level Layer



CHAPTER

FOUR

REFERENCE COUNTING

The functions and macros in this section are used for managing reference counts of Python objects.
Py_ssize_t Py_REFCNT(PyObject *o)

Get the reference count of the Python object o.
Note that the returned value may not actually reflect how many references to the object are actually held. For
example, some objects are immortal and have a very high refcount that does not reflect the actual number of
references. Consequently, do not rely on the returned value to be accurate, other than a value of 0 or 1.
Use the Py_SET_REFCNT() function to set an object reference count.
Changed in version 3.10: Py_REFCNT() is changed to the inline static function.
Changed in version 3.11: The parameter type is no longer const PyObject*.

void Py_SET_REFCNT(PyObject *o, Py_ssize_t refcnt)
Set the object o reference counter to refcnt.
On Python build with Free Threading, if refcnt is larger than UINT32_MAX, the object is made immortal.
This function has no effect on immortal objects.
Added in version 3.9.
Changed in version 3.12: Immortal objects are not modified.

void Py_INCREF(PyObject *o)
Indicate taking a new strong reference to object o, indicating it is in use and should not be destroyed.
This function has no effect on immortal objects.
This function is usually used to convert a borrowed reference to a strong reference in-place. The
Py_NewRef() function can be used to create a new strong reference.
When done using the object, release is by calling Py_DECREF().
The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py_XINCREF().
Do not expect this function to actually modify o in any way. For at least some objects, this function has no
effect.
Changed in version 3.12: Immortal objects are not modified.

void Py_XINCREF(PyObject *o)
Similar to Py_INCREF(), but the object o can be NULL, in which case this has no effect.
See also Py_XNewRef().

PyObject *Py_NewRef(PyObject *o)
Part of the Stable ABI since version 3.10. Create a new strong reference to an object: call Py_INCREF() on
o and return the object o.
When the strong reference is no longer needed, Py_DECREF() should be called on it to release the reference.
The object o must not be NULL; use Py_XNewRef() if o can be NULL.

49

https://peps.python.org/pep-0683/


The Python/C API, Release 3.13.0

For example:

Py_INCREF(obj);
self->attr = obj;

can be written as:

self->attr = Py_NewRef(obj);

See also Py_INCREF().
Added in version 3.10.

PyObject *Py_XNewRef(PyObject *o)
Part of the Stable ABI since version 3.10. Similar to Py_NewRef(), but the object o can be NULL.
If the object o is NULL, the function just returns NULL.
Added in version 3.10.

void Py_DECREF(PyObject *o)
Release a strong reference to object o, indicating the reference is no longer used.
This function has no effect on immortal objects.
Once the last strong reference is released (i.e. the object’s reference count reaches 0), the object’s type’s deal-
location function (which must not be NULL) is invoked.
This function is usually used to delete a strong reference before exiting its scope.
The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py_XDECREF().
Do not expect this function to actually modify o in any way. For at least some objects, this function has no
effect.

Warning

The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance with
a __del__() method is deallocated). While exceptions in such code are not propagated, the executed
code has free access to all Python global variables. This means that any object that is reachable from a
global variable should be in a consistent state before Py_DECREF() is invoked. For example, code to
delete an object from a list should copy a reference to the deleted object in a temporary variable, update
the list data structure, and then call Py_DECREF() for the temporary variable.

Changed in version 3.12: Immortal objects are not modified.
void Py_XDECREF(PyObject *o)

Similar to Py_DECREF(), but the object o can be NULL, in which case this has no effect. The same warning
from Py_DECREF() applies here as well.

void Py_CLEAR(PyObject *o)
Release a strong reference for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF(), except that the argument is also set to NULL. The
warning for Py_DECREF() does not apply with respect to the object passed because the macro carefully uses
a temporary variable and sets the argument to NULL before releasing the reference.
It is a good idea to use this macro whenever releasing a reference to an object that might be traversed during
garbage collection.
Changed in version 3.12: The macro argument is now only evaluated once. If the argument has side effects,
these are no longer duplicated.

50 Chapter 4. Reference Counting

https://peps.python.org/pep-0683/


The Python/C API, Release 3.13.0

void Py_IncRef(PyObject *o)
Part of the Stable ABI. Indicate taking a new strong reference to object o. A function version of
Py_XINCREF(). It can be used for runtime dynamic embedding of Python.

void Py_DecRef(PyObject *o)
Part of the Stable ABI. Release a strong reference to object o. A function version of Py_XDECREF(). It can
be used for runtime dynamic embedding of Python.

Py_SETREF(dst, src)
Macro safely releasing a strong reference to object dst and setting dst to src.
As in case of Py_CLEAR(), “the obvious” code can be deadly:

Py_DECREF(dst);
dst = src;

The safe way is:

Py_SETREF(dst, src);

That arranges to set dst to src _before_ releasing the reference to the old value of dst, so that any code triggered
as a side-effect of dst getting torn down no longer believes dst points to a valid object.
Added in version 3.6.
Changed in version 3.12: The macro arguments are now only evaluated once. If an argument has side effects,
these are no longer duplicated.

Py_XSETREF(dst, src)
Variant of Py_SETREF macro that uses Py_XDECREF() instead of Py_DECREF().
Added in version 3.6.
Changed in version 3.12: The macro arguments are now only evaluated once. If an argument has side effects,
these are no longer duplicated.

51



The Python/C API, Release 3.13.0

52 Chapter 4. Reference Counting



CHAPTER

FIVE

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a
global indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will
set it to indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL
if they are supposed to return a pointer, or -1 if they return an integer (exception: the PyArg_* functions return 1
for success and 0 for failure).
Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for
example you can’t have a non-NULL traceback if the exception type is NULL).
When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); it should not continue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

Note

The error indicator is not the result of sys.exc_info(). The former corresponds to an exception that is
not yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has
therefore stopped propagating).

5.1 Printing and clearing

void PyErr_Clear()
Part of the Stable ABI. Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx(int set_sys_last_vars)
Part of the Stable ABI. Print a standard traceback to sys.stderr and clear the error indicator. Unless the
error is a SystemExit, in that case no traceback is printed and the Python process will exit with the error
code specified by the SystemExit instance.
Call this function only when the error indicator is set. Otherwise it will cause a fatal error!
If set_sys_last_vars is nonzero, the variable sys.last_exc is set to the printed exception. For
backwards compatibility, the deprecated variables sys.last_type, sys.last_value and sys.
last_traceback are also set to the type, value and traceback of this exception, respectively.
Changed in version 3.12: The setting of sys.last_exc was added.

void PyErr_Print()
Part of the Stable ABI. Alias for PyErr_PrintEx(1).

53



The Python/C API, Release 3.13.0

void PyErr_WriteUnraisable(PyObject *obj)
Part of the Stable ABI. Call sys.unraisablehook() using the current exception and obj argument.
This utility function prints a warning message to sys.stderr when an exception has been set but it is
impossible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs
in an __del__() method.
The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message. If obj is NULL, only the traceback
is printed.
An exception must be set when calling this function.
Changed in version 3.4: Print a traceback. Print only traceback if obj is NULL.
Changed in version 3.8: Use sys.unraisablehook().

void PyErr_FormatUnraisable(const char *format, ...)
Similar to PyErr_WriteUnraisable(), but the format and subsequent parameters
help format the warning message; they have the same meaning and values as in PyUni-
code_FromFormat(). PyErr_WriteUnraisable(obj) is roughly equivalent to Py-
Err_FormatUnraisable("Exception ignored in: %R", obj). If format is NULL,
only the traceback is printed.
Added in version 3.13.

void PyErr_DisplayException(PyObject *exc)
Part of the Stable ABI since version 3.12. Print the standard traceback display of exc to sys.stderr,
including chained exceptions and notes.
Added in version 3.12.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.
void PyErr_SetString(PyObject *type, const char *message)

Part of the Stable ABI. This is the most common way to set the error indicator. The first argument specifies
the exception type; it is normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need
not create a new strong reference to it (e.g. with Py_INCREF()). The second argument is an error message;
it is decoded from 'utf-8'.

void PyErr_SetObject(PyObject *type, PyObject *value)
Part of the Stable ABI. This function is similar to PyErr_SetString() but lets you specify an arbitrary
Python object for the “value” of the exception.

PyObject *PyErr_Format(PyObject *exception, const char *format, ...)
Return value: Always NULL. Part of the Stable ABI. This function sets the error indicator and returns NULL.
exception should be a Python exception class. The format and subsequent parameters help format the error
message; they have the same meaning and values as in PyUnicode_FromFormat(). format is an ASCII-
encoded string.

PyObject *PyErr_FormatV(PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Part of the Stable ABI since version 3.5. Same as PyErr_Format(), but
taking a va_list argument rather than a variable number of arguments.
Added in version 3.5.

void PyErr_SetNone(PyObject *type)
Part of the Stable ABI. This is a shorthand for PyErr_SetObject(type, Py_None).

54 Chapter 5. Exception Handling



The Python/C API, Release 3.13.0

int PyErr_BadArgument()
Part of the Stable ABI. This is a shorthand for PyErr_SetString(PyExc_TypeError, message),
where message indicates that a built-in operation was invoked with an illegal argument. It is mostly for internal
use.

PyObject *PyErr_NoMemory()
Return value: Always NULL. Part of the Stable ABI. This is a shorthand for Py-
Err_SetNone(PyExc_MemoryError); it returns NULL so an object allocation function can
write return PyErr_NoMemory(); when it runs out of memory.

PyObject *PyErr_SetFromErrno(PyObject *type)
Return value: Always NULL. Part of the Stable ABI. This is a convenience function to raise an exception when
a C library function has returned an error and set the C variable errno. It constructs a tuple object whose
first item is the integer errno value and whose second item is the corresponding error message (gotten from
strerror()), and then calls PyErr_SetObject(type, object). On Unix, when the errno value
is EINTR, indicating an interrupted system call, this calls PyErr_CheckSignals(), and if that set the
error indicator, leaves it set to that. The function always returns NULL, so a wrapper function around a system
call can write return PyErr_SetFromErrno(type); when the system call returns an error.

PyObject *PyErr_SetFromErrnoWithFilenameObject(PyObject *type, PyObject *filenameObject)
Return value: Always NULL. Part of the Stable ABI. Similar to PyErr_SetFromErrno(), with the addi-
tional behavior that if filenameObject is not NULL, it is passed to the constructor of type as a third parameter.
In the case of OSError exception, this is used to define the filename attribute of the exception instance.

PyObject *PyErr_SetFromErrnoWithFilenameObjects(PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)

Return value: Always NULL. Part of the Stable ABI since version 3.7. Similar to Py-
Err_SetFromErrnoWithFilenameObject(), but takes a second filename object, for raising
errors when a function that takes two filenames fails.
Added in version 3.4.

PyObject *PyErr_SetFromErrnoWithFilename(PyObject *type, const char *filename)
Return value: Always NULL. Part of the Stable ABI. Similar to Py-
Err_SetFromErrnoWithFilenameObject(), but the filename is given as a C string. filename is
decoded from the filesystem encoding and error handler.

PyObject *PyErr_SetFromWindowsErr(int ierr)
Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. This is a convenience
function to raise OSError. If called with ierr of 0, the error code returned by a call to GetLastError()
is used instead. It calls the Win32 function FormatMessage() to retrieve the Windows description of
error code given by ierr or GetLastError(), then it constructs a OSError object with the winerror
attribute set to the error code, the strerror attribute set to the corresponding error message (gotten from
FormatMessage()), and then calls PyErr_SetObject(PyExc_OSError, object). This func-
tion always returns NULL.
Availability: Windows.

PyObject *PyErr_SetExcFromWindowsErr(PyObject *type, int ierr)
Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to Py-
Err_SetFromWindowsErr(), with an additional parameter specifying the exception type to be raised.
Availability: Windows.

PyObject *PyErr_SetFromWindowsErrWithFilename(int ierr, const char *filename)
Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to Py-
Err_SetFromWindowsErr(), with the additional behavior that if filename is not NULL, it is decoded
from the filesystem encoding (os.fsdecode()) and passed to the constructor of OSError as a third pa-
rameter to be used to define the filename attribute of the exception instance.
Availability: Windows.

5.2. Raising exceptions 55



The Python/C API, Release 3.13.0

PyObject *PyErr_SetExcFromWindowsErrWithFilenameObject(PyObject *type, int ierr, PyObject
*filename)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to Py-
Err_SetExcFromWindowsErr(), with the additional behavior that if filename is not NULL, it is passed
to the constructor of OSError as a third parameter to be used to define the filename attribute of the
exception instance.
Availability: Windows.

PyObject *PyErr_SetExcFromWindowsErrWithFilenameObjects(PyObject *type, int ierr, PyObject
*filename, PyObject *filename2)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to Py-
Err_SetExcFromWindowsErrWithFilenameObject(), but accepts a second filename object.
Availability: Windows.
Added in version 3.4.

PyObject *PyErr_SetExcFromWindowsErrWithFilename(PyObject *type, int ierr, const char
*filename)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to Py-
Err_SetFromWindowsErrWithFilename(), with an additional parameter specifying the exception
type to be raised.
Availability: Windows.

PyObject *PyErr_SetImportError(PyObject *msg, PyObject *name, PyObject *path)
Return value: Always NULL. Part of the Stable ABI since version 3.7. This is a convenience function to raise
ImportError. msg will be set as the exception’s message string. name and path, both of which can be
NULL, will be set as the ImportError’s respective name and path attributes.
Added in version 3.3.

PyObject *PyErr_SetImportErrorSubclass(PyObject *exception, PyObject *msg, PyObject *name,
PyObject *path)

Return value: Always NULL. Part of the Stable ABI since version 3.6. Much like Py-
Err_SetImportError() but this function allows for specifying a subclass of ImportError to
raise.
Added in version 3.6.

void PyErr_SyntaxLocationObject(PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exception is not a SyntaxEr-
ror, then it sets additional attributes, which make the exception printing subsystem think the exception is a
SyntaxError.
Added in version 3.4.

void PyErr_SyntaxLocationEx(const char *filename, int lineno, int col_offset)
Part of the Stable ABI since version 3.7. Like PyErr_SyntaxLocationObject(), but filename is a
byte string decoded from the filesystem encoding and error handler.
Added in version 3.2.

void PyErr_SyntaxLocation(const char *filename, int lineno)
Part of the Stable ABI. Like PyErr_SyntaxLocationEx(), but the col_offset parameter is omitted.

void PyErr_BadInternalCall()
Part of the Stable ABI. This is a shorthand for PyErr_SetString(PyExc_SystemError, mes-
sage), where message indicates that an internal operation (e.g. a Python/C API function) was invoked with
an illegal argument. It is mostly for internal use.

56 Chapter 5. Exception Handling



The Python/C API, Release 3.13.0

5.3 Issuing warnings

Use these functions to issue warnings fromC code. Theymirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified
that warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the
functions raise an exception because of a problem with the warning machinery. The return value is 0 if no exception
is raised, or -1 if an exception is raised. (It is not possible to determine whether a warning message is actually
printed, nor what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its
normal exception handling (for example, Py_DECREF() owned references and return an error value).
int PyErr_WarnEx(PyObject *category, const char *message, Py_ssize_t stack_level)

Part of the Stable ABI. Issue a warning message. The category argument is a warning category (see below)
or NULL; the message argument is a UTF-8 encoded string. stack_level is a positive number giving a number
of stack frames; the warning will be issued from the currently executing line of code in that stack frame. A
stack_level of 1 is the function calling PyErr_WarnEx(), 2 is the function above that, and so forth.
Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_RuntimeWarning. The standard Python
warning categories are available as global variables whose names are enumerated at Standard Warning Cate-
gories.
For information about warning control, see the documentation for the warnings module and the -W option
in the command line documentation. There is no C API for warning control.

int PyErr_WarnExplicitObject(PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python function warnings.warn_explicit(); see there for more information. The module
and registry arguments may be set to NULL to get the default effect described there.
Added in version 3.4.

int PyErr_WarnExplicit(PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)

Part of the Stable ABI. Similar to PyErr_WarnExplicitObject() except that message and module are
UTF-8 encoded strings, and filename is decoded from the filesystem encoding and error handler.

int PyErr_WarnFormat(PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Part of the Stable ABI. Function similar to PyErr_WarnEx(), but use PyUnicode_FromFormat() to
format the warning message. format is an ASCII-encoded string.
Added in version 3.2.

int PyErr_ResourceWarning(PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Part of the Stable ABI since version 3.6. Function similar to PyErr_WarnFormat(), but category is Re-
sourceWarning and it passes source to warnings.WarningMessage.
Added in version 3.6.

5.4 Querying the error indicator

PyObject *PyErr_Occurred()
Return value: Borrowed reference. Part of the Stable ABI. Test whether the error indicator is set. If set,
return the exception type (the first argument to the last call to one of the PyErr_Set* functions or to Py-
Err_Restore()). If not set, return NULL. You do not own a reference to the return value, so you do not
need to Py_DECREF() it.
The caller must hold the GIL.

5.3. Issuing warnings 57



The Python/C API, Release 3.13.0

Note

Do not compare the return value to a specific exception; use PyErr_ExceptionMatches() instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class,
in the case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches(PyObject *exc)
Part of the Stable ABI. Equivalent to PyErr_GivenExceptionMatches(PyErr_Occurred(),
exc). This should only be called when an exception is actually set; a memory access violation will occur
if no exception has been raised.

int PyErr_GivenExceptionMatches(PyObject *given, PyObject *exc)
Part of the Stable ABI. Return true if the given exception matches the exception type in exc. If exc is a class
object, this also returns true when given is an instance of a subclass. If exc is a tuple, all exception types in the
tuple (and recursively in subtuples) are searched for a match.

PyObject *PyErr_GetRaisedException(void)
Return value: New reference. Part of the Stable ABI since version 3.12. Return the exception currently being
raised, clearing the error indicator at the same time. Return NULL if the error indicator is not set.
This function is used by code that needs to catch exceptions, or code that needs to save and restore the error
indicator temporarily.
For example:

{
PyObject *exc = PyErr_GetRaisedException();

/* ... code that might produce other errors ... */

PyErr_SetRaisedException(exc);
}

See also

PyErr_GetHandledException(), to save the exception currently being handled.

Added in version 3.12.
void PyErr_SetRaisedException(PyObject *exc)

Part of the Stable ABI since version 3.12. Set exc as the exception currently being raised, clearing the existing
exception if one is set.

Warning

This call steals a reference to exc, which must be a valid exception.

Added in version 3.12.
void PyErr_Fetch(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Part of the Stable ABI. Deprecated since version 3.12: Use PyErr_GetRaisedException() instead.
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set,
set all three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved.
The value and traceback object may be NULL even when the type object is not.

58 Chapter 5. Exception Handling



The Python/C API, Release 3.13.0

Note

This function is normally only used by legacy code that needs to catch exceptions or save and restore the
error indicator temporarily.
For example:
{

PyObject *type, *value, *traceback;
PyErr_Fetch(&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore(type, value, traceback);
}

void PyErr_Restore(PyObject *type, PyObject *value, PyObject *traceback)
Part of the Stable ABI. Deprecated since version 3.12: Use PyErr_SetRaisedException() instead.
Set the error indicator from the three objects, type, value, and traceback, clearing the existing exception if one
is set. If the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value
or traceback. The exception type should be a class. Do not pass an invalid exception type or value. (Violating
these rules will cause subtle problems later.) This call takes away a reference to each object: you must own
a reference to each object before the call and after the call you no longer own these references. (If you don’t
understand this, don’t use this function. I warned you.)

Note

This function is normally only used by legacy code that needs to save and restore the error indicator tem-
porarily. Use PyErr_Fetch() to save the current error indicator.

void PyErr_NormalizeException(PyObject **exc, PyObject **val, PyObject **tb)
Part of the Stable ABI. Deprecated since version 3.12: Use PyErr_GetRaisedException() instead,
to avoid any possible de-normalization.
Under certain circumstances, the values returned by PyErr_Fetch() below can be “unnormalized”, mean-
ing that *exc is a class object but *val is not an instance of the same class. This function can be used to
instantiate the class in that case. If the values are already normalized, nothing happens. The delayed normal-
ization is implemented to improve performance.

Note

This function does not implicitly set the __traceback__ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:
if (tb != NULL) {
PyException_SetTraceback(val, tb);

}

PyObject *PyErr_GetHandledException(void)
Part of the Stable ABI since version 3.11. Retrieve the active exception instance, as would be returned by
sys.exception(). This refers to an exception that was already caught, not to an exception that was
freshly raised. Returns a new reference to the exception or NULL. Does not modify the interpreter’s exception
state.

5.4. Querying the error indicator 59



The Python/C API, Release 3.13.0

Note

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr_SetHandledException() to
restore or clear the exception state.

Added in version 3.11.
void PyErr_SetHandledException(PyObject *exc)

Part of the Stable ABI since version 3.11. Set the active exception, as known from sys.exception().
This refers to an exception that was already caught, not to an exception that was freshly raised. To clear the
exception state, pass NULL.

Note

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr_GetHandledException() to
get the exception state.

Added in version 3.11.
void PyErr_GetExcInfo(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Part of the Stable ABI since version 3.7. Retrieve the old-style representation of the exception info, as
known from sys.exc_info(). This refers to an exception that was already caught, not to an excep-
tion that was freshly raised. Returns new references for the three objects, any of which may be NULL. Does
not modify the exception info state. This function is kept for backwards compatibility. Prefer using Py-
Err_GetHandledException().

Note

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_SetExcInfo() to restore
or clear the exception state.

Added in version 3.3.
void PyErr_SetExcInfo(PyObject *type, PyObject *value, PyObject *traceback)

Part of the Stable ABI since version 3.7. Set the exception info, as known from sys.exc_info(). This
refers to an exception that was already caught, not to an exception that was freshly raised. This function steals
the references of the arguments. To clear the exception state, pass NULL for all three arguments. This function
is kept for backwards compatibility. Prefer using PyErr_SetHandledException().

Note

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_GetExcInfo() to read the
exception state.

Added in version 3.3.
Changed in version 3.11: The type and traceback arguments are no longer used and can be NULL. The
interpreter now derives them from the exception instance (the value argument). The function still steals
references of all three arguments.

60 Chapter 5. Exception Handling



The Python/C API, Release 3.13.0

5.5 Signal Handling

int PyErr_CheckSignals()
Part of the Stable ABI. This function interacts with Python’s signal handling.
If the function is called from the main thread and under the main Python interpreter, it checks whether a signal
has been sent to the processes and if so, invokes the corresponding signal handler. If the signal module is
supported, this can invoke a signal handler written in Python.
The function attempts to handle all pending signals, and then returns 0. However, if a Python signal handler
raises an exception, the error indicator is set and the function returns -1 immediately (such that other pending
signals may not have been handled yet: they will be on the next PyErr_CheckSignals() invocation).
If the function is called from a non-main thread, or under a non-main Python interpreter, it does nothing and
returns 0.
This function can be called by long-running C code that wants to be interruptible by user requests (such as by
pressing Ctrl-C).

Note

The default Python signal handler for SIGINT raises the KeyboardInterrupt exception.

void PyErr_SetInterrupt()
Part of the Stable ABI. Simulate the effect of a SIGINT signal arriving. This is equivalent to Py-
Err_SetInterruptEx(SIGINT).

Note

This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

int PyErr_SetInterruptEx(int signum)
Part of the Stable ABI since version 3.10. Simulate the effect of a signal arriving. The next time Py-
Err_CheckSignals() is called, the Python signal handler for the given signal number will be called.
This function can be called by C code that sets up its own signal handling and wants Python signal handlers to be
invoked as expected when an interruption is requested (for example when the user presses Ctrl-C to interrupt
an operation).
If the given signal isn’t handled by Python (it was set to signal.SIG_DFL or signal.SIG_IGN), it will
be ignored.
If signum is outside of the allowed range of signal numbers, -1 is returned. Otherwise, 0 is returned. The
error indicator is never changed by this function.

Note

This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

Added in version 3.10.
int PySignal_SetWakeupFd(int fd)

This utility function specifies a file descriptor to which the signal number is written as a single byte whenever
a signal is received. fd must be non-blocking. It returns the previous such file descriptor.
The value-1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_fd()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be
called from the main thread.

5.5. Signal Handling 61



The Python/C API, Release 3.13.0

Changed in version 3.5: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject *PyErr_NewException(const char *name, PyObject *base, PyObject *dict)
Return value: New reference. Part of the Stable ABI. This utility function creates and returns a new excep-
tion class. The name argument must be the name of the new exception, a C string of the form module.
classname. The base and dict arguments are normally NULL. This creates a class object derived from
Exception (accessible in C as PyExc_Exception).
The __module__ attribute of the new class is set to the first part (up to the last dot) of the name argument,
and the class name is set to the last part (after the last dot). The base argument can be used to specify alternate
base classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a
dictionary of class variables and methods.

PyObject *PyErr_NewExceptionWithDoc(const char *name, const char *doc, PyObject *base, PyObject
*dict)

Return value: New reference. Part of the Stable ABI. Same as PyErr_NewException(), except that the
new exception class can easily be given a docstring: If doc is non-NULL, it will be used as the docstring for the
exception class.
Added in version 3.2.

5.7 Exception Objects

PyObject *PyException_GetTraceback(PyObject *ex)
Return value: New reference. Part of the Stable ABI. Return the traceback associated with the exception as a
new reference, as accessible from Python through the __traceback__ attribute. If there is no traceback
associated, this returns NULL.

int PyException_SetTraceback(PyObject *ex, PyObject *tb)
Part of the Stable ABI. Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject *PyException_GetContext(PyObject *ex)
Return value: New reference. Part of the Stable ABI. Return the context (another exception instance during
whose handling ex was raised) associated with the exception as a new reference, as accessible from Python
through the __context__ attribute. If there is no context associated, this returns NULL.

void PyException_SetContext(PyObject *ex, PyObject *ctx)
Part of the Stable ABI. Set the context associated with the exception to ctx. Use NULL to clear it. There is no
type check to make sure that ctx is an exception instance. This steals a reference to ctx.

PyObject *PyException_GetCause(PyObject *ex)
Return value: New reference. Part of the Stable ABI. Return the cause (either an exception instance, or None,
set by raise ... from ...) associated with the exception as a new reference, as accessible from Python
through the __cause__ attribute.

void PyException_SetCause(PyObject *ex, PyObject *cause)
Part of the Stable ABI. Set the cause associated with the exception to cause. Use NULL to clear it. There is no
type check to make sure that cause is either an exception instance or None. This steals a reference to cause.
The __suppress_context__ attribute is implicitly set to True by this function.

PyObject *PyException_GetArgs(PyObject *ex)
Return value: New reference. Part of the Stable ABI since version 3.12. Return args of exception ex.

62 Chapter 5. Exception Handling



The Python/C API, Release 3.13.0

void PyException_SetArgs(PyObject *ex, PyObject *args)
Part of the Stable ABI since version 3.12. Set args of exception ex to args.

PyObject *PyUnstable_Exc_PrepReraiseStar(PyObject *orig, PyObject *excs)

This is Unstable API. It may change without warning in minor releases.

Implement part of the interpreter’s implementation of except*. orig is the original exception that was caught,
and excs is the list of the exceptions that need to be raised. This list contains the unhandled part of orig, if any,
as well as the exceptions that were raised from the except* clauses (so they have a different traceback from
orig) and those that were reraised (and have the same traceback as orig). Return the ExceptionGroup that
needs to be reraised in the end, or None if there is nothing to reraise.
Added in version 3.12.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.
PyObject *PyUnicodeDecodeError_Create(const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Return value: New reference. Part of the Stable ABI. Create a UnicodeDecodeError object with the
attributes encoding, object, length, start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject *PyUnicodeDecodeError_GetEncoding(PyObject *exc)
PyObject *PyUnicodeEncodeError_GetEncoding(PyObject *exc)

Return value: New reference. Part of the Stable ABI. Return the encoding attribute of the given exception
object.

PyObject *PyUnicodeDecodeError_GetObject(PyObject *exc)
PyObject *PyUnicodeEncodeError_GetObject(PyObject *exc)
PyObject *PyUnicodeTranslateError_GetObject(PyObject *exc)

Return value: New reference. Part of the Stable ABI. Return the object attribute of the given exception object.
int PyUnicodeDecodeError_GetStart(PyObject *exc, Py_ssize_t *start)
int PyUnicodeEncodeError_GetStart(PyObject *exc, Py_ssize_t *start)
int PyUnicodeTranslateError_GetStart(PyObject *exc, Py_ssize_t *start)

Part of the Stable ABI. Get the start attribute of the given exception object and place it into *start. start must
not be NULL. Return 0 on success, -1 on failure.

int PyUnicodeDecodeError_SetStart(PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart(PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart(PyObject *exc, Py_ssize_t start)

Part of the Stable ABI. Set the start attribute of the given exception object to start. Return 0 on success, -1
on failure.

int PyUnicodeDecodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
int PyUnicodeEncodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
int PyUnicodeTranslateError_GetEnd(PyObject *exc, Py_ssize_t *end)

Part of the Stable ABI. Get the end attribute of the given exception object and place it into *end. end must not
be NULL. Return 0 on success, -1 on failure.

int PyUnicodeDecodeError_SetEnd(PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd(PyObject *exc, Py_ssize_t end)

5.8. Unicode Exception Objects 63



The Python/C API, Release 3.13.0

int PyUnicodeTranslateError_SetEnd(PyObject *exc, Py_ssize_t end)
Part of the Stable ABI. Set the end attribute of the given exception object to end. Return 0 on success, -1 on
failure.

PyObject *PyUnicodeDecodeError_GetReason(PyObject *exc)
PyObject *PyUnicodeEncodeError_GetReason(PyObject *exc)
PyObject *PyUnicodeTranslateError_GetReason(PyObject *exc)

Return value: New reference. Part of the Stable ABI. Return the reason attribute of the given exception object.
int PyUnicodeDecodeError_SetReason(PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason(PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason(PyObject *exc, const char *reason)

Part of the Stable ABI. Set the reason attribute of the given exception object to reason. Return 0 on success,
-1 on failure.

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension
modules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion
depth automatically). They are also not needed for tp_call implementations because the call protocol takes care of
recursion handling.
int Py_EnterRecursiveCall(const char *where)

Part of the Stable ABI since version 3.9. Marks a point where a recursive C-level call is about to be performed.
If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using
PyOS_CheckStack(). If this is the case, it sets a MemoryError and returns a nonzero value.
The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and
a nonzero value is returned. Otherwise, zero is returned.
where should be a UTF-8 encoded string such as " in instance check" to be concatenated to the
RecursionError message caused by the recursion depth limit.
Changed in version 3.9: This function is now also available in the limited API.

void Py_LeaveRecursiveCall(void)
Part of the Stable ABI since version 3.9. Ends a Py_EnterRecursiveCall(). Must be called once for
each successful invocation of Py_EnterRecursiveCall().
Changed in version 3.9: This function is now also available in the limited API.

Properly implementing tp_repr for container types requires special recursion handling. In addition to protect-
ing the stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this
functionality. Effectively, these are the C equivalent to reprlib.recursive_repr().
int Py_ReprEnter(PyObject *object)

Part of the Stable ABI. Called at the beginning of the tp_repr implementation to detect cycles.
If the object has already been processed, the function returns a positive integer. In that case the tp_repr
implementation should return a string object indicating a cycle. As examples, dict objects return {...} and
list objects return [...].
The function will return a negative integer if the recursion limit is reached. In that case the tp_repr imple-
mentation should typically return NULL.
Otherwise, the function returns zero and the tp_repr implementation can continue normally.

void Py_ReprLeave(PyObject *object)
Part of the Stable ABI. Ends a Py_ReprEnter(). Must be called once for each invocation of
Py_ReprEnter() that returns zero.

64 Chapter 5. Exception Handling



The Python/C API, Release 3.13.0

5.10 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyObject*; they are all class objects. For completeness, here are all the
variables:

C Name Python Name Notes
PyExc_BaseException BaseException 1

PyExc_Exception Exception Page 66, 1

PyExc_ArithmeticError ArithmeticError Page 66, 1

PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError
PyExc_ChildProcessError ChildProcessError
PyExc_ConnectionAbortedErrorConnectionAbortedError
PyExc_ConnectionError ConnectionError
PyExc_ConnectionRefusedErrorConnectionRefusedError
PyExc_ConnectionResetErrorConnectionResetError
PyExc_EOFError EOFError
PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError FileNotFoundError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError
PyExc_IsADirectoryError IsADirectoryError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError Page 66, 1

PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundErrorModuleNotFoundError
PyExc_NameError NameError
PyExc_NotADirectoryError NotADirectoryError
PyExc_NotImplementedErrorNotImplementedError
PyExc_OSError OSError Page 66, 1

PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_PythonFinalizationErrorPythonFinalizationError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError
PyExc_RuntimeError RuntimeError
PyExc_StopAsyncIteration StopAsyncIteration
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError
PyExc_UnboundLocalError UnboundLocalError

continues on next page

5.10. Standard Exceptions 65



The Python/C API, Release 3.13.0

Table 1 – continued from previous page
C Name Python Name Notes
PyExc_UnicodeDecodeError UnicodeDecodeError
PyExc_UnicodeEncodeError UnicodeEncodeError
PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateErrorUnicodeTranslateError
PyExc_ValueError ValueError
PyExc_ZeroDivisionError ZeroDivisionError

Added in version 3.3: PyExc_BlockingIOError, PyExc_BrokenPipeError,
PyExc_ChildProcessError, PyExc_ConnectionError, PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError, PyExc_ConnectionResetError,
PyExc_FileExistsError, PyExc_FileNotFoundError, PyExc_InterruptedError,
PyExc_IsADirectoryError, PyExc_NotADirectoryError, PyExc_PermissionError,
PyExc_ProcessLookupError and PyExc_TimeoutError were introduced following PEP 3151.
Added in version 3.5: PyExc_StopAsyncIteration and PyExc_RecursionError.
Added in version 3.6: PyExc_ModuleNotFoundError.
These are compatibility aliases to PyExc_OSError:

C Name Notes
PyExc_EnvironmentError
PyExc_IOError
PyExc_WindowsError 2

Changed in version 3.3: These aliases used to be separate exception types.
Notes:

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the
Python exception name. These have the type PyObject*; they are all class objects. For completeness, here are all
the variables:

C Name Python Name Notes
PyExc_Warning Warning 3

PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

Added in version 3.2: PyExc_ResourceWarning.
1 This is a base class for other standard exceptions.
2 Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is defined.
3 This is a base class for other standard warning categories.

66 Chapter 5. Exception Handling

https://peps.python.org/pep-3151/


The Python/C API, Release 3.13.0

Notes:

5.11. Standard Warning Categories 67



The Python/C API, Release 3.13.0

68 Chapter 5. Exception Handling



CHAPTER

SIX

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

6.1 Operating System Utilities

PyObject *PyOS_FSPath(PyObject *path)
Return value: New reference. Part of the Stable ABI since version 3.6. Return the file system representation for
path. If the object is a str or bytes object, then a new strong reference is returned. If the object implements
the os.PathLike interface, then __fspath__() is returned as long as it is a str or bytes object.
Otherwise TypeError is raised and NULL is returned.
Added in version 3.6.

int Py_FdIsInteractive(FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for
files for which isatty(fileno(fp)) is true. If the PyConfig.interactive is non-zero, this func-
tion also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>'
or '???'.
This function must not be called before Python is initialized.

void PyOS_BeforeFork()
Part of the Stable ABI on platforms with fork() since version 3.7. Function to prepare some internal state before
a process fork. This should be called before calling fork() or any similar function that clones the current
process. Only available on systems where fork() is defined.

Warning

The C fork() call should only be made from the “main” thread (of the “main” interpreter). The same is
true for PyOS_BeforeFork().

Added in version 3.7.
void PyOS_AfterFork_Parent()

Part of the Stable ABI on platforms with fork() since version 3.7. Function to update some internal state after a
process fork. This should be called from the parent process after calling fork() or any similar function that
clones the current process, regardless of whether process cloning was successful. Only available on systems
where fork() is defined.

69



The Python/C API, Release 3.13.0

Warning

The C fork() call should only be made from the “main” thread (of the “main” interpreter). The same is
true for PyOS_AfterFork_Parent().

Added in version 3.7.
void PyOS_AfterFork_Child()

Part of the Stable ABI on platforms with fork() since version 3.7. Function to update internal interpreter state
after a process fork. This must be called from the child process after calling fork(), or any similar function
that clones the current process, if there is any chance the process will call back into the Python interpreter.
Only available on systems where fork() is defined.

Warning

The C fork() call should only be made from the “main” thread (of the “main” interpreter). The same is
true for PyOS_AfterFork_Child().

Added in version 3.7.

See also

os.register_at_fork() allows registering custom Python functions to be called by
PyOS_BeforeFork(), PyOS_AfterFork_Parent() and PyOS_AfterFork_Child().

void PyOS_AfterFork()
Part of the Stable ABI on platforms with fork(). Function to update some internal state after a process fork;
this should be called in the new process if the Python interpreter will continue to be used. If a new executable
is loaded into the new process, this function does not need to be called.
Deprecated since version 3.7: This function is superseded by PyOS_AfterFork_Child().

int PyOS_CheckStack()
Part of the Stable ABI on platforms with USE_STACKCHECK since version 3.7. Return true when the interpreter
runs out of stack space. This is a reliable check, but is only available when USE_STACKCHECK is defined
(currently on certain versions of Windows using the Microsoft Visual C++ compiler). USE_STACKCHECK
will be defined automatically; you should never change the definition in your own code.

typedef void (*PyOS_sighandler_t)(int)
Part of the Stable ABI.

PyOS_sighandler_t PyOS_getsig(int i)
Part of the Stable ABI. Return the current signal handler for signal i. This is a thin wrapper around either
sigaction() or signal(). Do not call those functions directly!

PyOS_sighandler_t PyOS_setsig(int i, PyOS_sighandler_t h)
Part of the Stable ABI. Set the signal handler for signal i to be h; return the old signal handler. This is a thin
wrapper around either sigaction() or signal(). Do not call those functions directly!

wchar_t *Py_DecodeLocale(const char *arg, size_t *size)
Part of the Stable ABI since version 3.7.

Warning

This function should not be called directly: use the PyConfig API with the PyCon-
fig_SetBytesString() function which ensures that Python is preinitialized.

70 Chapter 6. Utilities



The Python/C API, Release 3.13.0

This functionmust not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py_PreInitialize() function.

Decode a byte string from the filesystem encoding and error handler. If the error handler is surrogateescape
error handler, undecodable bytes are decoded as characters in rangeU+DC80..U+DCFF; and if a byte sequence
can be decoded as a surrogate character, the bytes are escaped using the surrogateescape error handler instead
of decoding them.
Return a pointer to a newly allocated wide character string, use PyMem_RawFree() to free the memory. If
size is not NULL, write the number of wide characters excluding the null character into *size
Return NULL on decoding error or memory allocation error. If size is not NULL, *size is set to
(size_t)-1 on memory error or set to (size_t)-2 on decoding error.
The filesystem encoding and error handler are selected by PyConfig_Read(): see filesys-
tem_encoding and filesystem_errors members of PyConfig.
Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale() function to encode the character string back to a byte string.

See also

The PyUnicode_DecodeFSDefaultAndSize() and PyUni-
code_DecodeLocaleAndSize() functions.

Added in version 3.5.
Changed in version 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.
Changed in version 3.8: The function now uses the UTF-8 encoding on Windows if PyPreConfig.
legacy_windows_fs_encoding is zero;

char *Py_EncodeLocale(const wchar_t *text, size_t *error_pos)
Part of the Stable ABI since version 3.7. Encode a wide character string to the filesystem encoding and
error handler. If the error handler is surrogateescape error handler, surrogate characters in the range
U+DC80..U+DCFF are converted to bytes 0x80..0xFF.
Return a pointer to a newly allocated byte string, use PyMem_Free() to free the memory. Return NULL on
encoding error or memory allocation error.
If error_pos is not NULL, *error_pos is set to (size_t)-1 on success, or set to the index of the invalid
character on encoding error.
The filesystem encoding and error handler are selected by PyConfig_Read(): see filesys-
tem_encoding and filesystem_errors members of PyConfig.
Use the Py_DecodeLocale() function to decode the bytes string back to a wide character string.

Warning

This functionmust not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py_PreInitialize() function.

See also

The PyUnicode_EncodeFSDefault() and PyUnicode_EncodeLocale() functions.

Added in version 3.5.

6.1. Operating System Utilities 71



The Python/C API, Release 3.13.0

Changed in version 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.
Changed in version 3.8: The function now uses the UTF-8 encoding on Windows if PyPreConfig.
legacy_windows_fs_encoding is zero.

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with
the current interpreter thread’s sys module’s dict, which is contained in the internal thread state structure.
PyObject *PySys_GetObject(const char *name)

Return value: Borrowed reference. Part of the Stable ABI. Return the object name from the sys module or
NULL if it does not exist, without setting an exception.

int PySys_SetObject(const char *name, PyObject *v)
Part of the Stable ABI. Set name in the sysmodule to v unless v is NULL, in which case name is deleted from
the sys module. Returns 0 on success, -1 on error.

void PySys_ResetWarnOptions()
Part of the Stable ABI. Reset sys.warnoptions to an empty list. This function may be called prior to
Py_Initialize().
Deprecated since version 3.13, will be removed in version 3.15: Clear sys.warnoptions and
warnings.filters instead.

void PySys_WriteStdout(const char *format, ...)
Part of the Stable ABI. Write the output string described by format to sys.stdout. No exceptions are
raised, even if truncation occurs (see below).
format should limit the total size of the formatted output string to 1000 bytes or less – after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should
be limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits
for very large numbers.
If a problem occurs, or sys.stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr(const char *format, ...)
Part of the Stable ABI. As PySys_WriteStdout(), but write to sys.stderr or stderr instead.

void PySys_FormatStdout(const char *format, ...)
Part of the Stable ABI. Function similar to PySys_WriteStdout() but format the message using PyUni-
code_FromFormatV() and don’t truncate the message to an arbitrary length.
Added in version 3.2.

void PySys_FormatStderr(const char *format, ...)
Part of the Stable ABI. As PySys_FormatStdout(), but write to sys.stderr or stderr instead.
Added in version 3.2.

PyObject *PySys_GetXOptions()
Return value: Borrowed reference. Part of the Stable ABI since version 3.7. Return the current dictionary of
-X options, similarly to sys._xoptions. On error, NULL is returned and an exception is set.
Added in version 3.2.

int PySys_Audit(const char *event, const char *format, ...)
Part of the Stable ABI since version 3.13. Raise an auditing event with any active hooks. Return zero for
success and non-zero with an exception set on failure.
The event string argument must not be NULL.

72 Chapter 6. Utilities



The Python/C API, Release 3.13.0

If any hooks have been added, format and other arguments will be used to construct a tuple to pass. Apart
from N, the same format characters as used in Py_BuildValue() are available. If the built value is not a
tuple, it will be added into a single-element tuple.
The N format option must not be used. It consumes a reference, but since there is no way to know whether
arguments to this function will be consumed, using it may cause reference leaks.
Note that # format characters should always be treated as Py_ssize_t, regardless of whether
PY_SSIZE_T_CLEAN was defined.
sys.audit() performs the same function from Python code.
See also PySys_AuditTuple().
Added in version 3.8.
Changed in version 3.8.2: Require Py_ssize_t for # format characters. Previously, an unavoidable depre-
cation warning was raised.

int PySys_AuditTuple(const char *event, PyObject *args)
Part of the Stable ABI since version 3.13. Similar to PySys_Audit(), but pass arguments as a Python
object. args must be a tuple. To pass no arguments, args can be NULL.
Added in version 3.13.

int PySys_AddAuditHook(Py_AuditHookFunction hook, void *userData)
Append the callable hook to the list of active auditing hooks. Return zero on success and non-zero on failure.
If the runtime has been initialized, also set an error on failure. Hooks added through this API are called for all
interpreters created by the runtime.
The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.
This function is safe to call before Py_Initialize(). When called after runtime initialization, existing
audit hooks are notified and may silently abort the operation by raising an error subclassed from Exception
(other errors will not be silenced).
The hook function is always called with the GIL held by the Python interpreter that raised the event.
See PEP 578 for a detailed description of auditing. Functions in the runtime and standard library that raise
events are listed in the audit events table. Details are in each function’s documentation.

If the interpreter is initialized, this function raises an auditing eventsys.addaudithookwith no arguments.
If any existing hooks raise an exception derived from Exception, the new hook will not be added and the
exception is cleared. As a result, callers cannot assume that their hook has been added unless they control all
existing hooks.
typedef int (*Py_AuditHookFunction)(const char *event, PyObject *args, void *userData)

The type of the hook function. event is the C string event argument passed to PySys_Audit() or
PySys_AuditTuple(). args is guaranteed to be a PyTupleObject. userData is the argument
passed to PySys_AddAuditHook().

Added in version 3.8.

6.2. System Functions 73

https://peps.python.org/pep-0578/


The Python/C API, Release 3.13.0

6.3 Process Control

void Py_FatalError(const char *message)
Part of the Stable ABI. Print a fatal error message and kill the process. No cleanup is performed. This function
should only be invoked when a condition is detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be corrupted. On Unix, the standard C library
function abort() is called which will attempt to produce a core file.
The Py_FatalError() function is replaced with a macro which logs automatically the name of the current
function, unless the Py_LIMITED_API macro is defined.
Changed in version 3.9: Log the function name automatically.

void Py_Exit(int status)
Part of the Stable ABI. Exit the current process. This calls Py_FinalizeEx() and then calls the standard
C library function exit(status). If Py_FinalizeEx() indicates an error, the exit status is set to 120.
Changed in version 3.6: Errors from finalization no longer ignored.

int Py_AtExit(void (*func)())
Part of the Stable ABI.Register a cleanup function to be called byPy_FinalizeEx(). The cleanup function
will be called with no arguments and should return no value. At most 32 cleanup functions can be registered.
When the registration is successful, Py_AtExit() returns 0; on failure, it returns -1. The cleanup func-
tion registered last is called first. Each cleanup function will be called at most once. Since Python’s internal
finalization will have completed before the cleanup function, no Python APIs should be called by func.

6.4 Importing Modules

PyObject *PyImport_ImportModule(const char *name)
Return value: New reference. Part of the Stable ABI. This is a wrapper around PyImport_Import()which
takes a const char* as an argument instead of a PyObject*.

PyObject *PyImport_ImportModuleNoBlock(const char *name)
Return value: New reference. Part of the Stable ABI. This function is a deprecated alias of PyIm-
port_ImportModule().
Changed in version 3.3: This function used to fail immediately when the import lock was held by another
thread. In Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this
function’s special behaviour isn’t needed anymore.
Deprecated since version 3.13, will be removed in version 3.15: Use PyImport_ImportModule() in-
stead.

PyObject *PyImport_ImportModuleEx(const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)

Return value: New reference. Import a module. This is best described by referring to the built-in Python
function __import__().
The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__(), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.
Failing imports remove incomplete module objects, like with PyImport_ImportModule().

PyObject *PyImport_ImportModuleLevelObject(PyObject *name, PyObject *globals, PyObject *locals,
PyObject *fromlist, int level)

Return value: New reference. Part of the Stable ABI since version 3.7. Import a module. This is best described
by referring to the built-in Python function __import__(), as the standard __import__() function calls
this function directly.

74 Chapter 6. Utilities



The Python/C API, Release 3.13.0

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__(), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.
Added in version 3.3.

PyObject *PyImport_ImportModuleLevel(const char *name, PyObject *globals, PyObject *locals,
PyObject *fromlist, int level)

Return value: New reference. Part of the Stable ABI. Similar to PyIm-
port_ImportModuleLevelObject(), but the name is a UTF-8 encoded string instead of a
Unicode object.
Changed in version 3.3: Negative values for level are no longer accepted.

PyObject *PyImport_Import(PyObject *name)
Return value: New reference. Part of the Stable ABI.This is a higher-level interface that calls the current “import
hook function” (with an explicit level of 0, meaning absolute import). It invokes the __import__() function
from the __builtins__ of the current globals. This means that the import is done using whatever import
hooks are installed in the current environment.
This function always uses absolute imports.

PyObject *PyImport_ReloadModule(PyObject *m)
Return value: New reference. Part of the Stable ABI. Reload a module. Return a new reference to the reloaded
module, or NULL with an exception set on failure (the module still exists in this case).

PyObject *PyImport_AddModuleRef(const char *name)
Return value: New reference. Part of the Stable ABI since version 3.13. Return themodule object corresponding
to a module name.
The name argument may be of the form package.module. First check the modules dictionary if there’s
one there, and if not, create a new one and insert it in the modules dictionary.
Return a strong reference to the module on success. Return NULL with an exception set on failure.
The module name name is decoded from UTF-8.
This function does not load or import the module; if the module wasn’t already loaded, you will get an empty
module object. Use PyImport_ImportModule() or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.
Added in version 3.13.

PyObject *PyImport_AddModuleObject(PyObject *name)
Return value: Borrowed reference. Part of the Stable ABI since version 3.7. Similar to PyIm-
port_AddModuleRef(), but return a borrowed reference and name is a Python str object.
Added in version 3.3.

PyObject *PyImport_AddModule(const char *name)
Return value: Borrowed reference. Part of the Stable ABI. Similar to PyImport_AddModuleRef(), but
return a borrowed reference.

PyObject *PyImport_ExecCodeModule(const char *name, PyObject *co)
Return value: New reference. Part of the Stable ABI. Given a module name (possibly of the form package.
module) and a code object read from a Python bytecode file or obtained from the built-in function com-
pile(), load the module. Return a new reference to the module object, or NULL with an exception set
if an error occurred. name is removed from sys.modules in error cases, even if name was already in
sys.modules on entry to PyImport_ExecCodeModule(). Leaving incompletely initialized modules
in sys.modules is dangerous, as imports of such modules have no way to know that the module object is
an unknown (and probably damaged with respect to the module author’s intents) state.
The module’s __spec__ and __loader__ will be set, if not set already, with the appropriate values. The
spec’s loader will be set to the module’s __loader__ (if set) and to an instance of SourceFileLoader
otherwise.

6.4. Importing Modules 75



The Python/C API, Release 3.13.0

The module’s __file__ attribute will be set to the code object’s co_filename. If applicable,
__cached__ will also be set.
This function will reload the module if it was already imported. See PyImport_ReloadModule() for
the intended way to reload a module.
If name points to a dotted name of the form package.module, any package structures not already created
will still not be created.
See alsoPyImport_ExecCodeModuleEx() andPyImport_ExecCodeModuleWithPathnames().
Changed in version 3.12: The setting of __cached__ and __loader__ is deprecated. See ModuleSpec
for alternatives.

PyObject *PyImport_ExecCodeModuleEx(const char *name, PyObject *co, const char *pathname)
Return value: New reference. Part of the Stable ABI. Like PyImport_ExecCodeModule(), but the
__file__ attribute of the module object is set to pathname if it is non-NULL.
See also PyImport_ExecCodeModuleWithPathnames().

PyObject *PyImport_ExecCodeModuleObject(PyObject *name, PyObject *co, PyObject *pathname,
PyObject *cpathname)

Return value: New reference. Part of the Stable ABI since version 3.7. Like PyIm-
port_ExecCodeModuleEx(), but the __cached__ attribute of the module object is set to
cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.
Added in version 3.3.
Changed in version 3.12: Setting __cached__ is deprecated. See ModuleSpec for alternatives.

PyObject *PyImport_ExecCodeModuleWithPathnames(const char *name, PyObject *co, const char
*pathname, const char *cpathname)

Return value: New reference. Part of the Stable ABI. Like PyImport_ExecCodeModuleObject(), but
name, pathname and cpathname are UTF-8 encoded strings. Attempts are also made to figure out what the
value for pathname should be from cpathname if the former is set to NULL.
Added in version 3.2.
Changed in version 3.3: Uses imp.source_from_cache() in calculating the source path if only the
bytecode path is provided.
Changed in version 3.12: No longer uses the removed imp module.

long PyImport_GetMagicNumber()
Part of the Stable ABI. Return the magic number for Python bytecode files (a.k.a. .pyc file). The magic
number should be present in the first four bytes of the bytecode file, in little-endian byte order. Returns -1 on
error.
Changed in version 3.3: Return value of -1 upon failure.

const char *PyImport_GetMagicTag()
Part of the Stable ABI. Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in
mind that the value at sys.implementation.cache_tag is authoritative and should be used instead
of this function.
Added in version 3.2.

PyObject *PyImport_GetModuleDict()
Return value: Borrowed reference. Part of the Stable ABI. Return the dictionary used for the module admin-
istration (a.k.a. sys.modules). Note that this is a per-interpreter variable.

PyObject *PyImport_GetModule(PyObject *name)
Return value: New reference. Part of the Stable ABI since version 3.8. Return the already imported module
with the given name. If the module has not been imported yet then returns NULL but does not set an error.
Returns NULL and sets an error if the lookup failed.
Added in version 3.7.

76 Chapter 6. Utilities

https://peps.python.org/pep-3147/


The Python/C API, Release 3.13.0

PyObject *PyImport_GetImporter(PyObject *path)
Return value: New reference. Part of the StableABI.Return a finder object for asys.path/pkg.__path__
item path, possibly by fetching it from the sys.path_importer_cache dict. If it wasn’t yet cached,
traverse sys.path_hooks until a hook is found that can handle the path item. Return None if no hook
could; this tells our caller that the path based finder could not find a finder for this path item. Cache the result
in sys.path_importer_cache. Return a new reference to the finder object.

int PyImport_ImportFrozenModuleObject(PyObject *name)
Part of the Stable ABI since version 3.7. Load a frozen module named name. Return 1 for success, 0 if the
module is not found, and -1with an exception set if the initialization failed. To access the imported module on
a successful load, use PyImport_ImportModule(). (Note the misnomer — this function would reload
the module if it was already imported.)
Added in version 3.3.
Changed in version 3.4: The __file__ attribute is no longer set on the module.

int PyImport_ImportFrozenModule(const char *name)
Part of the Stable ABI. Similar to PyImport_ImportFrozenModuleObject(), but the name is a
UTF-8 encoded string instead of a Unicode object.

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the freeze utility (see
Tools/freeze/ in the Python source distribution). Its definition, found in Include/import.h, is:

struct _frozen {
const char *name;
const unsigned char *code;
int size;
bool is_package;

};

Changed in version 3.11: The new is_package field indicates whether the module is a package or not. This
replaces setting the size field to a negative value.

const struct _frozen *PyImport_FrozenModules
This pointer is initialized to point to an array of _frozen records, terminated by one whose members are all
NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab(const char *name, PyObject *(*initfunc)(void))
Part of the Stable ABI. Add a single module to the existing table of built-in modules. This is a convenience
wrapper around PyImport_ExtendInittab(), returning -1 if the table could not be extended. The
new module can be imported by the name name, and uses the function initfunc as the initialization function
called on the first attempted import. This should be called before Py_Initialize().

struct _inittab
Structure describing a single entry in the list of built-in modules. Programs which embed Python may use an
array of these structures in conjunction with PyImport_ExtendInittab() to provide additional built-in
modules. The structure consists of two members:
const char *name

The module name, as an ASCII encoded string.
PyObject *(*initfunc)(void)

Initialization function for a module built into the interpreter.
int PyImport_ExtendInittab(struct _inittab *newtab)

Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry
which contains NULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns 0 on success or -1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This must be called before Py_Initialize().

6.4. Importing Modules 77



The Python/C API, Release 3.13.0

If Python is initialized multiple times, PyImport_AppendInittab() or PyIm-
port_ExtendInittab() must be called before each Python initialization.

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.
Numeric values are stored with the least significant byte first.
The module supports two versions of the data format: version 0 is the historical version, version 1 shares in-
terned strings in the file, and upon unmarshalling. Version 2 uses a binary format for floating-point numbers.
Py_MARSHAL_VERSION indicates the current file format (currently 2).
void PyMarshal_WriteLongToFile(long value, FILE *file, int version)

Marshal a long integer, value, to file. This will only write the least-significant 32 bits of value; regardless of
the size of the native long type. version indicates the file format.
This function can fail, in which case it sets the error indicator. Use PyErr_Occurred() to check for that.

void PyMarshal_WriteObjectToFile(PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.
This function can fail, in which case it sets the error indicator. Use PyErr_Occurred() to check for that.

PyObject *PyMarshal_WriteObjectToString(PyObject *value, int version)
Return value: New reference. Return a bytes object containing the marshalled representation of value. version
indicates the file format.

The following functions allow marshalled values to be read back in.
long PyMarshal_ReadLongFromFile(FILE *file)

Return a C long from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in
using this function, regardless of the native size of long.
On error, sets the appropriate exception (EOFError) and returns -1.

int PyMarshal_ReadShortFromFile(FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native size of short.
On error, sets the appropriate exception (EOFError) and returns -1.

PyObject *PyMarshal_ReadObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadLastObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading.
Unlike PyMarshal_ReadObjectFromFile(), this function assumes that no further objects will be read
from the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from
data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain that
you won’t be reading anything else from the file.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadObjectFromString(const char *data, Py_ssize_t len)
Return value: New reference. Return a Python object from the data stream in a byte buffer containing len bytes
pointed to by data.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

78 Chapter 6. Utilities



The Python/C API, Release 3.13.0

6.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available in extending-index.
The first three of these functions described, PyArg_ParseTuple(),
PyArg_ParseTupleAndKeywords(), and PyArg_Parse(), all use format strings which are used to
tell the function about the expected arguments. The format strings use the same syntax for each of these functions.

6.6.1 Parsing arguments

A format string consists of zero ormore “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
quoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format
unit; and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

Strings and buffers

Note

On Python 3.12 and older, the macro PY_SSIZE_T_CLEAN must be defined before including Python.h to
use all # variants of formats (s#, y#, etc.) explained below. This is not necessary on Python 3.13 and later.

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage
for the returned unicode or bytes area.
Unless otherwise stated, buffers are not NUL-terminated.
There are three ways strings and buffers can be converted to C:

• Formats such as y* and s* fill a Py_buffer structure. This locks the underlying buffer so that the caller can
subsequently use the buffer even inside a Py_BEGIN_ALLOW_THREADS block without the risk of mutable
data being resized or destroyed. As a result, you have to callPyBuffer_Release() after you have finished
processing the data (or in any early abort case).

• The es, es#, et and et# formats allocate the result buffer. You have to call PyMem_Free() after you
have finished processing the data (or in any early abort case).

• Other formats take a str or a read-only bytes-like object, such as bytes, and provide a const char *
pointer to its buffer. In this case the buffer is “borrowed”: it is managed by the corresponding Python object,
and shares the lifetime of this object. You won’t have to release any memory yourself.
To ensure that the underlying buffer may be safely borrowed, the object’s PyBufferProcs.
bf_releasebuffer field must be NULL. This disallows common mutable objects such as bytearray,
but also some read-only objects such as memoryview of bytes.
Besides this bf_releasebuffer requirement, there is no check to verify whether the input object is im-
mutable (e.g. whether it would honor a request for a writable buffer, or whether another thread can mutate the
data).

s (str) [const char *]
Convert a Unicode object to a C pointer to a character string. A pointer to an existing string is stored in the
character pointer variable whose address you pass. The C string is NUL-terminated. The Python string must
not contain embedded null code points; if it does, a ValueError exception is raised. Unicode objects are
converted to C strings using 'utf-8' encoding. If this conversion fails, a UnicodeError is raised.

6.6. Parsing arguments and building values 79



The Python/C API, Release 3.13.0

Note

This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them to C
character strings, it is preferable to use the O& format with PyUnicode_FSConverter() as converter.

Changed in version 3.5: Previously, TypeError was raised when embedded null code points were encoun-
tered in the Python string.

s* (str or bytes-like object) [Py_buffer]
This format accepts Unicode objects as well as bytes-like objects. It fills a Py_buffer structure provided by
the caller. In this case the resulting C string may contain embedded NUL bytes. Unicode objects are converted
to C strings using 'utf-8' encoding.

s# (str, read-only bytes-like object) [const char *, Py_ssize_t]
Like s*, except that it provides a borrowed buffer. The result is stored into two C variables, the first one a
pointer to a C string, the second one its length. The string may contain embedded null bytes. Unicode objects
are converted to C strings using 'utf-8' encoding.

z (str or None) [const char *]
Like s, but the Python object may also be None, in which case the C pointer is set to NULL.

z* (str, bytes-like object or None) [Py_buffer]
Like s*, but the Python object may also be None, in which case the buf member of the Py_buffer
structure is set to NULL.

z# (str, read-only bytes-like object or None) [const char *, Py_ssize_t]
Like s#, but the Python object may also be None, in which case the C pointer is set to NULL.

y (read-only bytes-like object) [const char *]
This format converts a bytes-like object to a C pointer to a borrowed character string; it does not accept Unicode
objects. The bytes buffer must not contain embedded null bytes; if it does, a ValueError exception is raised.
Changed in version 3.5: Previously, TypeError was raised when embedded null bytes were encountered in
the bytes buffer.

y* (bytes-like object) [Py_buffer]
This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This is the recommended way to
accept binary data.

y# (read-only bytes-like object) [const char *, Py_ssize_t]
This variant on s# doesn’t accept Unicode objects, only bytes-like objects.

S (bytes) [PyBytesObject *]
Requires that the Python object is a bytes object, without attempting any conversion. Raises TypeError
if the object is not a bytes object. The C variable may also be declared as PyObject*.

Y (bytearray) [PyByteArrayObject *]
Requires that the Python object is a bytearray object, without attempting any conversion. Raises Type-
Error if the object is not a bytearray object. The C variable may also be declared as PyObject*.

U (str) [PyObject *]
Requires that the Python object is a Unicode object, without attempting any conversion. Raises TypeError
if the object is not a Unicode object. The C variable may also be declared as PyObject*.

w* (read-write bytes-like object) [Py_buffer]
This format accepts any object which implements the read-write buffer interface. It fills a Py_buffer
structure provided by the caller. The buffer may contain embedded null bytes. The caller have to call Py-
Buffer_Release() when it is done with the buffer.

es (str) [const char *encoding, char **buffer]
This variant on s is used for encoding Unicode into a character buffer. It only works for encoded data without
embedded NUL bytes.
This format requires two arguments. The first is only used as input, and must be a const char* which
points to the name of an encoding as a NUL-terminated string, or NULL, in which case 'utf-8' encoding

80 Chapter 6. Utilities



The Python/C API, Release 3.13.0

is used. An exception is raised if the named encoding is not known to Python. The second argument must be
a char**; the value of the pointer it references will be set to a buffer with the contents of the argument text.
The text will be encoded in the encoding specified by the first argument.
PyArg_ParseTuple() will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem_Free()
to free the allocated buffer after use.

et (str, bytes or bytearray) [const char *encoding, char **buffer]
Same as es except that byte string objects are passed through without recoding them. Instead, the implemen-
tation assumes that the byte string object uses the encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, Py_ssize_t *buffer_length]
This variant on s# is used for encoding Unicode into a character buffer. Unlike the es format, this variant
allows input data which contains NUL characters.
It requires three arguments. The first is only used as input, and must be a const char* which points to the
name of an encoding as a NUL-terminated string, or NULL, in which case 'utf-8' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char**;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text
will be encoded in the encoding specified by the first argument. The third argument must be a pointer to an
integer; the referenced integer will be set to the number of bytes in the output buffer.
There are two modes of operation:
If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free() to free the allocated buffer after usage.
If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg_ParseTuple() will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be
set.
In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (str, bytes or bytearray) [const char *encoding, char **buffer, Py_ssize_t *buffer_length]
Same as es# except that byte string objects are passed through without recoding them. Instead, the imple-
mentation assumes that the byte string object uses the encoding passed in as parameter.

Changed in version 3.12: u, u#, Z, and Z# are removed because they used a legacy Py_UNICODE* representation.

Numbers

b (int) [unsigned char]
Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned char.

B (int) [unsigned char]
Convert a Python integer to a tiny int without overflow checking, stored in a C unsigned char.

h (int) [short int]
Convert a Python integer to a C short int.

H (int) [unsigned short int]
Convert a Python integer to a C unsigned short int, without overflow checking.

i (int) [int]
Convert a Python integer to a plain C int.

I (int) [unsigned int]
Convert a Python integer to a C unsigned int, without overflow checking.

l (int) [long int]
Convert a Python integer to a C long int.

6.6. Parsing arguments and building values 81



The Python/C API, Release 3.13.0

k (int) [unsigned long]
Convert a Python integer to a C unsigned long without overflow checking.

L (int) [long long]
Convert a Python integer to a C long long.

K (int) [unsigned long long]
Convert a Python integer to a C unsigned long long without overflow checking.

n (int) [Py_ssize_t]
Convert a Python integer to a C Py_ssize_t.

c (bytes or bytearray of length 1) [char]
Convert a Python byte, represented as a bytes or bytearray object of length 1, to a C char.
Changed in version 3.3: Allow bytearray objects.

C (str of length 1) [int]
Convert a Python character, represented as a str object of length 1, to a C int.

f (float) [float]
Convert a Python floating-point number to a C float.

d (float) [double]
Convert a Python floating-point number to a C double.

D (complex) [Py_complex]
Convert a Python complex number to a C Py_complex structure.

Other objects

O (object) [PyObject *]
Store a Python object (without any conversion) in a C object pointer. The C program thus receives the actual
object that was passed. A new strong reference to the object is not created (i.e. its reference count is not
increased). The pointer stored is not NULL.

O! (object) [typeobject, PyObject *]
Store a Python object in a C object pointer. This is similar to O, but takes two C arguments: the first is the
address of a Python type object, the second is the address of the C variable (of type PyObject*) into which
the object pointer is stored. If the Python object does not have the required type, TypeError is raised.

O& (object) [converter, anything]
Convert a Python object to a C variable through a converter function. This takes two arguments: the first is
a function, the second is the address of a C variable (of arbitrary type), converted to void*. The converter
function in turn is called as follows:

status = converter(object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parse* function. The returned status should be 1 for a successful conversion and 0 if the conversion
has failed. When the conversion fails, the converter function should raise an exception and leave the content of
address unmodified.
If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this
second call, the object parameter will be NULL; address will have the same value as in the original call.
Changed in version 3.1: Py_CLEANUP_SUPPORTED was added.

p (bool) [int]
Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C true/false
integer value. Sets the int to 1 if the expression was true and 0 if it was false. This accepts any valid Python
value. See truth for more information about how Python tests values for truth.
Added in version 3.3.

82 Chapter 6. Utilities



The Python/C API, Release 3.13.0

(items) (tuple) [matching-items]
The object must be a Python sequence whose length is the number of format units in items. The C arguments
must correspond to the individual format units in items. Format units for sequences may be nested.

It is possible to pass “long” integers (integers whose value exceeds the platform’s LONG_MAX) however no proper
range checking is done— the most significant bits are silently truncated when the receiving field is too small to receive
the value (actually, the semantics are inherited from downcasts in C — your mileage may vary).
A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:
|

Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple() does not touch the contents of the corresponding C variable(s).

$
PyArg_ParseTupleAndKeywords() only: Indicates that the remaining arguments in the Python argu-
ment list are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so |must
always be specified before $ in the format string.
Added in version 3.3.

:
The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception that PyArg_ParseTuple() raises).

;
The list of format units ends here; the string after the semicolon is used as the error message instead of the
default error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not release them
(i.e. do not decrement their reference count)!
Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.
For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse* functions return true, otherwise they return false and raise an appropriate exception. When
the PyArg_Parse* functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

API Functions

int PyArg_ParseTuple(PyObject *args, const char *format, ...)
Part of the Stable ABI. Parse the parameters of a function that takes only positional parameters into local
variables. Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse(PyObject *args, const char *format, va_list vargs)
Part of the Stable ABI. Identical to PyArg_ParseTuple(), except that it accepts a va_list rather than a
variable number of arguments.

int PyArg_ParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *const
*keywords, ...)

Part of the Stable ABI. Parse the parameters of a function that takes both positional and keyword parameters
into local variables. The keywords argument is a NULL-terminated array of keyword parameter names speci-
fied as null-terminated ASCII or UTF-8 encoded C strings. Empty names denote positional-only parameters.
Returns true on success; on failure, it returns false and raises the appropriate exception.

6.6. Parsing arguments and building values 83



The Python/C API, Release 3.13.0

Note

The keywords parameter declaration is char *const* in C and const char *const* in C++.
This can be overridden with the PY_CXX_CONST macro.

Changed in version 3.6: Added support for positional-only parameters.
Changed in version 3.13: The keywords parameter has now type char *const* in C and const char
*const* in C++, instead of char**. Added support for non-ASCII keyword parameter names.

int PyArg_VaParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *const
*keywords, va_list vargs)

Part of the Stable ABI. Identical to PyArg_ParseTupleAndKeywords(), except that it accepts a va_list
rather than a variable number of arguments.

int PyArg_ValidateKeywordArguments(PyObject*)
Part of the Stable ABI. Ensure that the keys in the keywords argument dictionary are strings. This is only
needed if PyArg_ParseTupleAndKeywords() is not used, since the latter already does this check.
Added in version 3.2.

int PyArg_Parse(PyObject *args, const char *format, ...)
Part of the Stable ABI. Parse the parameter of a function that takes a single positional parameter into a local
variable. Returns true on success; on failure, it returns false and raises the appropriate exception.
Example:

// Function using METH_O calling convention
static PyObject*
my_function(PyObject *module, PyObject *arg)
{

int value;
if (!PyArg_Parse(arg, "i:my_function", &value)) {

return NULL;
}
// ... use value ...

}

int PyArg_UnpackTuple(PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
Part of the Stable ABI. A simpler form of parameter retrieval which does not use a format string to specify the
types of the arguments. Functions which use this method to retrieve their parameters should be declared as
METH_VARARGS in function or method tables. The tuple containing the actual parameters should be passed
as args; it must actually be a tuple. The length of the tuple must be at least min and no more than max; min and
max may be equal. Additional arguments must be passed to the function, each of which should be a pointer to
a PyObject* variable; these will be filled in with the values from args; they will contain borrowed references.
The variables which correspond to optional parameters not given by args will not be filled in; these should be
initialized by the caller. This function returns true on success and false if args is not a tuple or contains the
wrong number of elements; an exception will be set if there was a failure.
This is an example of the use of this function, taken from the sources for the _weakref helper module for
weak references:

static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{

PyObject *object;
PyObject *callback = NULL;
PyObject *result = NULL;

if (PyArg_UnpackTuple(args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_NewRef(object, callback);

(continues on next page)

84 Chapter 6. Utilities



The Python/C API, Release 3.13.0

(continued from previous page)
}
return result;

}

The call to PyArg_UnpackTuple() in this example is entirely equivalent to this call to
PyArg_ParseTuple():

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

PY_CXX_CONST

The value to be inserted, if any, before char *const* in the keywords parameter declaration of
PyArg_ParseTupleAndKeywords() and PyArg_VaParseTupleAndKeywords(). Default
empty for C and const for C++ (const char *const*). To override, define it to the desired value
before including Python.h.
Added in version 3.13.

6.6.2 Building values

PyObject *Py_BuildValue(const char *format, ...)
Return value: New reference. Part of the Stable ABI. Create a new value based on a format string similar to
those accepted by the PyArg_Parse* family of functions and a sequence of values. Returns the value or
NULL in the case of an error; an exception will be raised if NULL is returned.
Py_BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it returnsNone; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.
When memory buffers are passed as parameters to supply data to build objects, as for the s and s# for-
mats, the required data is copied. Buffers provided by the caller are never referenced by the objects cre-
ated by Py_BuildValue(). In other words, if your code invokes malloc() and passes the allocated
memory to Py_BuildValue(), your code is responsible for calling free() for that memory once
Py_BuildValue() returns.
In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to
be passed.
The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
s#). This can be used to make long format strings a tad more readable.
s (str or None) [const char *]

Convert a null-terminated C string to a Python str object using 'utf-8' encoding. If the C string
pointer is NULL, None is used.

s# (str or None) [const char *, Py_ssize_t]
Convert a C string and its length to a Python str object using 'utf-8' encoding. If the C string
pointer is NULL, the length is ignored and None is returned.

y (bytes) [const char *]
This converts a C string to a Python bytes object. If the C string pointer is NULL, None is returned.

y# (bytes) [const char *, Py_ssize_t]
This converts a C string and its lengths to a Python object. If the C string pointer is NULL, None is
returned.

z (str or None) [const char *]
Same as s.

z# (str or None) [const char *, Py_ssize_t]
Same as s#.

6.6. Parsing arguments and building values 85



The Python/C API, Release 3.13.0

u (str) [const wchar_t *]
Convert a null-terminated wchar_t buffer of Unicode (UTF-16 or UCS-4) data to a Python Unicode
object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [const wchar_t *, Py_ssize_t]
Convert a Unicode (UTF-16 or UCS-4) data buffer and its length to a Python Unicode object. If the
Unicode buffer pointer is NULL, the length is ignored and None is returned.

U (str or None) [const char *]
Same as s.

U# (str or None) [const char *, Py_ssize_t]
Same as s#.

i (int) [int]
Convert a plain C int to a Python integer object.

b (int) [char]
Convert a plain C char to a Python integer object.

h (int) [short int]
Convert a plain C short int to a Python integer object.

l (int) [long int]
Convert a C long int to a Python integer object.

B (int) [unsigned char]
Convert a C unsigned char to a Python integer object.

H (int) [unsigned short int]
Convert a C unsigned short int to a Python integer object.

I (int) [unsigned int]
Convert a C unsigned int to a Python integer object.

k (int) [unsigned long]
Convert a C unsigned long to a Python integer object.

L (int) [long long]
Convert a C long long to a Python integer object.

K (int) [unsigned long long]
Convert a C unsigned long long to a Python integer object.

n (int) [Py_ssize_t]
Convert a C Py_ssize_t to a Python integer.

c (bytes of length 1) [char]
Convert a C int representing a byte to a Python bytes object of length 1.

C (str of length 1) [int]
Convert a C int representing a character to Python str object of length 1.

d (float) [double]
Convert a C double to a Python floating-point number.

f (float) [float]
Convert a C float to a Python floating-point number.

D (complex) [Py_complex *]
Convert a C Py_complex structure to a Python complex number.

O (object) [PyObject *]
Pass a Python object untouched but create a new strong reference to it (i.e. its reference count is incre-
mented by one). If the object passed in is a NULL pointer, it is assumed that this was caused because the
call producing the argument found an error and set an exception. Therefore, Py_BuildValue() will
return NULL but won’t raise an exception. If no exception has been raised yet, SystemError is set.

86 Chapter 6. Utilities



The Python/C API, Release 3.13.0

S (object) [PyObject *]
Same as O.

N (object) [PyObject *]
Same as O, except it doesn’t create a new strong reference. Useful when the object is created by a call to
an object constructor in the argument list.

O& (object) [converter, anything]
Convert anything to a Python object through a converter function. The function is called with anything
(which should be compatible with void*) as its argument and should return a “new” Python object, or
NULL if an error occurred.

(items) (tuple) [matching-items]
Convert a sequence of C values to a Python tuple with the same number of items.

[items] (list) [matching-items]
Convert a sequence of C values to a Python list with the same number of items.

{items} (dict) [matching-items]
Convert a sequence of C values to a Python dictionary. Each pair of consecutive C values adds one item
to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.
PyObject *Py_VaBuildValue(const char *format, va_list vargs)

Return value: New reference. Part of the Stable ABI. Identical to Py_BuildValue(), except that it accepts
a va_list rather than a variable number of arguments.

6.7 String conversion and formatting

Functions for number conversion and formatted string output.
int PyOS_snprintf(char *str, size_t size, const char *format, ...)

Part of the Stable ABI. Output not more than size bytes to str according to the format string format and the
extra arguments. See the Unix man page snprintf(3).

int PyOS_vsnprintf(char *str, size_t size, const char *format, va_list va)
Part of the Stable ABI. Output not more than size bytes to str according to the format string format and the
variable argument list va. Unix man page vsnprintf(3).

PyOS_snprintf() and PyOS_vsnprintf() wrap the Standard C library functions snprintf() and vs-
nprintf(). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions do
not.
The wrappers ensure that str[size-1] is always '\0' upon return. They never write more than size bytes
(including the trailing '\0') into str. Both functions require that str != NULL, size > 0, format !=
NULL and size < INT_MAX. Note that this means there is no equivalent to the C99 n = snprintf(NULL,
0, ...) which would determine the necessary buffer size.
The return value (rv) for these functions should be interpreted as follows:

• When0 <= rv < size, the output conversion was successful and rv characters were written to str (excluding
the trailing '\0' byte at str[rv]).

• When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str[size-1] is '\0' in this case.

• When rv < 0, “something bad happened.” str[size-1] is '\0' in this case too, but the rest of str is
undefined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

6.7. String conversion and formatting 87

https://manpages.debian.org/snprintf(3)
https://manpages.debian.org/vsnprintf(3)


The Python/C API, Release 3.13.0

unsigned long PyOS_strtoul(const char *str, char **ptr, int base)
Part of the Stable ABI. Convert the initial part of the string in str to an unsigned long value according
to the given base, which must be between 2 and 36 inclusive, or be the special value 0.
Leading white space and case of characters are ignored. If base is zero it looks for a leading 0b, 0o or 0x to
tell which base. If these are absent it defaults to 10. Base must be 0 or between 2 and 36 (inclusive). If ptr
is non-NULL it will contain a pointer to the end of the scan.
If the converted value falls out of range of corresponding return type, range error occurs (errno is set to
ERANGE) and ULONG_MAX is returned. If no conversion can be performed, 0 is returned.
See also the Unix man page strtoul(3).
Added in version 3.2.

long PyOS_strtol(const char *str, char **ptr, int base)
Part of the Stable ABI. Convert the initial part of the string in str to an long value according to the given
base, which must be between 2 and 36 inclusive, or be the special value 0.
Same as PyOS_strtoul(), but return a long value instead and LONG_MAX on overflows.
See also the Unix man page strtol(3).
Added in version 3.2.

double PyOS_string_to_double(const char *s, char **endptr, PyObject *overflow_exception)
Part of the Stable ABI. Convert a string s to a double, raising a Python exception on failure. The set of
accepted strings corresponds to the set of strings accepted by Python’s float() constructor, except that s
must not have leading or trailing whitespace. The conversion is independent of the current locale.
If endptr is NULL, convert the whole string. Raise ValueError and return -1.0 if the string is not a
valid representation of a floating-point number.
If endptr is not NULL, convert as much of the string as possible and set *endptr to point to the first uncon-
verted character. If no initial segment of the string is the valid representation of a floating-point number, set
*endptr to point to the beginning of the string, raise ValueError, and return -1.0.
If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many
platforms) then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and
don’t set any exception. Otherwise, overflow_exception must point to a Python exception object; raise
that exception and return -1.0. In both cases, set *endptr to point to the first character after the converted
value.
If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate
Python exception and return -1.0.
Added in version 3.1.

char *PyOS_double_to_string(double val, char format_code, int precision, int flags, int *ptype)
Part of the Stable ABI. Convert a double val to a string using supplied format_code, precision, and flags.
format_code must be one of 'e', 'E', 'f', 'F', 'g', 'G' or 'r'. For 'r', the supplied precision must
be 0 and is ignored. The 'r' format code specifies the standard repr() format.
flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT,
or-ed together:

• Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

• Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.
• Py_DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf() '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE,
Py_DTST_INFINITE, or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or
not a number, respectively.

88 Chapter 6. Utilities

https://manpages.debian.org/strtoul(3)
https://manpages.debian.org/strtol(3)


The Python/C API, Release 3.13.0

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem_Free().
Added in version 3.1.

int PyOS_stricmp(const char *s1, const char *s2)
Case insensitive comparison of strings. The function works almost identically to strcmp() except that it
ignores the case.

int PyOS_strnicmp(const char *s1, const char *s2, Py_ssize_t size)
Case insensitive comparison of strings. The function works almost identically to strncmp() except that it
ignores the case.

6.8 PyHash API

See also the PyTypeObject.tp_hash member and numeric-hash.
type Py_hash_t

Hash value type: signed integer.
Added in version 3.2.

type Py_uhash_t
Hash value type: unsigned integer.
Added in version 3.2.

PyHASH_MODULUS

The Mersenne prime P = 2**n -1, used for numeric hash scheme.
Added in version 3.13.

PyHASH_BITS

The exponent n of P in PyHASH_MODULUS.
Added in version 3.13.

PyHASH_MULTIPLIER

Prime multiplier used in string and various other hashes.
Added in version 3.13.

PyHASH_INF

The hash value returned for a positive infinity.
Added in version 3.13.

PyHASH_IMAG

The multiplier used for the imaginary part of a complex number.
Added in version 3.13.

type PyHash_FuncDef
Hash function definition used by PyHash_GetFuncDef().
const char *name

Hash function name (UTF-8 encoded string).
const int hash_bits

Internal size of the hash value in bits.

6.8. PyHash API 89

https://en.wikipedia.org/wiki/Mersenne_prime


The Python/C API, Release 3.13.0

const int seed_bits
Size of seed input in bits.

Added in version 3.4.
PyHash_FuncDef *PyHash_GetFuncDef(void)

Get the hash function definition.

See also

PEP 456 “Secure and interchangeable hash algorithm”.

Added in version 3.4.
Py_hash_t Py_HashPointer(const void *ptr)

Hash a pointer value: process the pointer value as an integer (cast it to uintptr_t internally). The pointer
is not dereferenced.
The function cannot fail: it cannot return -1.
Added in version 3.13.

Py_hash_t PyObject_GenericHash(PyObject *obj)
Generic hashing function that is meant to be put into a type object’s tp_hash slot. Its result only depends on
the object’s identity.
CPython implementation detail: In CPython, it is equivalent to Py_HashPointer().
Added in version 3.13.

6.9 Reflection

PyObject *PyEval_GetBuiltins(void)
Return value: Borrowed reference. Part of the Stable ABI. Deprecated since version 3.13: Use PyE-
val_GetFrameBuiltins() instead.
Return a dictionary of the builtins in the current execution frame, or the interpreter of the thread state if no
frame is currently executing.

PyObject *PyEval_GetLocals(void)
Return value: Borrowed reference. Part of the Stable ABI. Deprecated since version 3.13: Use either PyE-
val_GetFrameLocals() to obtain the same behaviour as calling locals() in Python code, or else call
PyFrame_GetLocals() on the result of PyEval_GetFrame() to access the f_locals attribute of
the currently executing frame.
Return a mapping providing access to the local variables in the current execution frame, or NULL if no frame
is currently executing.
Refer to locals() for details of the mapping returned at different scopes.
As this function returns a borrowed reference, the dictionary returned for optimized scopes is cached on the
frame object and will remain alive as long as the frame object does. Unlike PyEval_GetFrameLocals()
and locals(), subsequent calls to this function in the same frame will update the contents of the cached
dictionary to reflect changes in the state of the local variables rather than returning a new snapshot.
Changed in version 3.13: As part ofPEP 667, PyFrame_GetLocals(), locals(), and FrameType.
f_locals no longer make use of the shared cache dictionary. Refer to the What’s New entry for additional
details.

90 Chapter 6. Utilities

https://peps.python.org/pep-0456/
https://peps.python.org/pep-0667/


The Python/C API, Release 3.13.0

PyObject *PyEval_GetGlobals(void)
Return value: Borrowed reference. Part of the Stable ABI. Deprecated since version 3.13: Use PyE-
val_GetFrameGlobals() instead.
Return a dictionary of the global variables in the current execution frame, or NULL if no frame is currently
executing.

PyFrameObject *PyEval_GetFrame(void)
Return value: Borrowed reference. Part of the Stable ABI. Return the current thread state’s frame, which is
NULL if no frame is currently executing.
See also PyThreadState_GetFrame().

PyObject *PyEval_GetFrameBuiltins(void)
Return value: New reference. Part of the Stable ABI since version 3.13. Return a dictionary of the builtins in
the current execution frame, or the interpreter of the thread state if no frame is currently executing.
Added in version 3.13.

PyObject *PyEval_GetFrameLocals(void)
Return value: New reference. Part of the Stable ABI since version 3.13. Return a dictionary of the local variables
in the current execution frame, or NULL if no frame is currently executing. Equivalent to calling locals()
in Python code.
To access f_locals on the current frame without making an independent snapshot in optimized scopes, call
PyFrame_GetLocals() on the result of PyEval_GetFrame().
Added in version 3.13.

PyObject *PyEval_GetFrameGlobals(void)
Return value: New reference. Part of the Stable ABI since version 3.13. Return a dictionary of the global
variables in the current execution frame, or NULL if no frame is currently executing. Equivalent to calling
globals() in Python code.
Added in version 3.13.

const char *PyEval_GetFuncName(PyObject *func)
Part of the Stable ABI. Return the name of func if it is a function, class or instance object, else the name of
funcs type.

const char *PyEval_GetFuncDesc(PyObject *func)
Part of the Stable ABI. Return a description string, depending on the type of func. Return values include
“()” for functions and methods, “ constructor”, “ instance”, and “ object”. Concatenated with the result of
PyEval_GetFuncName(), the result will be a description of func.

6.10 Codec registry and support functions

int PyCodec_Register(PyObject *search_function)
Part of the Stable ABI. Register a new codec search function.
As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first
in the list of search functions.

int PyCodec_Unregister(PyObject *search_function)
Part of the Stable ABI since version 3.10. Unregister a codec search function and clear the registry’s cache.
If the search function is not registered, do nothing. Return 0 on success. Raise an exception and return -1 on
error.
Added in version 3.10.

6.10. Codec registry and support functions 91



The Python/C API, Release 3.13.0

int PyCodec_KnownEncoding(const char *encoding)
Part of the Stable ABI. Return 1 or 0 depending on whether there is a registered codec for the given encoding.
This function always succeeds.

PyObject *PyCodec_Encode(PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABI. Generic codec based encoding API.
object is passed through the encoder function found for the given encoding using the error handling method de-
fined by errors. errorsmay be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

PyObject *PyCodec_Decode(PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABI. Generic codec based decoding API.
object is passed through the decoder function found for the given encoding using the error handling method de-
fined by errors. errorsmay be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

6.10.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes
encodings looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set
and NULL returned.
PyObject *PyCodec_Encoder(const char *encoding)

Return value: New reference. Part of the Stable ABI. Get an encoder function for the given encoding.
PyObject *PyCodec_Decoder(const char *encoding)

Return value: New reference. Part of the Stable ABI. Get a decoder function for the given encoding.
PyObject *PyCodec_IncrementalEncoder(const char *encoding, const char *errors)

Return value: New reference. Part of the Stable ABI. Get an IncrementalEncoder object for the given
encoding.

PyObject *PyCodec_IncrementalDecoder(const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABI. Get an IncrementalDecoder object for the given
encoding.

PyObject *PyCodec_StreamReader(const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. Part of the Stable ABI. Get a StreamReader factory function for the given
encoding.

PyObject *PyCodec_StreamWriter(const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. Part of the Stable ABI. Get a StreamWriter factory function for the given
encoding.

6.10.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError(const char *name, PyObject *error)
Part of the Stable ABI. Register the error handling callback function error under the given name. This callback
function will be called by a codec when it encounters unencodable characters/undecodable bytes and name is
specified as the error parameter in the call to the encode/decode function.
The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes
and their offset in the original string (see Unicode Exception Objects for functions to extract this information).
The callback must either raise the given exception, or return a two-item tuple containing the replacement for
the problematic sequence, and an integer giving the offset in the original string at which encoding/decoding
should be resumed.

92 Chapter 6. Utilities



The Python/C API, Release 3.13.0

Return 0 on success, -1 on error.
PyObject *PyCodec_LookupError(const char *name)

Return value: New reference. Part of the Stable ABI. Lookup the error handling callback function registered
under name. As a special case NULL can be passed, in which case the error handling callback for “strict” will
be returned.

PyObject *PyCodec_StrictErrors(PyObject *exc)
Return value: Always NULL. Part of the Stable ABI. Raise exc as an exception.

PyObject *PyCodec_IgnoreErrors(PyObject *exc)
Return value: New reference. Part of the Stable ABI. Ignore the unicode error, skipping the faulty input.

PyObject *PyCodec_ReplaceErrors(PyObject *exc)
Return value: New reference. Part of the Stable ABI. Replace the unicode encode error with ? or U+FFFD.

PyObject *PyCodec_XMLCharRefReplaceErrors(PyObject *exc)
Return value: New reference. Part of the Stable ABI. Replace the unicode encode error with XML character
references.

PyObject *PyCodec_BackslashReplaceErrors(PyObject *exc)
Return value: New reference. Part of the Stable ABI. Replace the unicode encode error with backslash escapes
(\x, \u and \U).

PyObject *PyCodec_NameReplaceErrors(PyObject *exc)
Return value: New reference. Part of the Stable ABI since version 3.7. Replace the unicode encode error with
\N{...} escapes.
Added in version 3.5.

6.11 PyTime C API

Added in version 3.13.
The clock C API provides access to system clocks. It is similar to the Python time module.
For C API related to the datetime module, see DateTime Objects.

6.11.1 Types

type PyTime_t
A timestamp or duration in nanoseconds, represented as a signed 64-bit integer.
The reference point for timestamps depends on the clock used. For example, PyTime_Time() returns
timestamps relative to the UNIX epoch.
The supported range is around [-292.3 years; +292.3 years]. Using the Unix epoch (January 1st, 1970) as
reference, the supported date range is around [1677-09-21; 2262-04-11]. The exact limits are exposed as
constants:

PyTime_t PyTime_MIN

Minimum value of PyTime_t.
PyTime_t PyTime_MAX

Maximum value of PyTime_t.

6.11. PyTime C API 93



The Python/C API, Release 3.13.0

6.11.2 Clock Functions

The following functions take a pointer to a PyTime_t that they set to the value of a particular clock. Details of each
clock are given in the documentation of the corresponding Python function.
The functions return 0 on success, or -1 (with an exception set) on failure.
On integer overflow, they set the PyExc_OverflowError exception and set *result to the value clamped to
the [PyTime_MIN; PyTime_MAX] range. (On current systems, integer overflows are likely caused by miscon-
figured system time.)
As any other C API (unless otherwise specified), the functions must be called with the GIL held.
int PyTime_Monotonic(PyTime_t *result)

Read the monotonic clock. See time.monotonic() for important details on this clock.
int PyTime_PerfCounter(PyTime_t *result)

Read the performance counter. See time.perf_counter() for important details on this clock.
int PyTime_Time(PyTime_t *result)

Read the “wall clock” time. See time.time() for details important on this clock.

6.11.3 Raw Clock Functions

Similar to clock functions, but don’t set an exception on error and don’t require the caller to hold the GIL.
On success, the functions return 0.
On failure, they set *result to 0 and return -1, without setting an exception. To get the cause of the error, acquire
the GIL and call the regular (non-Raw) function. Note that the regular function may succeed after the Raw one failed.

int PyTime_MonotonicRaw(PyTime_t *result)
Similar to PyTime_Monotonic(), but don’t set an exception on error and don’t require holding the GIL.

int PyTime_PerfCounterRaw(PyTime_t *result)
Similar to PyTime_PerfCounter(), but don’t set an exception on error and don’t require holding the
GIL.

int PyTime_TimeRaw(PyTime_t *result)
Similar to PyTime_Time(), but don’t set an exception on error and don’t require holding the GIL.

6.11.4 Conversion functions

double PyTime_AsSecondsDouble(PyTime_t t)
Convert a timestamp to a number of seconds as a C double.
The function cannot fail, but note that double has limited accuracy for large values.

6.12 Support for Perf Maps

On supported platforms (as of this writing, only Linux), the runtime can take advantage of perf map files to make
Python functions visible to an external profiling tool (such as perf). A running process may create a file in the /tmp
directory, which contains entries that can map a section of executable code to a name. This interface is described in
the documentation of the Linux Perf tool.
In Python, these helper APIs can be used by libraries and features that rely on generating machine code on the fly.
Note that holding the Global Interpreter Lock (GIL) is not required for these APIs.

94 Chapter 6. Utilities

https://perf.wiki.kernel.org/index.php/Main_Page
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/jit-interface.txt


The Python/C API, Release 3.13.0

int PyUnstable_PerfMapState_Init(void)

This is Unstable API. It may change without warning in minor releases.

Open the /tmp/perf-$pid.map file, unless it’s already opened, and create a lock to ensure thread-safe
writes to the file (provided the writes are done through PyUnstable_WritePerfMapEntry()). Nor-
mally, there’s no need to call this explicitly; just use PyUnstable_WritePerfMapEntry() and it will
initialize the state on first call.
Returns 0 on success, -1 on failure to create/open the perf map file, or -2 on failure to create a lock. Check
errno for more information about the cause of a failure.

int PyUnstable_WritePerfMapEntry(const void *code_addr, unsigned int code_size, const char
*entry_name)

This is Unstable API. It may change without warning in minor releases.

Write one single entry to the /tmp/perf-$pid.map file. This function is thread safe. Here is what an
example entry looks like:

# address size name
7f3529fcf759 b py::bar:/run/t.py

Will call PyUnstable_PerfMapState_Init() before writing the entry, if the perf map file is not al-
ready opened. Returns 0 on success, or the same error codes as PyUnstable_PerfMapState_Init()
on failure.

void PyUnstable_PerfMapState_Fini(void)

This is Unstable API. It may change without warning in minor releases.

Close the perf map file opened by PyUnstable_PerfMapState_Init(). This is called by the runtime
itself during interpreter shut-down. In general, there shouldn’t be a reason to explicitly call this, except to
handle specific scenarios such as forking.

6.12. Support for Perf Maps 95



The Python/C API, Release 3.13.0

96 Chapter 6. Utilities



CHAPTER

SEVEN

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.
It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been
created by PyList_New(), but whose items have not been set to some non-NULL value yet.

7.1 Object Protocol

PyObject *Py_GetConstant(unsigned int constant_id)
Part of the Stable ABI since version 3.13. Get a strong reference to a constant.
Set an exception and return NULL if constant_id is invalid.
constant_id must be one of these constant identifiers:

97



The Python/C API, Release 3.13.0

Constant Identifier Value Returned object

Py_CONSTANT_NONE
0 None

Py_CONSTANT_FALSE
1 False

Py_CONSTANT_TRUE
2 True

Py_CONSTANT_ELLIPSIS
3 Ellipsis

Py_CONSTANT_NOT_IMPLEMENTED
4 NotImplemented

Py_CONSTANT_ZERO
5 0

Py_CONSTANT_ONE
6 1

Py_CONSTANT_EMPTY_STR
7 ''

Py_CONSTANT_EMPTY_BYTES
8 b''

Py_CONSTANT_EMPTY_TUPLE
9 ()

Numeric values are only given for projects which cannot use the constant identifiers.
Added in version 3.13.
CPython implementation detail: In CPython, all of these constants are immortal.

PyObject *Py_GetConstantBorrowed(unsigned int constant_id)
Part of the Stable ABI since version 3.13. Similar to Py_GetConstant(), but return a borrowed reference.
This function is primarily intended for backwards compatibility: using Py_GetConstant() is recom-
mended for new code.
The reference is borrowed from the interpreter, and is valid until the interpreter finalization.
Added in version 3.13.

PyObject *Py_NotImplemented
The NotImplemented singleton, used to signal that an operation is not implemented for the given type
combination.

Py_RETURN_NOTIMPLEMENTED

Properly handle returning Py_NotImplemented from within a C function (that is, create a new strong
reference to NotImplemented and return it).

Py_PRINT_RAW

Flag to be used with multiple functions that print the object (like PyObject_Print() and Py-
File_WriteObject()). If passed, these function would use the str() of the object instead of the
repr().

98 Chapter 7. Abstract Objects Layer



The Python/C API, Release 3.13.0

int PyObject_Print(PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW ; if given, the str() of the object is written instead
of the repr().

int PyObject_HasAttrWithError(PyObject *o, const char *attr_name)
Part of the Stable ABI since version 3.13. Returns 1 if o has the attribute attr_name, and 0 otherwise. This is
equivalent to the Python expression hasattr(o, attr_name). On failure, return -1.
Added in version 3.13.

int PyObject_HasAttrStringWithError(PyObject *o, const char *attr_name)
Part of the Stable ABI since version 3.13. This is the same as PyObject_HasAttrWithError(), but
attr_name is specified as a const char* UTF-8 encoded bytes string, rather than a PyObject*.
Added in version 3.13.

int PyObject_HasAttr(PyObject *o, PyObject *attr_name)
Part of the Stable ABI. Returns 1 if o has the attribute attr_name, and 0 otherwise. This function always
succeeds.

Note

Exceptions that occur when this calls __getattr__() and __getattribute__() methods
are silently ignored. For proper error handling, use PyObject_HasAttrWithError(), PyOb-
ject_GetOptionalAttr() or PyObject_GetAttr() instead.

int PyObject_HasAttrString(PyObject *o, const char *attr_name)
Part of the Stable ABI. This is the same as PyObject_HasAttr(), but attr_name is specified as a const
char* UTF-8 encoded bytes string, rather than a PyObject*.

Note

Exceptions that occur when this calls __getattr__() and __getattribute__() methods or
while creating the temporary str object are silently ignored. For proper error handling, use PyOb-
ject_HasAttrStringWithError(), PyObject_GetOptionalAttrString() or PyOb-
ject_GetAttrString() instead.

PyObject *PyObject_GetAttr(PyObject *o, PyObject *attr_name)
Return value: New reference. Part of the Stable ABI. Retrieve an attribute named attr_name from object o.
Returns the attribute value on success, or NULL on failure. This is the equivalent of the Python expression
o.attr_name.
If the missing attribute should not be treated as a failure, you can use PyObject_GetOptionalAttr()
instead.

PyObject *PyObject_GetAttrString(PyObject *o, const char *attr_name)
Return value: New reference. Part of the Stable ABI. This is the same as PyObject_GetAttr(), but
attr_name is specified as a const char* UTF-8 encoded bytes string, rather than a PyObject*.
If the missing attribute should not be treated as a failure, you can use PyOb-
ject_GetOptionalAttrString() instead.

int PyObject_GetOptionalAttr(PyObject *obj, PyObject *attr_name, PyObject **result);
Part of the Stable ABI since version 3.13. Variant of PyObject_GetAttr() which doesn’t raise At-
tributeError if the attribute is not found.
If the attribute is found, return 1 and set *result to a new strong reference to the attribute. If the attribute
is not found, return 0 and set *result to NULL; the AttributeError is silenced. If an error other than
AttributeError is raised, return -1 and set *result to NULL.

7.1. Object Protocol 99



The Python/C API, Release 3.13.0

Added in version 3.13.
int PyObject_GetOptionalAttrString(PyObject *obj, const char *attr_name, PyObject **result);

Part of the Stable ABI since version 3.13. This is the same as PyObject_GetOptionalAttr(), but
attr_name is specified as a const char* UTF-8 encoded bytes string, rather than a PyObject*.
Added in version 3.13.

PyObject *PyObject_GenericGetAttr(PyObject *o, PyObject *name)
Return value: New reference. Part of the Stable ABI. Generic attribute getter function that is meant to be put
into a type object’s tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s
MRO as well as an attribute in the object’s __dict__ (if present). As outlined in descriptors, data descriptors
take preference over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError
is raised.

int PyObject_SetAttr(PyObject *o, PyObject *attr_name, PyObject *v)
Part of the Stable ABI. Set the value of the attribute named attr_name, for object o, to the value v. Raise
an exception and return -1 on failure; return 0 on success. This is the equivalent of the Python statement
o.attr_name = v.
If v is NULL, the attribute is deleted. This behaviour is deprecated in favour of using PyOb-
ject_DelAttr(), but there are currently no plans to remove it.

int PyObject_SetAttrString(PyObject *o, const char *attr_name, PyObject *v)
Part of the Stable ABI. This is the same as PyObject_SetAttr(), but attr_name is specified as a const
char* UTF-8 encoded bytes string, rather than a PyObject*.
If v is NULL, the attribute is deleted, but this feature is deprecated in favour of using PyOb-
ject_DelAttrString().
The number of different attribute names passed to this function should be kept small, usually by using a stat-
ically allocated string as attr_name. For attribute names that aren’t known at compile time, prefer calling
PyUnicode_FromString() and PyObject_SetAttr() directly. For more details, see PyUni-
code_InternFromString(), which may be used internally to create a key object.

int PyObject_GenericSetAttr(PyObject *o, PyObject *name, PyObject *value)
Part of the Stable ABI. Generic attribute setter and deleter function that is meant to be put into a type object’s
tp_setattro slot. It looks for a data descriptor in the dictionary of classes in the object’s MRO, and
if found it takes preference over setting or deleting the attribute in the instance dictionary. Otherwise, the
attribute is set or deleted in the object’s __dict__ (if present). On success, 0 is returned, otherwise an
AttributeError is raised and -1 is returned.

int PyObject_DelAttr(PyObject *o, PyObject *attr_name)
Part of the Stable ABI since version 3.13. Delete attribute named attr_name, for object o. Returns -1 on
failure. This is the equivalent of the Python statement del o.attr_name.

int PyObject_DelAttrString(PyObject *o, const char *attr_name)
Part of the Stable ABI since version 3.13. This is the same as PyObject_DelAttr(), but attr_name is
specified as a const char* UTF-8 encoded bytes string, rather than a PyObject*.
The number of different attribute names passed to this function should be kept small, usually by using a stat-
ically allocated string as attr_name. For attribute names that aren’t known at compile time, prefer calling
PyUnicode_FromString() and PyObject_DelAttr() directly. For more details, see PyUni-
code_InternFromString(), which may be used internally to create a key object for lookup.

PyObject *PyObject_GenericGetDict(PyObject *o, void *context)
Return value: New reference. Part of the Stable ABI since version 3.10. A generic implementation for the getter
of a __dict__ descriptor. It creates the dictionary if necessary.
This function may also be called to get the __dict__ of the object o. Pass NULL for context when call-
ing it. Since this function may need to allocate memory for the dictionary, it may be more efficient to call
PyObject_GetAttr() when accessing an attribute on the object.
On failure, returns NULL with an exception set.

100 Chapter 7. Abstract Objects Layer



The Python/C API, Release 3.13.0

Added in version 3.3.
int PyObject_GenericSetDict(PyObject *o, PyObject *value, void *context)

Part of the Stable ABI since version 3.7. A generic implementation for the setter of a __dict__ descriptor.
This implementation does not allow the dictionary to be deleted.
Added in version 3.3.

PyObject **_PyObject_GetDictPtr(PyObject *obj)
Return a pointer to __dict__ of the object obj. If there is no __dict__, return NULL without setting an
exception.
This function may need to allocate memory for the dictionary, so it may be more efficient to call PyOb-
ject_GetAttr() when accessing an attribute on the object.

PyObject *PyObject_RichCompare(PyObject *o1, PyObject *o2, int opid)
Return value: New reference. Part of the Stable ABI. Compare the values of o1 and o2 using the operation
specified by opid, which must be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding
to <, <=, ==, !=, >, or >= respectively. This is the equivalent of the Python expression o1 op o2, where
op is the operator corresponding to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool(PyObject *o1, PyObject *o2, int opid)
Part of the Stable ABI. Compare the values of o1 and o2 using the operation specified by opid, like PyOb-
ject_RichCompare(), but returns -1 on error, 0 if the result is false, 1 otherwise.

Note

If o1 and o2 are the same object, PyObject_RichCompareBool() will always return 1 for Py_EQ and 0
for Py_NE.

PyObject *PyObject_Format(PyObject *obj, PyObject *format_spec)
Part of the Stable ABI. Format obj using format_spec. This is equivalent to the Python expression
format(obj, format_spec).
format_spec may be NULL. In this case the call is equivalent to format(obj). Returns the formatted string
on success, NULL on failure.

PyObject *PyObject_Repr(PyObject *o)
Return value: New reference. Part of the Stable ABI. Compute a string representation of object o. Returns the
string representation on success, NULL on failure. This is the equivalent of the Python expression repr(o).
Called by the repr() built-in function.
Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject *PyObject_ASCII(PyObject *o)
Return value: New reference. Part of the Stable ABI. As PyObject_Repr(), compute a string represen-
tation of object o, but escape the non-ASCII characters in the string returned by PyObject_Repr() with
\x, \u or \U escapes. This generates a string similar to that returned by PyObject_Repr() in Python 2.
Called by the ascii() built-in function.

PyObject *PyObject_Str(PyObject *o)
Return value: New reference. Part of the Stable ABI. Compute a string representation of object o. Returns the
string representation on success, NULL on failure. This is the equivalent of the Python expression str(o).
Called by the str() built-in function and, therefore, by the print() function.
Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

7.1. Object Protocol 101



The Python/C API, Release 3.13.0

PyObject *PyObject_Bytes(PyObject *o)
Return value: New reference. Part of the Stable ABI. Compute a bytes representation of object o. NULL is
returned on failure and a bytes object on success. This is equivalent to the Python expression bytes(o), when
o is not an integer. Unlike bytes(o), a TypeError is raised when o is an integer instead of a zero-initialized
bytes object.

int PyObject_IsSubclass(PyObject *derived, PyObject *cls)
Part of the Stable ABI. Return 1 if the class derived is identical to or derived from the class cls, otherwise
return 0. In case of an error, return -1.
If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.
If cls has a __subclasscheck__()method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in
cls.__mro__.
Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by having a __bases__ attribute (which must be a tuple of base classes).

int PyObject_IsInstance(PyObject *inst, PyObject *cls)
Part of the Stable ABI. Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error,
returns -1 and sets an exception.
If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.
If cls has a __instancecheck__()method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.
An instance inst can override what is considered its class by having a __class__ attribute.
An object cls can override if it is considered a class, and what its base classes are, by having a __bases__
attribute (which must be a tuple of base classes).

Py_hash_t PyObject_Hash(PyObject *o)
Part of the Stable ABI. Compute and return the hash value of an object o. On failure, return -1. This is the
equivalent of the Python expression hash(o).
Changed in version 3.2: The return type is now Py_hash_t. This is a signed integer the same size as
Py_ssize_t.

Py_hash_t PyObject_HashNotImplemented(PyObject *o)
Part of the Stable ABI. Set a TypeError indicating that type(o) is not hashable and return -1. This
function receives special treatment when stored in a tp_hash slot, allowing a type to explicitly indicate to the
interpreter that it is not hashable.

int PyObject_IsTrue(PyObject *o)
Part of the Stable ABI. Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent
to the Python expression not not o. On failure, return -1.

int PyObject_Not(PyObject *o)
Part of the Stable ABI. Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent
to the Python expression not o. On failure, return -1.

PyObject *PyObject_Type(PyObject *o)
Return value: New reference. Part of the Stable ABI.When o is non-NULL, returns a type object corresponding
to the object type of object o. On failure, raises SystemError and returns NULL. This is equivalent to
the Python expression type(o). This function creates a new strong reference to the return value. There’s
really no reason to use this function instead of the Py_TYPE() function, which returns a pointer of type
PyTypeObject*, except when a new strong reference is needed.

102 Chapter 7. Abstract Objects Layer

https://peps.python.org/pep-3119/
https://peps.python.org/pep-3119/


The Python/C API, Release 3.13.0

int PyObject_TypeCheck(PyObject *o, PyTypeObject *type)
Return non-zero if the object o is of type type or a subtype of type, and 0 otherwise. Both parameters must be
non-NULL.

Py_ssize_t PyObject_Size(PyObject *o)
Py_ssize_t PyObject_Length(PyObject *o)

Part of the Stable ABI. Return the length of object o. If the object o provides either the sequence and mapping
protocols, the sequence length is returned. On error, -1 is returned. This is the equivalent to the Python
expression len(o).

Py_ssize_t PyObject_LengthHint(PyObject *o, Py_ssize_t defaultvalue)
Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__(), and finally return the default value. On error return -1. This is the equivalent
to the Python expression operator.length_hint(o, defaultvalue).
Added in version 3.4.

PyObject *PyObject_GetItem(PyObject *o, PyObject *key)
Return value: New reference. Part of the Stable ABI. Return element of o corresponding to the object key or
NULL on failure. This is the equivalent of the Python expression o[key].

int PyObject_SetItem(PyObject *o, PyObject *key, PyObject *v)
Part of the Stable ABI.Map the object key to the value v. Raise an exception and return -1 on failure; return
0 on success. This is the equivalent of the Python statement o[key] = v. This function does not steal a
reference to v.

int PyObject_DelItem(PyObject *o, PyObject *key)
Part of the Stable ABI. Remove the mapping for the object key from the object o. Return -1 on failure. This
is equivalent to the Python statement del o[key].

PyObject *PyObject_Dir(PyObject *o)
Return value: New reference. Part of the Stable ABI. This is equivalent to the Python expression dir(o),
returning a (possibly empty) list of strings appropriate for the object argument, or NULL if there was an error.
If the argument is NULL, this is like the Python dir(), returning the names of the current locals; in this case,
if no execution frame is active then NULL is returned but PyErr_Occurred() will return false.

PyObject *PyObject_GetIter(PyObject *o)
Return value: New reference. Part of the Stable ABI. This is equivalent to the Python expression iter(o).
It returns a new iterator for the object argument, or the object itself if the object is already an iterator. Raises
TypeError and returns NULL if the object cannot be iterated.

PyObject *PyObject_GetAIter(PyObject *o)
Return value: New reference. Part of the Stable ABI since version 3.10. This is the equivalent to the Python
expression aiter(o). Takes an AsyncIterable object and returns an AsyncIterator for it. This is
typically a new iterator but if the argument is an AsyncIterator, this returns itself. Raises TypeError
and returns NULL if the object cannot be iterated.
Added in version 3.10.

void *PyObject_GetTypeData(PyObject *o, PyTypeObject *cls)
Part of the Stable ABI since version 3.12. Get a pointer to subclass-specific data reserved for cls.
The object o must be an instance of cls, and cls must have been created using negative PyType_Spec.
basicsize. Python does not check this.
On error, set an exception and return NULL.
Added in version 3.12.

Py_ssize_t PyType_GetTypeDataSize(PyTypeObject *cls)
Part of the Stable ABI since version 3.12. Return the size of the instance memory space reserved for cls, i.e.
the size of the memory PyObject_GetTypeData() returns.

7.1. Object Protocol 103



The Python/C API, Release 3.13.0

This may be larger than requested using -PyType_Spec.basicsize; it is safe to use this larger size (e.g.
with memset()).
The type cls must have been created using negative PyType_Spec.basicsize. Python does not check
this.
On error, set an exception and return a negative value.
Added in version 3.12.

void *PyObject_GetItemData(PyObject *o)
Get a pointer to per-item data for a class with Py_TPFLAGS_ITEMS_AT_END.
On error, set an exception and return NULL. TypeError is raised if o does not have
Py_TPFLAGS_ITEMS_AT_END set.
Added in version 3.12.

int PyObject_VisitManagedDict(PyObject *obj, visitproc visit, void *arg)
Visit the managed dictionary of obj.
This function must only be called in a traverse function of the type which has the
Py_TPFLAGS_MANAGED_DICT flag set.
Added in version 3.13.

void PyObject_ClearManagedDict(PyObject *obj)
Clear the managed dictionary of obj.
This function must only be called in a traverse function of the type which has the
Py_TPFLAGS_MANAGED_DICT flag set.
Added in version 3.13.

7.2 Call Protocol

CPython supports two different calling protocols: tp_call and vectorcall.

7.2.1 The tp_call Protocol

Instances of classes that set tp_call are callable. The signature of the slot is:

PyObject *tp_call(PyObject *callable, PyObject *args, PyObject *kwargs);

A call is made using a tuple for the positional arguments and a dict for the keyword arguments, similarly to
callable(*args, **kwargs) in Python code. args must be non-NULL (use an empty tuple if there are
no arguments) but kwargs may be NULL if there are no keyword arguments.
This convention is not only used by tp_call: tp_new and tp_init also pass arguments this way.
To call an object, use PyObject_Call() or another call API.

104 Chapter 7. Abstract Objects Layer



The Python/C API, Release 3.13.0

7.2.2 The Vectorcall Protocol

Added in version 3.9.
The vectorcall protocol was introduced in PEP 590 as an additional protocol for making calls more efficient.
As rule of thumb, CPython will prefer the vectorcall for internal calls if the callable supports it. However, this is not
a hard rule. Additionally, some third-party extensions use tp_call directly (rather than using PyObject_Call()).
Therefore, a class supporting vectorcall must also implement tp_call. Moreover, the callable must behave the
same regardless of which protocol is used. The recommended way to achieve this is by setting tp_call to PyVec-
torcall_Call(). This bears repeating:

Warning

A class supporting vectorcallmust also implement tp_call with the same semantics.

Changed in version 3.12: The Py_TPFLAGS_HAVE_VECTORCALL flag is now removed from a class when the
class’s __call__() method is reassigned. (This internally sets tp_call only, and thus may make it behave
differently than the vectorcall function.) In earlier Python versions, vectorcall should only be used with immutable
or static types.
A class should not implement vectorcall if that would be slower than tp_call. For example, if the callee needs to
convert the arguments to an args tuple and kwargs dict anyway, then there is no point in implementing vectorcall.
Classes can implement the vectorcall protocol by enabling thePy_TPFLAGS_HAVE_VECTORCALL flag and setting
tp_vectorcall_offset to the offset inside the object structure where a vectorcallfunc appears. This is a pointer
to a function with the following signature:
typedef PyObject *(*vectorcallfunc)(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Part of the Stable ABI since version 3.12.
• callable is the object being called.
• args is a C array consisting of the positional arguments followed by the

values of the keyword arguments. This can be NULL if there are no arguments.
• nargsf is the number of positional arguments plus possibly the

PY_VECTORCALL_ARGUMENTS_OFFSET flag. To get the actual number of positional arguments
from nargsf, use PyVectorcall_NARGS().

• kwnames is a tuple containing the names of the keyword arguments;
in other words, the keys of the kwargs dict. These names must be strings (instances of str or a subclass)
and they must be unique. If there are no keyword arguments, then kwnames can instead be NULL.

PY_VECTORCALL_ARGUMENTS_OFFSET

Part of the Stable ABI since version 3.12. If this flag is set in a vectorcall nargsf argument, the callee is allowed
to temporarily change args[-1]. In other words, args points to argument 1 (not 0) in the allocated vector.
The callee must restore the value of args[-1] before returning.
For PyObject_VectorcallMethod(), this flag means instead that args[0] may be changed.
Whenever they can do so cheaply (without additional allocation), callers are encouraged to use
PY_VECTORCALL_ARGUMENTS_OFFSET. Doing so will allow callables such as bound methods to make
their onward calls (which include a prepended self argument) very efficiently.
Added in version 3.8.

To call an object that implements vectorcall, use a call API function as with any other callable. PyOb-
ject_Vectorcall() will usually be most efficient.

7.2. Call Protocol 105

https://peps.python.org/pep-0590/


The Python/C API, Release 3.13.0

Recursion Control

When using tp_call, callees do not need to worry about recursion: CPython uses Py_EnterRecursiveCall()
and Py_LeaveRecursiveCall() for calls made using tp_call.
For efficiency, this is not the case for calls done using vectorcall: the callee should use Py_EnterRecursiveCall and
Py_LeaveRecursiveCall if needed.

Vectorcall Support API

Py_ssize_t PyVectorcall_NARGS(size_t nargsf)
Part of the Stable ABI since version 3.12. Given a vectorcall nargsf argument, return the actual number of
arguments. Currently equivalent to:

(Py_ssize_t)(nargsf & ~PY_VECTORCALL_ARGUMENTS_OFFSET)

However, the function PyVectorcall_NARGS should be used to allow for future extensions.
Added in version 3.8.

vectorcallfunc PyVectorcall_Function(PyObject *op)
If op does not support the vectorcall protocol (either because the type does not or because the specific instance
does not), return NULL. Otherwise, return the vectorcall function pointer stored in op. This function never
raises an exception.
This is mostly useful to check whether or not op supports vectorcall, which can be done by checking PyVec-
torcall_Function(op) != NULL.
Added in version 3.9.

PyObject *PyVectorcall_Call(PyObject *callable, PyObject *tuple, PyObject *dict)
Part of the Stable ABI since version 3.12. Call callable’s vectorcallfunc with positional and keyword
arguments given in a tuple and dict, respectively.
This is a specialized function, intended to be put in the tp_call slot or be used in an implementation of
tp_call. It does not check the Py_TPFLAGS_HAVE_VECTORCALL flag and it does not fall back to
tp_call.
Added in version 3.8.

7.2.3 Object Calling API

Various functions are available for calling a Python object. Each converts its arguments to a convention supported by
the called object – either tp_call or vectorcall. In order to do as little conversion as possible, pick one that best fits the
format of data you have available.
The following table summarizes the available functions; please see individual documentation for details.

106 Chapter 7. Abstract Objects Layer



The Python/C API, Release 3.13.0

Function callable args kwargs
PyObject_Call() PyObject * tuple dict/NULL
PyObject_CallNoArgs() PyObject * — —
PyObject_CallOneArg() PyObject * 1 object —
PyObject_CallObject() PyObject * tuple/NULL —
PyObject_CallFunction() PyObject * format —
PyObject_CallMethod() obj + char* format —
PyObject_CallFunctionObjArgs() PyObject * variadic —
PyObject_CallMethodObjArgs() obj + name variadic —
PyObject_CallMethodNoArgs() obj + name — —
PyObject_CallMethodOneArg() obj + name 1 object —
PyObject_Vectorcall() PyObject * vectorcall vectorcall
PyObject_VectorcallDict() PyObject * vectorcall dict/NULL
PyObject_VectorcallMethod() arg + name vectorcall vectorcall

PyObject *PyObject_Call(PyObject *callable, PyObject *args, PyObject *kwargs)
Return value: New reference. Part of the Stable ABI. Call a callable Python object callable, with arguments
given by the tuple args, and named arguments given by the dictionary kwargs.
args must not be NULL; use an empty tuple if no arguments are needed. If no named arguments are needed,
kwargs can be NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(*args, **kwargs).

PyObject *PyObject_CallNoArgs(PyObject *callable)
Return value: New reference. Part of the Stable ABI since version 3.10. Call a callable Python object callable
without any arguments. It is the most efficient way to call a callable Python object without any argument.
Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.

PyObject *PyObject_CallOneArg(PyObject *callable, PyObject *arg)
Return value: New reference. Call a callable Python object callable with exactly 1 positional argument arg and
no keyword arguments.
Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.

PyObject *PyObject_CallObject(PyObject *callable, PyObject *args)
Return value: New reference. Part of the Stable ABI. Call a callable Python object callable, with arguments
given by the tuple args. If no arguments are needed, then args can be NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(*args).

PyObject *PyObject_CallFunction(PyObject *callable, const char *format, ...)
Return value: New reference. Part of the Stable ABI. Call a callable Python object callable, with a variable
number of C arguments. The C arguments are described using a Py_BuildValue() style format string.
The format can be NULL, indicating that no arguments are provided.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(*args).
Note that if you only pass PyObject* args, PyObject_CallFunctionObjArgs() is a faster alter-
native.
Changed in version 3.4: The type of format was changed from char *.

7.2. Call Protocol 107



The Python/C API, Release 3.13.0

PyObject *PyObject_CallMethod(PyObject *obj, const char *name, const char *format, ...)
Return value: New reference. Part of the Stable ABI. Call the method named name of object obj with a variable
number of C arguments. The C arguments are described by a Py_BuildValue() format string that should
produce a tuple.
The format can be NULL, indicating that no arguments are provided.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: obj.name(arg1, arg2, ...).
Note that if you only pass PyObject* args, PyObject_CallMethodObjArgs() is a faster alternative.
Changed in version 3.4: The types of name and format were changed from char *.

PyObject *PyObject_CallFunctionObjArgs(PyObject *callable, ...)
Return value: New reference. Part of the Stable ABI. Call a callable Python object callable, with a variable
number of PyObject* arguments. The arguments are provided as a variable number of parameters followed
by NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(arg1, arg2, ...).

PyObject *PyObject_CallMethodObjArgs(PyObject *obj, PyObject *name, ...)
Return value: New reference. Part of the Stable ABI. Call a method of the Python object obj, where the name
of the method is given as a Python string object in name. It is called with a variable number of PyObject*
arguments. The arguments are provided as a variable number of parameters followed by NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.

PyObject *PyObject_CallMethodNoArgs(PyObject *obj, PyObject *name)
Call a method of the Python object obj without arguments, where the name of the method is given as a Python
string object in name.
Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.

PyObject *PyObject_CallMethodOneArg(PyObject *obj, PyObject *name, PyObject *arg)
Call a method of the Python object obj with a single positional argument arg, where the name of the method
is given as a Python string object in name.
Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.

PyObject *PyObject_Vectorcall(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Part of the Stable ABI since version 3.12. Call a callable Python object callable. The arguments are the same
as for vectorcallfunc. If callable supports vectorcall, this directly calls the vectorcall function stored in
callable.
Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.

PyObject *PyObject_VectorcallDict(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwdict)

Call callablewith positional arguments passed exactly as in the vectorcall protocol, but with keyword arguments
passed as a dictionary kwdict. The args array contains only the positional arguments.
Regardless of which protocol is used internally, a conversion of arguments needs to be done. Therefore, this
function should only be used if the caller already has a dictionary ready to use for the keyword arguments, but
not a tuple for the positional arguments.
Added in version 3.9.

108 Chapter 7. Abstract Objects Layer



The Python/C API, Release 3.13.0

PyObject *PyObject_VectorcallMethod(PyObject *name, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Part of the Stable ABI since version 3.12. Call a method using the vectorcall calling convention. The name of
the method is given as a Python string name. The object whose method is called is args[0], and the args array
starting at args[1] represents the arguments of the call. There must be at least one positional argument. nargsf
is the number of positional arguments including args[0], plus PY_VECTORCALL_ARGUMENTS_OFFSET
if the value of args[0]may temporarily be changed. Keyword arguments can be passed just like in PyOb-
ject_Vectorcall().
If the object has the Py_TPFLAGS_METHOD_DESCRIPTOR feature, this will call the unbound method
object with the full args vector as arguments.
Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.

7.2.4 Call Support API

int PyCallable_Check(PyObject *o)
Part of the Stable ABI. Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise.
This function always succeeds.

7.3 Number Protocol

int PyNumber_Check(PyObject *o)
Part of the Stable ABI. Returns 1 if the object o provides numeric protocols, and false otherwise. This function
always succeeds.
Changed in version 3.8: Returns 1 if o is an index integer.

PyObject *PyNumber_Add(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of adding o1 and o2, or NULL on
failure. This is the equivalent of the Python expression o1 + o2.

PyObject *PyNumber_Subtract(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of subtracting o2 from o1, or NULL on
failure. This is the equivalent of the Python expression o1 - o2.

PyObject *PyNumber_Multiply(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of multiplying o1 and o2, or NULL on
failure. This is the equivalent of the Python expression o1 * o2.

PyObject *PyNumber_MatrixMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the StableABI since version 3.7. Returns the result ofmatrixmultiplication
on o1 and o2, or NULL on failure. This is the equivalent of the Python expression o1 @ o2.
Added in version 3.5.

PyObject *PyNumber_FloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Return the floor of o1 divided by o2, or NULL on failure.
This is the equivalent of the Python expression o1 // o2.

PyObject *PyNumber_TrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Return a reasonable approximation for the mathematical
value of o1 divided by o2, or NULL on failure. The return value is “approximate” because binary floating-point
numbers are approximate; it is not possible to represent all real numbers in base two. This function can return
a floating-point value when passed two integers. This is the equivalent of the Python expression o1 / o2.

7.3. Number Protocol 109



The Python/C API, Release 3.13.0

PyObject *PyNumber_Remainder(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the remainder of dividing o1 by o2, or NULL on
failure. This is the equivalent of the Python expression o1 % o2.

PyObject *PyNumber_Divmod(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. See the built-in function divmod(). Returns NULL on
failure. This is the equivalent of the Python expression divmod(o1, o2).

PyObject *PyNumber_Power(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference. Part of the Stable ABI. See the built-in function pow(). Returns NULL on
failure. This is the equivalent of the Python expression pow(o1, o2, o3), where o3 is optional. If o3 is
to be ignored, pass Py_None in its place (passing NULL for o3 would cause an illegal memory access).

PyObject *PyNumber_Negative(PyObject *o)
Return value: New reference. Part of the Stable ABI. Returns the negation of o on success, or NULL on failure.
This is the equivalent of the Python expression -o.

PyObject *PyNumber_Positive(PyObject *o)
Return value: New reference. Part of the Stable ABI. Returns o on success, or NULL on failure. This is the
equivalent of the Python expression +o.

PyObject *PyNumber_Absolute(PyObject *o)
Return value: New reference. Part of the Stable ABI. Returns the absolute value of o, or NULL on failure. This
is the equivalent of the Python expression abs(o).

PyObject *PyNumber_Invert(PyObject *o)
Return value: New reference. Part of the Stable ABI. Returns the bitwise negation of o on success, or NULL
on failure. This is the equivalent of the Python expression ~o.

PyObject *PyNumber_Lshift(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of left shifting o1 by o2 on success, or
NULL on failure. This is the equivalent of the Python expression o1 << o2.

PyObject *PyNumber_Rshift(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of right shifting o1 by o2 on success,
or NULL on failure. This is the equivalent of the Python expression o1 >> o2.

PyObject *PyNumber_And(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise and” of o1 and o2 on success and
NULL on failure. This is the equivalent of the Python expression o1 & o2.

PyObject *PyNumber_Xor(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise exclusive or” of o1 by o2 on success,
or NULL on failure. This is the equivalent of the Python expression o1 ^ o2.

PyObject *PyNumber_Or(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise or” of o1 and o2 on success, or
NULL on failure. This is the equivalent of the Python expression o1 | o2.

PyObject *PyNumber_InPlaceAdd(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of adding o1 and o2, or NULL on
failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1
+= o2.

PyObject *PyNumber_InPlaceSubtract(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of subtracting o2 from o1, or NULL on
failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1
-= o2.

110 Chapter 7. Abstract Objects Layer



The Python/C API, Release 3.13.0

PyObject *PyNumber_InPlaceMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of multiplying o1 and o2, or NULL on
failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1
*= o2.

PyObject *PyNumber_InPlaceMatrixMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the StableABI since version 3.7. Returns the result ofmatrixmultiplication
on o1 and o2, or NULL on failure. The operation is done in-place when o1 supports it. This is the equivalent
of the Python statement o1 @= o2.
Added in version 3.5.

PyObject *PyNumber_InPlaceFloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the mathematical floor of dividing o1 by o2, or
NULL on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python
statement o1 //= o2.

PyObject *PyNumber_InPlaceTrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Return a reasonable approximation for the mathematical
value of o1 divided by o2, or NULL on failure. The return value is “approximate” because binary floating-point
numbers are approximate; it is not possible to represent all real numbers in base two. This function can return
a floating-point value when passed two integers. The operation is done in-place when o1 supports it. This is
the equivalent of the Python statement o1 /= o2.

PyObject *PyNumber_InPlaceRemainder(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the remainder of dividing o1 by o2, or NULL on
failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1
%= o2.

PyObject *PyNumber_InPlacePower(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference. Part of the Stable ABI. See the built-in function pow(). Returns NULL on
failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1
**= o2 when o3 is Py_None, or an in-place variant of pow(o1, o2, o3) otherwise. If o3 is to be
ignored, pass Py_None in its place (passing NULL for o3 would cause an illegal memory access).

PyObject *PyNumber_InPlaceLshift(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of left shifting o1 by o2 on success,
or NULL on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python
statement o1 <<= o2.

PyObject *PyNumber_InPlaceRshift(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of right shifting o1 by o2 on success,
or NULL on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python
statement o1 >>= o2.

PyObject *PyNumber_InPlaceAnd(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise and” of o1 and o2 on success and
NULL on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python
statement o1 &= o2.

PyObject *PyNumber_InPlaceXor(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise exclusive or” of o1 by o2 on success,
or NULL on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python
statement o1 ^= o2.

PyObject *PyNumber_InPlaceOr(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI.Returns the “bitwise or” of o1 and o2 on success, or NULL
on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement
o1 |= o2.

7.3. Number Protocol 111



The Python/C API, Release 3.13.0

PyObject *PyNumber_Long(PyObject *o)
Return value: New reference. Part of the Stable ABI. Returns the o converted to an integer object on success,
or NULL on failure. This is the equivalent of the Python expression int(o).

PyObject *PyNumber_Float(PyObject *o)
Return value: New reference. Part of the Stable ABI. Returns the o converted to a float object on success, or
NULL on failure. This is the equivalent of the Python expression float(o).

PyObject *PyNumber_Index(PyObject *o)
Return value: New reference. Part of the Stable ABI. Returns the o converted to a Python int on success or
NULL with a TypeError exception raised on failure.
Changed in version 3.10: The result always has exact type int. Previously, the result could have been an
instance of a subclass of int.

PyObject *PyNumber_ToBase(PyObject *n, int base)
Return value: New reference. Part of the Stable ABI. Returns the integer n converted to base base as a string.
The base argument must be one of 2, 8, 10, or 16. For base 2, 8, or 16, the returned string is prefixed
with a base marker of '0b', '0o', or '0x', respectively. If n is not a Python int, it is converted with
PyNumber_Index() first.

Py_ssize_t PyNumber_AsSsize_t(PyObject *o, PyObject *exc)
Part of the Stable ABI. Returns o converted to a Py_ssize_t value if o can be interpreted as an integer. If
the call fails, an exception is raised and -1 is returned.
If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually Index-
Error or OverflowError). If exc is NULL, then the exception is cleared and the value is clipped to
PY_SSIZE_T_MIN for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check(PyObject *o)
Part of the Stable ABI since version 3.8. Returns 1 if o is an index integer (has the nb_index slot of the
tp_as_number structure filled in), and 0 otherwise. This function always succeeds.

7.4 Sequence Protocol

int PySequence_Check(PyObject *o)
Part of the Stable ABI. Return 1 if the object provides the sequence protocol, and 0 otherwise. Note that
it returns 1 for Python classes with a __getitem__() method, unless they are dict subclasses, since in
general it is impossible to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PySequence_Size(PyObject *o)
Py_ssize_t PySequence_Length(PyObject *o)

Part of the Stable ABI. Returns the number of objects in sequence o on success, and -1 on failure. This is
equivalent to the Python expression len(o).

PyObject *PySequence_Concat(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Return the concatenation of o1 and o2 on success, and
NULL on failure. This is the equivalent of the Python expression o1 + o2.

PyObject *PySequence_Repeat(PyObject *o, Py_ssize_t count)
Return value: New reference. Part of the Stable ABI. Return the result of repeating sequence object o count
times, or NULL on failure. This is the equivalent of the Python expression o * count.

PyObject *PySequence_InPlaceConcat(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Return the concatenation of o1 and o2 on success, and
NULL on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python
expression o1 += o2.

112 Chapter 7. Abstract Objects Layer



The Python/C API, Release 3.13.0

PyObject *PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count)
Return value: New reference. Part of the Stable ABI. Return the result of repeating sequence object o count
times, or NULL on failure. The operation is done in-place when o supports it. This is the equivalent of the
Python expression o *= count.

PyObject *PySequence_GetItem(PyObject *o, Py_ssize_t i)
Return value: New reference. Part of the Stable ABI. Return the ith element of o, or NULL on failure. This is
the equivalent of the Python expression o[i].

PyObject *PySequence_GetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Return value: New reference. Part of the Stable ABI. Return the slice of sequence object o between i1 and i2,
or NULL on failure. This is the equivalent of the Python expression o[i1:i2].

int PySequence_SetItem(PyObject *o, Py_ssize_t i, PyObject *v)
Part of the Stable ABI. Assign object v to the ith element of o. Raise an exception and return -1 on failure;
return 0 on success. This is the equivalent of the Python statement o[i] = v. This function does not steal a
reference to v.
If v is NULL, the element is deleted, but this feature is deprecated in favour of using PySe-
quence_DelItem().

int PySequence_DelItem(PyObject *o, Py_ssize_t i)
Part of the Stable ABI. Delete the ith element of object o. Returns -1 on failure. This is the equivalent of the
Python statement del o[i].

int PySequence_SetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2, PyObject *v)
Part of the Stable ABI. Assign the sequence object v to the slice in sequence object o from i1 to i2. This is the
equivalent of the Python statement o[i1:i2] = v.

int PySequence_DelSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Part of the Stable ABI. Delete the slice in sequence object o from i1 to i2. Returns -1 on failure. This is the
equivalent of the Python statement del o[i1:i2].

Py_ssize_t PySequence_Count(PyObject *o, PyObject *value)
Part of the Stable ABI. Return the number of occurrences of value in o, that is, return the number of keys
for which o[key] == value. On failure, return -1. This is equivalent to the Python expression o.
count(value).

int PySequence_Contains(PyObject *o, PyObject *value)
Part of the Stable ABI. Determine if o contains value. If an item in o is equal to value, return 1, otherwise
return 0. On error, return -1. This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index(PyObject *o, PyObject *value)
Part of the Stable ABI. Return the first index i for which o[i] == value. On error, return -1. This is
equivalent to the Python expression o.index(value).

PyObject *PySequence_List(PyObject *o)
Return value: New reference. Part of the Stable ABI.Return a list object with the same contents as the sequence
or iterable o, or NULL on failure. The returned list is guaranteed to be new. This is equivalent to the Python
expression list(o).

PyObject *PySequence_Tuple(PyObject *o)
Return value: New reference. Part of the Stable ABI. Return a tuple object with the same contents as the
sequence or iterable o, or NULL on failure. If o is a tuple, a new reference will be returned, otherwise a tuple
will be constructed with the appropriate contents. This is equivalent to the Python expression tuple(o).

PyObject *PySequence_Fast(PyObject *o, const char *m)
Return value: New reference. Part of the Stable ABI. Return the sequence or iterable o as an object usable
by the other PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises
TypeError with m as the message text. Returns NULL on failure.

7.4. Sequence Protocol 113



The Python/C API, Release 3.13.0

The PySequence_Fast* functions are thus named because they assume o is a PyTupleObject or a
PyListObject and access the data fields of o directly.
As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE(PyObject *o)
Returns the length of o, assuming that o was returned by PySequence_Fast() and that o is
not NULL. The size can also be retrieved by calling PySequence_Size() on o, but PySe-
quence_Fast_GET_SIZE() is faster because it can assume o is a list or tuple.

PyObject *PySequence_Fast_GET_ITEM(PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. Return the ith element of o, assuming that o was returned by PySe-
quence_Fast(), o is not NULL, and that i is within bounds.

PyObject **PySequence_Fast_ITEMS(PyObject *o)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast()
and o is not NULL.
Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change.

PyObject *PySequence_ITEM(PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. Faster form of PySe-
quence_GetItem() but without checking that PySequence_Check() on o is true and without ad-
justment for negative indices.

7.5 Mapping Protocol

See also PyObject_GetItem(), PyObject_SetItem() and PyObject_DelItem().
int PyMapping_Check(PyObject *o)

Part of the Stable ABI. Return 1 if the object provides the mapping protocol or supports slicing, and 0 oth-
erwise. Note that it returns 1 for Python classes with a __getitem__() method, since in general it is
impossible to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PyMapping_Size(PyObject *o)
Py_ssize_t PyMapping_Length(PyObject *o)

Part of the Stable ABI. Returns the number of keys in object o on success, and -1 on failure. This is equivalent
to the Python expression len(o).

PyObject *PyMapping_GetItemString(PyObject *o, const char *key)
Return value: New reference. Part of the Stable ABI. This is the same as PyObject_GetItem(), but key
is specified as a const char* UTF-8 encoded bytes string, rather than a PyObject*.

int PyMapping_GetOptionalItem(PyObject *obj, PyObject *key, PyObject **result)
Part of the Stable ABI since version 3.13. Variant of PyObject_GetItem() which doesn’t raise KeyEr-
ror if the key is not found.
If the key is found, return 1 and set *result to a new strong reference to the corresponding value. If the key is
not found, return 0 and set *result to NULL; the KeyError is silenced. If an error other than KeyError is
raised, return -1 and set *result to NULL.
Added in version 3.13.

int PyMapping_GetOptionalItemString(PyObject *obj, const char *key, PyObject **result)
Part of the Stable ABI since version 3.13. This is the same as PyMapping_GetOptionalItem(), but
key is specified as a const char* UTF-8 encoded bytes string, rather than a PyObject*.
Added in version 3.13.

114 Chapter 7. Abstract Objects Layer



The Python/C API, Release 3.13.0

int PyMapping_SetItemString(PyObject *o, const char *key, PyObject *v)
Part of the Stable ABI.This is the same as PyObject_SetItem(), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

int PyMapping_DelItem(PyObject *o, PyObject *key)
This is an alias of PyObject_DelItem().

int PyMapping_DelItemString(PyObject *o, const char *key)
This is the same as PyObject_DelItem(), but key is specified as a const char*UTF-8 encoded bytes
string, rather than a PyObject*.

int PyMapping_HasKeyWithError(PyObject *o, PyObject *key)
Part of the Stable ABI since version 3.13. Return 1 if the mapping object has the key key and 0 otherwise.
This is equivalent to the Python expression key in o. On failure, return -1.
Added in version 3.13.

int PyMapping_HasKeyStringWithError(PyObject *o, const char *key)
Part of the Stable ABI since version 3.13. This is the same as PyMapping_HasKeyWithError(), but
key is specified as a const char* UTF-8 encoded bytes string, rather than a PyObject*.
Added in version 3.13.

int PyMapping_HasKey(PyObject *o, PyObject *key)
Part of the Stable ABI. Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to
the Python expression key in o. This function always succeeds.

Note

Exceptions which occur when this calls __getitem__() method are silently ignored. For proper er-
ror handling, use PyMapping_HasKeyWithError(), PyMapping_GetOptionalItem() or
PyObject_GetItem() instead.

int PyMapping_HasKeyString(PyObject *o, const char *key)
Part of the Stable ABI.This is the same as PyMapping_HasKey(), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

Note

Exceptions that occur when this calls __getitem__()method or while creating the temporary str ob-
ject are silently ignored. For proper error handling, usePyMapping_HasKeyStringWithError(),
PyMapping_GetOptionalItemString() or PyMapping_GetItemString() instead.

PyObject *PyMapping_Keys(PyObject *o)
Return value: New reference. Part of the Stable ABI.On success, return a list of the keys in object o. On failure,
return NULL.
Changed in version 3.7: Previously, the function returned a list or a tuple.

PyObject *PyMapping_Values(PyObject *o)
Return value: New reference. Part of the Stable ABI. On success, return a list of the values in object o. On
failure, return NULL.
Changed in version 3.7: Previously, the function returned a list or a tuple.

PyObject *PyMapping_Items(PyObject *o)
Return value: New reference. Part of the Stable ABI. On success, return a list of the items in object o, where
each item is a tuple containing a key-value pair. On failure, return NULL.
Changed in version 3.7: Previously, the function returned a list or a tuple.

7.5. Mapping Protocol 115



The Python/C API, Release 3.13.0

7.6 Iterator Protocol

There are two functions specifically for working with iterators.
int PyIter_Check(PyObject *o)

Part of the Stable ABI since version 3.8. Return non-zero if the object o can be safely passed to
PyIter_Next(), and 0 otherwise. This function always succeeds.

int PyAIter_Check(PyObject *o)
Part of the Stable ABI since version 3.10. Return non-zero if the object o provides the AsyncIterator
protocol, and 0 otherwise. This function always succeeds.
Added in version 3.10.

PyObject *PyIter_Next(PyObject *o)
Return value: New reference. Part of the Stable ABI. Return the next value from the iterator o. The object must
be an iterator according to PyIter_Check() (it is up to the caller to check this). If there are no remaining
values, returns NULL with no exception set. If an error occurs while retrieving the item, returns NULL and
passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_GetIter(obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while ((item = PyIter_Next(iterator))) {
/* do something with item */
...
/* release reference when done */
Py_DECREF(item);

}

Py_DECREF(iterator);

if (PyErr_Occurred()) {
/* propagate error */

}
else {

/* continue doing useful work */
}

type PySendResult
The enum value used to represent different results of PyIter_Send().
Added in version 3.10.

PySendResult PyIter_Send(PyObject *iter, PyObject *arg, PyObject **presult)
Part of the Stable ABI since version 3.10. Sends the arg value into the iterator iter. Returns:

• PYGEN_RETURN if iterator returns. Return value is returned via presult.
• PYGEN_NEXT if iterator yields. Yielded value is returned via presult.
• PYGEN_ERROR if iterator has raised and exception. presult is set to NULL.

Added in version 3.10.

116 Chapter 7. Abstract Objects Layer



The Python/C API, Release 3.13.0

7.7 Buffer Protocol

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the
built-in bytes and bytearray, and some extension types like array.array. Third-party libraries may define
their own types for special purposes, such as image processing or numeric analysis.
While each of these types have their own semantics, they share the common characteristic of being backed by a
possibly large memory buffer. It is then desirable, in some situations, to access that buffer directly and without
intermediate copying.
Python provides such a facility at the C level in the form of the buffer protocol. This protocol has two sides:

• on the producer side, a type can export a “buffer interface” which allows objects of that type to expose infor-
mation about their underlying buffer. This interface is described in the section Buffer Object Structures;

• on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object
(for example a method parameter).

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms
are possible; for example, the elements exposed by an array.array can be multi-byte values.
An example consumer of the buffer interface is the write() method of file objects: any object that can export a
series of bytes through the buffer interface can be written to a file. While write() only needs read-only access
to the internal contents of the object passed to it, other methods such as readinto() need write access to the
contents of their argument. The buffer interface allows objects to selectively allow or reject exporting of read-write
and read-only buffers.
There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:

• call PyObject_GetBuffer() with the right parameters;
• call PyArg_ParseTuple() (or one of its siblings) with one of the y*, w* or s* format codes.

In both cases, PyBuffer_Release() must be called when the buffer isn’t needed anymore. Failure to do so
could lead to various issues such as resource leaks.

7.7.1 Buffer structure

Buffer structures (or simply “buffers”) are useful as a way to expose the binary data from another object to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of
memory, it is possible to expose any data to the Python programmer quite easily. The memory could be a large,
constant array in a C extension, it could be a raw block of memory for manipulation before passing to an operating
system library, or it could be used to pass around structured data in its native, in-memory format.
Contrary to most data types exposed by the Python interpreter, buffers are not PyObject pointers but rather simple
C structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is
needed, a memoryview object can be created.
For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer().
type Py_buffer

Part of the Stable ABI (including all members) since version 3.11.
void *buf

A pointer to the start of the logical structure described by the buffer fields. This can be any location
within the underlying physical memory block of the exporter. For example, with negative strides the
value may point to the end of the memory block.
For contiguous arrays, the value points to the beginning of the memory block.

7.7. Buffer Protocol 117



The Python/C API, Release 3.13.0

PyObject *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically
released (i.e. reference count decremented) and set to NULL by PyBuffer_Release(). The field is
the equivalent of the return value of any standard C-API function.
As a special case, for temporary buffers that are wrapped by PyMemoryView_FromBuffer() or
PyBuffer_FillInfo() this field is NULL. In general, exporting objects MUST NOT use this
scheme.

Py_ssize_t len
product(shape) * itemsize. For contiguous arrays, this is the length of the underlying memory
block. For non-contiguous arrays, it is the length that the logical structure would have if it were copied
to a contiguous representation.
Accessing ((char *)buf)[0] up to ((char *)buf)[len-1] is only valid if the buffer
has been obtained by a request that guarantees contiguity. In most cases such a request will be Py-
BUF_SIMPLE or PyBUF_WRITABLE.

int readonly
An indicator of whether the buffer is read-only. This field is controlled by the PyBUF_WRITABLE flag.

Py_ssize_t itemsize

Item size in bytes of a single element. Same as the value of struct.calcsize() called on non-
NULL format values.
Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will
be set to NULL, but itemsize still has the value for the original format.
If shape is present, the equality product(shape) * itemsize == len still holds and the
consumer can use itemsize to navigate the buffer.
If shape is NULL as a result of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer
must disregard itemsize and assume itemsize == 1.

char *format
A NULL terminated string in struct module style syntax describing the contents of a single item. If
this is NULL, "B" (unsigned bytes) is assumed.
This field is controlled by the PyBUF_FORMAT flag.

int ndim
The number of dimensions the memory represents as an n-dimensional array. If it is 0, buf points to a
single item representing a scalar. In this case, shape, strides and suboffsetsMUST be NULL.
The maximum number of dimensions is given by PyBUF_MAX_NDIM .

Py_ssize_t *shape
An array of Py_ssize_t of length ndim indicating the shape of the memory as an n-dimensional
array. Note that shape[0] * ... * shape[ndim-1] * itemsizeMUST be equal to len.
Shape values are restricted to shape[n] >= 0. The case shape[n] == 0 requires special attention.
See complex arrays for further information.
The shape array is read-only for the consumer.

Py_ssize_t *strides
An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element
in each dimension.
Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST
be able to handle the case strides[n] <= 0. See complex arrays for further information.
The strides array is read-only for the consumer.

118 Chapter 7. Abstract Objects Layer



The Python/C API, Release 3.13.0

Py_ssize_t *suboffsets
An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the
nth dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after
de-referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding
in a contiguous memory block).
If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).
This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for
further information how to access elements of such an array.
The suboffsets array is read-only for the consumer.

void *internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be
freed when the buffer is released. The consumer MUST NOT alter this value.

Constants:
PyBUF_MAX_NDIM

The maximum number of dimensions the memory represents. Exporters MUST respect this limit, consumers
of multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_NDIM dimensions. Currently
set to 64.

7.7.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyObject_GetBuffer().
Since the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument
to specify the exact buffer type it can handle.
All Py_buffer fields are unambiguously defined by the request type.

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: obj, buf, len,
itemsize, ndim.

readonly, format

PyBUF_WRITABLE

Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers. For example, PyBUF_SIMPLE | PyBUF_WRITABLE
can be used to request a simple writable buffer.

PyBUF_FORMAT

Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field
MUST be NULL.

PyBUF_WRITABLE can be |’d to any of the flags in the next section. Since PyBUF_SIMPLE is defined as 0,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.
PyBUF_FORMAT must be |’d to any of the flags except PyBUF_SIMPLE, because the latter already implies format
B (unsigned bytes). PyBUF_FORMAT cannot be used on its own.

7.7. Buffer Protocol 119



The Python/C API, Release 3.13.0

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each
flag contains all bits of the flags below it.

Request shape strides suboffsets

PyBUF_INDIRECT
yes yes if needed

PyBUF_STRIDES
yes yes NULL

PyBUF_ND
yes NULL NULL

PyBUF_SIMPLE
NULL NULL NULL

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information,
the buffer must be C-contiguous.

Request shape strides suboffsets contig

PyBUF_C_CONTIGUOUS
yes yes NULL C

PyBUF_F_CONTIGUOUS
yes yes NULL F

PyBUF_ANY_CONTIGUOUS
yes yes NULL C or F

PyBUF_ND yes NULL NULL C

120 Chapter 7. Abstract Objects Layer



The Python/C API, Release 3.13.0

compound requests

All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.
In the following table U stands for undefined contiguity. The consumer would have to call Py-
Buffer_IsContiguous() to determine contiguity.

Request shape strides suboffsets contig readonly format

PyBUF_FULL
yes yes if needed U 0 yes

PyBUF_FULL_RO
yes yes if needed U 1 or 0 yes

PyBUF_RECORDS
yes yes NULL U 0 yes

PyBUF_RECORDS_RO
yes yes NULL U 1 or 0 yes

PyBUF_STRIDED
yes yes NULL U 0 NULL

PyBUF_STRIDED_RO
yes yes NULL U 1 or 0 NULL

PyBUF_CONTIG
yes NULL NULL C 0 NULL

PyBUF_CONTIG_RO
yes NULL NULL C 1 or 0 NULL

7.7.3 Complex arrays

NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by itemsize, ndim, shape and strides.
If ndim == 0, the memory location pointed to by buf is interpreted as a scalar of size itemsize. In that case,
both shape and strides are NULL.
If strides is NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must
access an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = *((typeof(item) *)ptr);

As noted above, buf can point to any location within the actual memory block. An exporter can check the validity
of a buffer with this function:

def verify_structure(memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within

the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem

(continues on next page)

7.7. Buffer Protocol 121



The Python/C API, Release 3.13.0

(continued from previous page)
"""
if offset % itemsize:

return False
if offset < 0 or offset+itemsize > memlen:

return False
if any(v % itemsize for v in strides):

return False

if ndim <= 0:
return ndim == 0 and not shape and not strides

if 0 in shape:
return True

imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] <= 0)

imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] > 0)

return 0 <= offset+imin and offset+imax+itemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the
next element in a dimension. For example, the regular three-dimensional C-array char v[2][2][3] can also be
viewed as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2])[2][3]. In suboffsets representation,
those two pointers can be embedded at the start of buf, pointing to two char x[2][3] arrays that can be located
anywhere in memory.
Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when
there are both non-NULL strides and suboffsets:

void *get_item_pointer(int ndim, void *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; i++) {

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0 ) {

pointer = *((char**)pointer) + suboffsets[i];
}

}
return (void*)pointer;

}

7.7.4 Buffer-related functions

int PyObject_CheckBuffer(PyObject *obj)
Part of the Stable ABI since version 3.11. Return 1 if obj supports the buffer interface otherwise 0. When 1 is
returned, it doesn’t guarantee that PyObject_GetBuffer() will succeed. This function always succeeds.

int PyObject_GetBuffer(PyObject *exporter, Py_buffer *view, int flags)
Part of the Stable ABI since version 3.11. Send a request to exporter to fill in view as specified by flags. If the
exporter cannot provide a buffer of the exact type, it MUST raise BufferError, set view->obj to NULL
and return -1.
On success, fill in view, set view->obj to a new reference to exporter and return 0. In the case of chained
buffer providers that redirect requests to a single object, view->obj MAY refer to this object instead of
exporter (See Buffer Object Structures).

122 Chapter 7. Abstract Objects Layer



The Python/C API, Release 3.13.0

Successful calls to PyObject_GetBuffer() must be paired with calls to PyBuffer_Release(),
similar to malloc() and free(). Thus, after the consumer is done with the buffer, Py-
Buffer_Release() must be called exactly once.

void PyBuffer_Release(Py_buffer *view)
Part of the Stable ABI since version 3.11. Release the buffer view and release the strong reference (i.e. decre-
ment the reference count) to the view’s supporting object, view->obj. This function MUST be called when
the buffer is no longer being used, otherwise reference leaks may occur.
It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer().

Py_ssize_t PyBuffer_SizeFromFormat(const char *format)
Part of the Stable ABI since version 3.11. Return the implied itemsize from format. On error, raise an
exception and return -1.
Added in version 3.9.

int PyBuffer_IsContiguous(const Py_buffer *view, char order)
Part of the Stable ABI since version 3.11. Return 1 if the memory defined by the view is C-style (order is 'C')
or Fortran-style (order is 'F') contiguous or either one (order is 'A'). Return 0 otherwise. This function
always succeeds.

void *PyBuffer_GetPointer(const Py_buffer *view, const Py_ssize_t *indices)
Part of the Stable ABI since version 3.11. Get the memory area pointed to by the indices inside the given view.
indices must point to an array of view->ndim indices.

int PyBuffer_FromContiguous(const Py_buffer *view, const void *buf, Py_ssize_t len, char fort)
Part of the Stable ABI since version 3.11. Copy contiguous len bytes from buf to view. fort can be 'C' or
'F' (for C-style or Fortran-style ordering). 0 is returned on success, -1 on error.

int PyBuffer_ToContiguous(void *buf, const Py_buffer *src, Py_ssize_t len, char order)
Part of the Stable ABI since version 3.11. Copy len bytes from src to its contiguous representation in buf. order
can be 'C' or 'F' or 'A' (for C-style or Fortran-style ordering or either one). 0 is returned on success, -1
on error.
This function fails if len != src->len.

int PyObject_CopyData(PyObject *dest, PyObject *src)
Part of the Stable ABI since version 3.11. Copy data from src to dest buffer. Can convert between C-style and
or Fortran-style buffers.
0 is returned on success, -1 on error.

void PyBuffer_FillContiguousStrides(int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize,
char order)

Part of the Stable ABI since version 3.11. Fill the strides array with byte-strides of a contiguous (C-style if order
is 'C' or Fortran-style if order is 'F') array of the given shape with the given number of bytes per element.

int PyBuffer_FillInfo(Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly, int
flags)

Part of the Stable ABI since version 3.11. Handle buffer requests for an exporter that wants to expose buf of
size len with writability set according to readonly. buf is interpreted as a sequence of unsigned bytes.
The flags argument indicates the request type. This function always fills in view as specified by flags, unless
buf has been designated as read-only and PyBUF_WRITABLE is set in flags.
On success, set view->obj to a new reference to exporter and return 0. Otherwise, raise BufferError,
set view->obj to NULL and return -1;
If this function is used as part of a getbufferproc, exporterMUST be set to the exporting object and flags must
be passed unmodified. Otherwise, exporter MUST be NULL.

7.7. Buffer Protocol 123



The Python/C API, Release 3.13.0

124 Chapter 7. Abstract Objects Layer



CHAPTER

EIGHT

CONCRETE OBJECTS LAYER

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you
must perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check(). The
chapter is structured like the “family tree” of Python object types.

Warning

While the functions described in this chapter carefully check the type of the objects which are passed in, many
of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can cause
memory access violations and immediate termination of the interpreter.

8.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

8.1.1 Type Objects

type PyTypeObject
Part of the Limited API (as an opaque struct). The C structure of the objects used to describe built-in types.

PyTypeObject PyType_Type
Part of the Stable ABI. This is the type object for type objects; it is the same object as type in the Python
layer.

int PyType_Check(PyObject *o)
Return non-zero if the object o is a type object, including instances of types derived from the standard type
object. Return 0 in all other cases. This function always succeeds.

int PyType_CheckExact(PyObject *o)
Return non-zero if the object o is a type object, but not a subtype of the standard type object. Return 0 in all
other cases. This function always succeeds.

unsigned int PyType_ClearCache()
Part of the Stable ABI. Clear the internal lookup cache. Return the current version tag.

unsigned long PyType_GetFlags(PyTypeObject *type)
Part of the Stable ABI. Return the tp_flags member of type. This function is primarily meant for use with
Py_LIMITED_API; the individual flag bits are guaranteed to be stable across Python releases, but access to
tp_flags itself is not part of the limited API.
Added in version 3.2.
Changed in version 3.4: The return type is now unsigned long rather than long.

125



The Python/C API, Release 3.13.0

PyObject *PyType_GetDict(PyTypeObject *type)
Return the type object’s internal namespace, which is otherwise only exposed via a read-only proxy (cls.
__dict__). This is a replacement for accessing tp_dict directly. The returned dictionary must be treated
as read-only.
This function is meant for specific embedding and language-binding cases, where direct access to the dict is
necessary and indirect access (e.g. via the proxy or PyObject_GetAttr()) isn’t adequate.
Extension modules should continue to use tp_dict, directly or indirectly, when setting up their own types.
Added in version 3.12.

void PyType_Modified(PyTypeObject *type)
Part of the Stable ABI. Invalidate the internal lookup cache for the type and all of its subtypes. This function
must be called after any manual modification of the attributes or base classes of the type.

int PyType_AddWatcher(PyType_WatchCallback callback)
Register callback as a type watcher. Return a non-negative integer ID which must be passed to future calls to
PyType_Watch(). In case of error (e.g. no more watcher IDs available), return -1 and set an exception.
Added in version 3.12.

int PyType_ClearWatcher(int watcher_id)
Clear watcher identified by watcher_id (previously returned from PyType_AddWatcher()). Return 0 on
success, -1 on error (e.g. if watcher_id was never registered.)
An extension should never call PyType_ClearWatcher with a watcher_id that was not returned to it by a
previous call to PyType_AddWatcher().
Added in version 3.12.

int PyType_Watch(int watcher_id, PyObject *type)
Mark type as watched. The callback granted watcher_id by PyType_AddWatcher() will be called when-
ever PyType_Modified() reports a change to type. (The callback may be called only once for a series of
consecutive modifications to type, if _PyType_Lookup() is not called on type between the modifications;
this is an implementation detail and subject to change.)
An extension should never call PyType_Watch with a watcher_id that was not returned to it by a previous
call to PyType_AddWatcher().
Added in version 3.12.

typedef int (*PyType_WatchCallback)(PyObject *type)
Type of a type-watcher callback function.
The callback must not modify type or cause PyType_Modified() to be called on type or any type in its
MRO; violating this rule could cause infinite recursion.
Added in version 3.12.

int PyType_HasFeature(PyTypeObject *o, int feature)
Return non-zero if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC(PyTypeObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py_TPFLAGS_HAVE_GC.

int PyType_IsSubtype(PyTypeObject *a, PyTypeObject *b)
Part of the Stable ABI. Return true if a is a subtype of b.
This function only checks for actual subtypes, which means that __subclasscheck__() is not called on
b. Call PyObject_IsSubclass() to do the same check that issubclass() would do.

126 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

PyObject *PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Part of the Stable ABI. Generic handler for the tp_alloc slot of a type object.
Use Python’s default memory allocation mechanism to allocate a new instance and initialize all its contents to
NULL.

PyObject *PyType_GenericNew(PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. Part of the Stable ABI. Generic handler for the tp_new slot of a type object.
Create a new instance using the type’s tp_alloc slot.

int PyType_Ready(PyTypeObject *type)
Part of the Stable ABI. Finalize a type object. This should be called on all type objects to finish their initial-
ization. This function is responsible for adding inherited slots from a type’s base class. Return 0 on success,
or return -1 and sets an exception on error.

Note

If some of the base classes implements the GC protocol and the provided type does not include the
Py_TPFLAGS_HAVE_GC in its flags, then the GC protocol will be automatically implemented from
its parents. On the contrary, if the type being created does include Py_TPFLAGS_HAVE_GC in its flags
then it must implement the GC protocol itself by at least implementing the tp_traverse handle.

PyObject *PyType_GetName(PyTypeObject *type)
Return value: New reference. Part of the Stable ABI since version 3.11. Return the type’s name. Equivalent to
getting the type’s __name__ attribute.
Added in version 3.11.

PyObject *PyType_GetQualName(PyTypeObject *type)
Return value: New reference. Part of the Stable ABI since version 3.11. Return the type’s qualified name.
Equivalent to getting the type’s __qualname__ attribute.
Added in version 3.11.

PyObject *PyType_GetFullyQualifiedName(PyTypeObject *type)
Part of the Stable ABI since version 3.13. Return the type’s fully qualified name. Equivalent to f"{type.
__module__}.{type.__qualname__}", or type.__qualname__ if type.__module__ is
not a string or is equal to "builtins".
Added in version 3.13.

PyObject *PyType_GetModuleName(PyTypeObject *type)
Part of the Stable ABI since version 3.13. Return the type’s module name. Equivalent to getting the type.
__module__ attribute.
Added in version 3.13.

void *PyType_GetSlot(PyTypeObject *type, int slot)
Part of the Stable ABI since version 3.4. Return the function pointer stored in the given slot. If the result
is NULL, this indicates that either the slot is NULL, or that the function was called with invalid parameters.
Callers will typically cast the result pointer into the appropriate function type.
See PyType_Slot.slot for possible values of the slot argument.
Added in version 3.4.
Changed in version 3.10: PyType_GetSlot() can now accept all types. Previously, it was limited to heap
types.

PyObject *PyType_GetModule(PyTypeObject *type)
Part of the Stable ABI since version 3.10. Return the module object associated with the given type when the
type was created using PyType_FromModuleAndSpec().
If no module is associated with the given type, sets TypeError and returns NULL.

8.1. Fundamental Objects 127



The Python/C API, Release 3.13.0

This function is usually used to get the module in which a method is defined. Note that in such a method,
PyType_GetModule(Py_TYPE(self)) may not return the intended result. Py_TYPE(self) may
be a subclass of the intended class, and subclasses are not necessarily defined in the same module as their
superclass. See PyCMethod to get the class that defines the method. See PyType_GetModuleByDef()
for cases when PyCMethod cannot be used.
Added in version 3.9.

void *PyType_GetModuleState(PyTypeObject *type)
Part of the Stable ABI since version 3.10. Return the state of the module object associated with the given type.
This is a shortcut for calling PyModule_GetState() on the result of PyType_GetModule().
If no module is associated with the given type, sets TypeError and returns NULL.
If the type has an associated module but its state is NULL, returns NULL without setting an exception.
Added in version 3.9.

PyObject *PyType_GetModuleByDef(PyTypeObject *type, struct PyModuleDef *def)
Part of the Stable ABI since version 3.13. Find the first superclass whose module was created from the given
PyModuleDef def, and return that module.
If no module is found, raises a TypeError and returns NULL.
This function is intended to be used together with PyModule_GetState() to get module state from slot
methods (such as tp_init or nb_add) and other places where a method’s defining class cannot be passed
using the PyCMethod calling convention.
Added in version 3.11.

int PyUnstable_Type_AssignVersionTag(PyTypeObject *type)

This is Unstable API. It may change without warning in minor releases.

Attempt to assign a version tag to the given type.
Returns 1 if the type already had a valid version tag or a new one was assigned, or 0 if a new tag could not be
assigned.
Added in version 3.12.

Creating Heap-Allocated Types

The following functions and structs are used to create heap types.
PyObject *PyType_FromMetaclass(PyTypeObject *metaclass, PyObject *module, PyType_Spec *spec,

PyObject *bases)
Part of the Stable ABI since version 3.12. Create and return a heap type from the spec (see
Py_TPFLAGS_HEAPTYPE).
The metaclass metaclass is used to construct the resulting type object. When metaclass is NULL, the metaclass
is derived from bases (or Py_tp_base[s] slots if bases is NULL, see below).
Metaclasses that override tp_new are not supported, except if tp_new is NULL. (For backwards compati-
bility, other PyType_From* functions allow such metaclasses. They ignore tp_new, which may result in
incomplete initialization. This is deprecated and in Python 3.14+ such metaclasses will not be supported.)
The bases argument can be used to specify base classes; it can either be only one class or a tuple of classes. If
bases is NULL, the Py_tp_bases slot is used instead. If that also is NULL, the Py_tp_base slot is used instead.
If that also is NULL, the new type derives from object.

128 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

The module argument can be used to record the module in which the new class is defined. It must be a module
object or NULL. If not NULL, the module is associated with the new type and can later be retrieved with
PyType_GetModule(). The associated module is not inherited by subclasses; it must be specified for
each class individually.
This function calls PyType_Ready() on the new type.
Note that this function does not fully match the behavior of calling type() or using the class statement.
With user-provided base types or metaclasses, prefer calling type (or the metaclass) over PyType_From*
functions. Specifically:

• __new__() is not called on the new class (and it must be set to type.__new__).
• __init__() is not called on the new class.
• __init_subclass__() is not called on any bases.
• __set_name__() is not called on new descriptors.

Added in version 3.12.
PyObject *PyType_FromModuleAndSpec(PyObject *module, PyType_Spec *spec, PyObject *bases)

Return value: New reference. Part of the Stable ABI since version 3.10. Equivalent to
PyType_FromMetaclass(NULL, module, spec, bases).
Added in version 3.9.
Changed in version 3.10: The function now accepts a single class as the bases argument and NULL as the
tp_doc slot.
Changed in version 3.12: The function now finds and uses a metaclass corresponding to the provided base
classes. Previously, only type instances were returned.
The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

PyObject *PyType_FromSpecWithBases(PyType_Spec *spec, PyObject *bases)
Return value: New reference. Part of the Stable ABI since version 3.3. Equivalent to
PyType_FromMetaclass(NULL, NULL, spec, bases).
Added in version 3.3.
Changed in version 3.12: The function now finds and uses a metaclass corresponding to the provided base
classes. Previously, only type instances were returned.
The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

PyObject *PyType_FromSpec(PyType_Spec *spec)
Return value: New reference. Part of the Stable ABI. Equivalent to PyType_FromMetaclass(NULL,
NULL, spec, NULL).
Changed in version 3.12: The function now finds and uses a metaclass corresponding to the base classes pro-
vided in Py_tp_base[s] slots. Previously, only type instances were returned.
The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

type PyType_Spec
Part of the Stable ABI (including all members). Structure defining a type’s behavior.
const char *name

Name of the type, used to set PyTypeObject.tp_name.

8.1. Fundamental Objects 129



The Python/C API, Release 3.13.0

int basicsize
If positive, specifies the size of the instance in bytes. It is used to set PyTypeObject.
tp_basicsize.
If zero, specifies that tp_basicsize should be inherited.
If negative, the absolute value specifies how much space instances of the class need in addition to the
superclass. Use PyObject_GetTypeData() to get a pointer to subclass-specific memory reserved
this way.
Changed in version 3.12: Previously, this field could not be negative.

int itemsize
Size of one element of a variable-size type, in bytes. Used to set PyTypeObject.tp_itemsize.
See tp_itemsize documentation for caveats.
If zero, tp_itemsize is inherited. Extending arbitrary variable-sized classes is dangerous, since some
types use a fixed offset for variable-sized memory, which can then overlap fixed-sized memory used by a
subclass. To help prevent mistakes, inheriting itemsize is only possible in the following situations:
• The base is not variable-sized (its tp_itemsize).
• The requested PyType_Spec.basicsize is positive, suggesting that the memory layout of the
base class is known.

• The requested PyType_Spec.basicsize is zero, suggesting that the subclass does not access
the instance’s memory directly.

• With the Py_TPFLAGS_ITEMS_AT_END flag.
unsigned int flags

Type flags, used to set PyTypeObject.tp_flags.
If the Py_TPFLAGS_HEAPTYPE flag is not set, PyType_FromSpecWithBases() sets it auto-
matically.

PyType_Slot *slots
Array of PyType_Slot structures. Terminated by the special slot value {0, NULL}.
Each slot ID should be specified at most once.

type PyType_Slot
Part of the Stable ABI (including all members). Structure defining optional functionality of a type, containing
a slot ID and a value pointer.
int slot

A slot ID.
Slot IDs are named like the field names of the structuresPyTypeObject, PyNumberMeth-
ods, PySequenceMethods, PyMappingMethods and PyAsyncMethods with an
added Py_ prefix. For example, use:
• Py_tp_dealloc to set PyTypeObject.tp_dealloc
• Py_nb_add to set PyNumberMethods.nb_add
• Py_sq_length to set PySequenceMethods.sq_length

The following “offset” fields cannot be set using PyType_Slot:
• tp_weaklistoffset (use Py_TPFLAGS_MANAGED_WEAKREF instead if
possible)

• tp_dictoffset (use Py_TPFLAGS_MANAGED_DICT instead if possible)
• tp_vectorcall_offset (use "__vectorcalloffset__" in PyMem-
berDef)

130 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

If it is not possible to switch to a MANAGED flag (for example, for vectorcall or to sup-
port Python older than 3.12), specify the offset in Py_tp_members. See PyMem-
berDef documentation for details.

The following fields cannot be set at all when creating a heap type:
• tp_vectorcall (use tp_new and/or tp_init)
• Internal fields: tp_dict, tp_mro, tp_cache, tp_subclasses, and
tp_weaklist.

Setting Py_tp_bases or Py_tp_base may be problematic on some platforms. To avoid
issues, use the bases argument of PyType_FromSpecWithBases() instead.

Changed in version 3.9: Slots in PyBufferProcs may be set in the unlimited API.
Changed in version 3.11: bf_getbuffer and bf_releasebuffer are now available under the
limited API.

void *pfunc
The desired value of the slot. In most cases, this is a pointer to a function.
Slots other than Py_tp_doc may not be NULL.

8.1.2 The None Object

Note that the PyTypeObject for None is not directly exposed in the Python/C API. Since None is a singleton,
testing for object identity (using == in C) is sufficient. There is no PyNone_Check() function for the same reason.

PyObject *Py_None
The Python None object, denoting lack of value. This object has no methods and is immortal.
Changed in version 3.12: Py_None is immortal.

Py_RETURN_NONE

Return Py_None from a function.

8.2 Numeric Objects

8.2.1 Integer Objects

All integers are implemented as “long” integer objects of arbitrary size.
On error, most PyLong_As* APIs return (return type)-1 which cannot be distinguished from a number.
Use PyErr_Occurred() to disambiguate.
type PyLongObject

Part of the Limited API (as an opaque struct). This subtype of PyObject represents a Python integer object.
PyTypeObject PyLong_Type

Part of the Stable ABI. This instance of PyTypeObject represents the Python integer type. This is the same
object as int in the Python layer.

int PyLong_Check(PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongObject. This function always
succeeds.

int PyLong_CheckExact(PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongObject. This function
always succeeds.

8.2. Numeric Objects 131



The Python/C API, Release 3.13.0

PyObject *PyLong_FromLong(long v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from v, or NULL
on failure.
The current implementation keeps an array of integer objects for all integers between -5 and 256. When you
create an int in that range you actually just get back a reference to the existing object.

PyObject *PyLong_FromUnsignedLong(unsigned long v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from a C un-
signed long, or NULL on failure.

PyObject *PyLong_FromSsize_t(Py_ssize_t v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from a C
Py_ssize_t, or NULL on failure.

PyObject *PyLong_FromSize_t(size_t v)
Return value: New reference. Part of the Stable ABI.Return a newPyLongObject object from aCsize_t,
or NULL on failure.

PyObject *PyLong_FromLongLong(long long v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from a C long
long, or NULL on failure.

PyObject *PyLong_FromUnsignedLongLong(unsigned long long v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from a C un-
signed long long, or NULL on failure.

PyObject *PyLong_FromDouble(double v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from the integer
part of v, or NULL on failure.

PyObject *PyLong_FromString(const char *str, char **pend, int base)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject based on the string value
in str, which is interpreted according to the radix in base, or NULL on failure. If pend is non-NULL, *pend
will point to the end of str on success or to the first character that could not be processed on error. If base is 0,
str is interpreted using the integers definition; in this case, leading zeros in a non-zero decimal number raises
a ValueError. If base is not 0, it must be between 2 and 36, inclusive. Leading and trailing whitespace
and single underscores after a base specifier and between digits are ignored. If there are no digits or str is not
NULL-terminated following the digits and trailing whitespace, ValueError will be raised.

See also

Python methods int.to_bytes() and int.from_bytes() to convert a PyLongObject
to/from an array of bytes in base 256. You can call those from C using PyObject_CallMethod().

PyObject *PyLong_FromUnicodeObject(PyObject *u, int base)
Return value: New reference. Convert a sequence of Unicode digits in the string u to a Python integer value.
Added in version 3.3.

PyObject *PyLong_FromVoidPtr(void *p)
Return value: New reference. Part of the Stable ABI. Create a Python integer from the pointer p. The pointer
value can be retrieved from the resulting value using PyLong_AsVoidPtr().

PyObject *PyLong_FromNativeBytes(const void *buffer, size_t n_bytes, int flags)
Create a Python integer from the value contained in the first n_bytes of buffer, interpreted as a two’s-
complement signed number.
flags are as for PyLong_AsNativeBytes(). Passing -1 will select the native endian
that CPython was compiled with and assume that the most-significant bit is a sign bit. Pass-

132 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

ing Py_ASNATIVEBYTES_UNSIGNED_BUFFER will produce the same result as calling Py-
Long_FromUnsignedNativeBytes(). Other flags are ignored.
Added in version 3.13.

PyObject *PyLong_FromUnsignedNativeBytes(const void *buffer, size_t n_bytes, int flags)
Create a Python integer from the value contained in the first n_bytes of buffer, interpreted as an unsigned
number.
flags are as for PyLong_AsNativeBytes(). Passing -1 will select the native endian that CPython was
compiled with and assume that the most-significant bit is not a sign bit. Flags other than endian are ignored.
Added in version 3.13.

long PyLong_AsLong(PyObject *obj)
Part of the Stable ABI. Return a C long representation of obj. If obj is not an instance of PyLongObject,
first call its __index__() method (if present) to convert it to a PyLongObject.
Raise OverflowError if the value of obj is out of range for a long.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.8: Use __index__() if available.
Changed in version 3.10: This function will no longer use __int__().
long PyLong_AS_LONG(PyObject *obj)

A soft deprecated alias. Exactly equivalent to the preferred PyLong_AsLong. In particular, it can fail
with OverflowError or another exception.
Deprecated since version 3.14: The function is soft deprecated.

int PyLong_AsInt(PyObject *obj)
Part of the Stable ABI since version 3.13. Similar to PyLong_AsLong(), but store the result in a C int
instead of a C long.
Added in version 3.13.

long PyLong_AsLongAndOverflow(PyObject *obj, int *overflow)
Part of the Stable ABI. Return a C long representation of obj. If obj is not an instance of PyLongObject,
first call its __index__() method (if present) to convert it to a PyLongObject.
If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or -1, respectively,
and return -1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1
as usual.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.8: Use __index__() if available.
Changed in version 3.10: This function will no longer use __int__().

long long PyLong_AsLongLong(PyObject *obj)
Part of the Stable ABI. Return a C long long representation of obj. If obj is not an instance of PyLon-
gObject, first call its __index__() method (if present) to convert it to a PyLongObject.
Raise OverflowError if the value of obj is out of range for a long long.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.8: Use __index__() if available.
Changed in version 3.10: This function will no longer use __int__().

long long PyLong_AsLongLongAndOverflow(PyObject *obj, int *overflow)
Part of the Stable ABI. Return a C long long representation of obj. If obj is not an instance of PyLon-
gObject, first call its __index__() method (if present) to convert it to a PyLongObject.

8.2. Numeric Objects 133



The Python/C API, Release 3.13.0

If the value of obj is greater thanLLONG_MAX or less thanLLONG_MIN, set *overflow to1 or-1, respectively,
and return -1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1
as usual.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.
Added in version 3.2.
Changed in version 3.8: Use __index__() if available.
Changed in version 3.10: This function will no longer use __int__().

Py_ssize_t PyLong_AsSsize_t(PyObject *pylong)
Part of the Stable ABI. Return a C Py_ssize_t representation of pylong. pylong must be an instance of
PyLongObject.
Raise OverflowError if the value of pylong is out of range for a Py_ssize_t.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.

unsigned long PyLong_AsUnsignedLong(PyObject *pylong)
Part of the Stable ABI. Return a C unsigned long representation of pylong. pylong must be an instance
of PyLongObject.
Raise OverflowError if the value of pylong is out of range for a unsigned long.
Returns (unsigned long)-1 on error. Use PyErr_Occurred() to disambiguate.

size_t PyLong_AsSize_t(PyObject *pylong)
Part of the Stable ABI. Return a C size_t representation of pylong. pylongmust be an instance of PyLon-
gObject.
Raise OverflowError if the value of pylong is out of range for a size_t.
Returns (size_t)-1 on error. Use PyErr_Occurred() to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong(PyObject *pylong)
Part of the Stable ABI. Return a C unsigned long long representation of pylong. pylong must be an
instance of PyLongObject.
Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long)-1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.1: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask(PyObject *obj)
Part of the Stable ABI. Return a C unsigned long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__() method (if present) to convert it to a PyLongObject.
If the value of obj is out of range for an unsigned long, return the reduction of that value modulo
ULONG_MAX + 1.
Returns (unsigned long)-1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.8: Use __index__() if available.
Changed in version 3.10: This function will no longer use __int__().

unsigned long long PyLong_AsUnsignedLongLongMask(PyObject *obj)
Part of the Stable ABI. Return a C unsigned long long representation of obj. If obj is not an instance
of PyLongObject, first call its __index__() method (if present) to convert it to a PyLongObject.
If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
ULLONG_MAX + 1.
Returns (unsigned long long)-1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.8: Use __index__() if available.

134 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

Changed in version 3.10: This function will no longer use __int__().
double PyLong_AsDouble(PyObject *pylong)

Part of the Stable ABI. Return a C double representation of pylong. pylongmust be an instance of PyLon-
gObject.
Raise OverflowError if the value of pylong is out of range for a double.
Returns -1.0 on error. Use PyErr_Occurred() to disambiguate.

void *PyLong_AsVoidPtr(PyObject *pylong)
Part of the Stable ABI. Convert a Python integer pylong to a C void pointer. If pylong cannot be converted,
an OverflowError will be raised. This is only assured to produce a usable void pointer for values created
with PyLong_FromVoidPtr().
Returns NULL on error. Use PyErr_Occurred() to disambiguate.

Py_ssize_t PyLong_AsNativeBytes(PyObject *pylong, void *buffer, Py_ssize_t n_bytes, int flags)
Copy the Python integer value pylong to a native buffer of size n_bytes. The flags can be set to -1 to behave
similarly to a C cast, or to values documented below to control the behavior.
Returns -1 with an exception raised on error. This may happen if pylong cannot be interpreted as an integer,
or if pylong was negative and the Py_ASNATIVEBYTES_REJECT_NEGATIVE flag was set.
Otherwise, returns the number of bytes required to store the value. If this is equal to or less than n_bytes, the
entire value was copied. All n_bytes of the buffer are written: large buffers are padded with zeroes.
If the returned value is greater than than n_bytes, the value was truncated: as many of the lowest bits of the
value as could fit are written, and the higher bits are ignored. This matches the typical behavior of a C-style
downcast.

Note

Overflow is not considered an error. If the returned value is larger than n_bytes, most significant bits were
discarded.

0 will never be returned.
Values are always copied as two’s-complement.
Usage example:

int32_t value;
Py_ssize_t bytes = PyLong_AsNativeBytes(pylong, &value, sizeof(value), -1);
if (bytes < 0) {

// Failed. A Python exception was set with the reason.
return NULL;

}
else if (bytes <= (Py_ssize_t)sizeof(value)) {

// Success!
}
else {

// Overflow occurred, but 'value' contains the truncated
// lowest bits of pylong.

}

Passing zero to n_bytes will return the size of a buffer that would be large enough to hold the value. This may
be larger than technically necessary, but not unreasonably so. If n_bytes=0, buffer may be NULL.

Note

Passing n_bytes=0 to this function is not an accurate way to determine the bit length of the value.

8.2. Numeric Objects 135



The Python/C API, Release 3.13.0

To get at the entire Python value of an unknown size, the function can be called twice: first to determine the
buffer size, then to fill it:

// Ask how much space we need.
Py_ssize_t expected = PyLong_AsNativeBytes(pylong, NULL, 0, -1);
if (expected < 0) {

// Failed. A Python exception was set with the reason.
return NULL;

}
assert(expected != 0); // Impossible per the API definition.
uint8_t *bignum = malloc(expected);
if (!bignum) {

PyErr_SetString(PyExc_MemoryError, "bignum malloc failed.");
return NULL;

}
// Safely get the entire value.
Py_ssize_t bytes = PyLong_AsNativeBytes(pylong, bignum, expected, -1);
if (bytes < 0) { // Exception has been set.

free(bignum);
return NULL;

}
else if (bytes > expected) { // This should not be possible.

PyErr_SetString(PyExc_RuntimeError,
"Unexpected bignum truncation after a size check.");

free(bignum);
return NULL;

}
// The expected success given the above pre-check.
// ... use bignum ...
free(bignum);

flags is either -1 (Py_ASNATIVEBYTES_DEFAULTS) to select defaults that behave most like a C cast, or
a combintation of the other flags in the table below. Note that -1 cannot be combined with other flags.
Currently, -1 corresponds to Py_ASNATIVEBYTES_NATIVE_ENDIAN |
Py_ASNATIVEBYTES_UNSIGNED_BUFFER.

Flag Value

Py_ASNATIVEBYTES_DEFAULTS
-1

Py_ASNATIVEBYTES_BIG_ENDIAN
0

Py_ASNATIVEBYTES_LITTLE_ENDIAN
1

Py_ASNATIVEBYTES_NATIVE_ENDIAN
3

Py_ASNATIVEBYTES_UNSIGNED_BUFFER
4

Py_ASNATIVEBYTES_REJECT_NEGATIVE
8

Py_ASNATIVEBYTES_ALLOW_INDEX
16

136 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

Specifying Py_ASNATIVEBYTES_NATIVE_ENDIAN will override any other endian flags. Passing 2 is
reserved.
By default, sufficient buffer will be requested to include a sign bit. For example, when converting 128 with
n_bytes=1, the function will return 2 (or more) in order to store a zero sign bit.
If Py_ASNATIVEBYTES_UNSIGNED_BUFFER is specified, a zero sign bit will be omitted from size cal-
culations. This allows, for example, 128 to fit in a single-byte buffer. If the destination buffer is later treated
as signed, a positive input value may become negative. Note that the flag does not affect handling of negative
values: for those, space for a sign bit is always requested.
Specifying Py_ASNATIVEBYTES_REJECT_NEGATIVE causes an exception to be set if pylong is nega-
tive. Without this flag, negative values will be copied provided there is enough space for at least one sign bit,
regardless of whether Py_ASNATIVEBYTES_UNSIGNED_BUFFER was specified.
If Py_ASNATIVEBYTES_ALLOW_INDEX is specified and a non-integer value is passed, its __in-
dex__() method will be called first. This may result in Python code executing and other threads being
allowed to run, which could cause changes to other objects or values in use. When flags is -1, this option is
not set, and non-integer values will raise TypeError.

Note

With the default flags (-1, or UNSIGNED_BUFFER without REJECT_NEGATIVE), multiple Python inte-
gers can map to a single value without overflow. For example, both 255 and -1 fit a single-byte buffer and
set all its bits. This matches typical C cast behavior.

Added in version 3.13.
PyObject *PyLong_GetInfo(void)

Part of the Stable ABI. On success, return a read only named tuple, that holds information about Python’s
internal representation of integers. See sys.int_info for description of individual fields.
On failure, return NULL with an exception set.
Added in version 3.1.

int PyUnstable_Long_IsCompact(const PyLongObject *op)

This is Unstable API. It may change without warning in minor releases.

Return 1 if op is compact, 0 otherwise.
This function makes it possible for performance-critical code to implement a “fast path” for small integers. For
compact values use PyUnstable_Long_CompactValue(); for others fall back to a PyLong_As*
function or PyLong_AsNativeBytes().
The speedup is expected to be negligible for most users.
Exactly what values are considered compact is an implementation detail and is subject to change.

Py_ssize_t PyUnstable_Long_CompactValue(const PyLongObject *op)

This is Unstable API. It may change without warning in minor releases.

If op is compact, as determined by PyUnstable_Long_IsCompact(), return its value.
Otherwise, the return value is undefined.

8.2. Numeric Objects 137



The Python/C API, Release 3.13.0

8.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_False and
Py_True. As such, the normal creation and deletion functions don’t apply to booleans. The following macros
are available, however.
PyTypeObject PyBool_Type

Part of the Stable ABI. This instance of PyTypeObject represents the Python boolean type; it is the same
object as bool in the Python layer.

int PyBool_Check(PyObject *o)
Return true if o is of type PyBool_Type. This function always succeeds.

PyObject *Py_False
The Python False object. This object has no methods and is immortal.
Changed in version 3.12: Py_False is immortal.

PyObject *Py_True
The Python True object. This object has no methods and is immortal.
Changed in version 3.12: Py_True is immortal.

Py_RETURN_FALSE

Return Py_False from a function.
Py_RETURN_TRUE

Return Py_True from a function.
PyObject *PyBool_FromLong(long v)

Return value: New reference. Part of the Stable ABI. Return Py_True or Py_False, depending on the truth
value of v.

8.2.3 Floating-Point Objects

type PyFloatObject
This subtype of PyObject represents a Python floating-point object.

PyTypeObject PyFloat_Type
Part of the Stable ABI. This instance of PyTypeObject represents the Python floating-point type. This is
the same object as float in the Python layer.

int PyFloat_Check(PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatObject. This function always
succeeds.

int PyFloat_CheckExact(PyObject *p)
Return true if its argument is a PyFloatObject, but not a subtype of PyFloatObject. This function
always succeeds.

PyObject *PyFloat_FromString(PyObject *str)
Return value: New reference. Part of the Stable ABI. Create a PyFloatObject object based on the string
value in str, or NULL on failure.

PyObject *PyFloat_FromDouble(double v)
Return value: New reference. Part of the Stable ABI. Create a PyFloatObject object from v, or NULL on
failure.

138 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

double PyFloat_AsDouble(PyObject *pyfloat)
Part of the Stable ABI. Return a C double representation of the contents of pyfloat. If pyfloat is not a Python
floating-point object but has a __float__() method, this method will first be called to convert pyfloat into
a float. If __float__() is not defined then it falls back to __index__(). This method returns -1.0
upon failure, so one should call PyErr_Occurred() to check for errors.
Changed in version 3.8: Use __index__() if available.

double PyFloat_AS_DOUBLE(PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject *PyFloat_GetInfo(void)
Return value: New reference. Part of the Stable ABI. Return a structseq instance which contains information
about the precision, minimum and maximum values of a float. It’s a thin wrapper around the header file
float.h.

double PyFloat_GetMax()
Part of the Stable ABI. Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin()
Part of the Stable ABI. Return the minimum normalized positive float DBL_MIN as C double.

Pack and Unpack functions

The pack and unpack functions provide an efficient platform-independent way to store floating-point values as byte
strings. The Pack routines produce a bytes string from a C double, and the Unpack routines produce a C double
from such a bytes string. The suffix (2, 4 or 8) specifies the number of bytes in the bytes string.
On platforms that appear to use IEEE 754 formats these functions work by copying bits. On other platforms, the
2-byte format is identical to the IEEE 754 binary16 half-precision format, the 4-byte format (32-bit) is identical to
the IEEE 754 binary32 single precision format, and the 8-byte format to the IEEE 754 binary64 double precision
format, although the packing of INFs and NaNs (if such things exist on the platform) isn’t handled correctly, and
attempting to unpack a bytes string containing an IEEE INF or NaN will raise an exception.
On non-IEEE platforms with more precision, or larger dynamic range, than IEEE 754 supports, not all values can be
packed; on non-IEEE platforms with less precision, or smaller dynamic range, not all values can be unpacked. What
happens in such cases is partly accidental (alas).
Added in version 3.11.

Pack functions

The pack routines write 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if you want the bytes string in
little-endian format (exponent last, at p+1, p+3, or p+6 p+7), zero if you want big-endian format (exponent first,
at p). The PY_BIG_ENDIAN constant can be used to use the native endian: it is equal to 1 on big endian processor,
or 0 on little endian processor.
Return value: 0 if all is OK, -1 if error (and an exception is set, most likely OverflowError).
There are two problems on non-IEEE platforms:

• What this does is undefined if x is a NaN or infinity.
• -0.0 and +0.0 produce the same bytes string.

int PyFloat_Pack2(double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary16 half-precision format.

int PyFloat_Pack4(double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary32 single precision format.

8.2. Numeric Objects 139



The Python/C API, Release 3.13.0

int PyFloat_Pack8(double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary64 double precision format.

Unpack functions

The unpack routines read 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if the bytes string is in
little-endian format (exponent last, at p+1, p+3 or p+6 and p+7), zero if big-endian (exponent first, at p). The
PY_BIG_ENDIAN constant can be used to use the native endian: it is equal to 1 on big endian processor, or 0 on
little endian processor.
Return value: The unpacked double. On error, this is -1.0 and PyErr_Occurred() is true (and an exception
is set, most likely OverflowError).
Note that on a non-IEEE platform this will refuse to unpack a bytes string that represents a NaN or infinity.
double PyFloat_Unpack2(const unsigned char *p, int le)

Unpack the IEEE 754 binary16 half-precision format as a C double.
double PyFloat_Unpack4(const unsigned char *p, int le)

Unpack the IEEE 754 binary32 single precision format as a C double.
double PyFloat_Unpack8(const unsigned char *p, int le)

Unpack the IEEE 754 binary64 double precision format as a C double.

8.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex number
value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by value rather
than dereferencing them through pointers. This is consistent throughout the API.
type Py_complex

The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate.
double real
double imag

The structure is defined as:

typedef struct {
double real;
double imag;

} Py_complex;

Py_complex _Py_c_sum(Py_complex left, Py_complex right)
Return the sum of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_diff(Py_complex left, Py_complex right)
Return the difference between two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_neg(Py_complex num)
Return the negation of the complex number num, using the C Py_complex representation.

140 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

Py_complex _Py_c_prod(Py_complex left, Py_complex right)
Return the product of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_quot(Py_complex dividend, Py_complex divisor)
Return the quotient of two complex numbers, using the C Py_complex representation.
If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_c_pow(Py_complex num, Py_complex exp)
Return the exponentiation of num by exp, using the C Py_complex representation.
If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

Complex Numbers as Python Objects

type PyComplexObject
This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex_Type

Part of the Stable ABI. This instance of PyTypeObject represents the Python complex number type. It is
the same object as complex in the Python layer.

int PyComplex_Check(PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject. This function
always succeeds.

int PyComplex_CheckExact(PyObject *p)
Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject. This
function always succeeds.

PyObject *PyComplex_FromCComplex(Py_complex v)
Return value: New reference. Create a new Python complex number object from a C Py_complex value.
Return NULL with an exception set on error.

PyObject *PyComplex_FromDoubles(double real, double imag)
Return value: New reference. Part of the Stable ABI. Return a new PyComplexObject object from real
and imag. Return NULL with an exception set on error.

double PyComplex_RealAsDouble(PyObject *op)
Part of the Stable ABI. Return the real part of op as a C double.
If op is not a Python complex number object but has a __complex__() method, this method will first be
called to convert op to a Python complex number object. If __complex__() is not defined then it falls back
to call PyFloat_AsDouble() and returns its result.
Upon failure, this method returns -1.0 with an exception set, so one should call PyErr_Occurred() to
check for errors.
Changed in version 3.13: Use __complex__() if available.

double PyComplex_ImagAsDouble(PyObject *op)
Part of the Stable ABI. Return the imaginary part of op as a C double.
If op is not a Python complex number object but has a __complex__() method, this method will first be
called to convert op to a Python complex number object. If __complex__() is not defined then it falls back
to call PyFloat_AsDouble() and returns 0.0 on success.
Upon failure, this method returns -1.0 with an exception set, so one should call PyErr_Occurred() to
check for errors.
Changed in version 3.13: Use __complex__() if available.

8.2. Numeric Objects 141



The Python/C API, Release 3.13.0

Py_complex PyComplex_AsCComplex(PyObject *op)
Return the Py_complex value of the complex number op.
If op is not a Python complex number object but has a __complex__() method, this method will first be
called to convert op to a Python complex number object. If __complex__() is not defined then it falls back
to __float__(). If __float__() is not defined then it falls back to __index__().
Upon failure, this method returns Py_complex with real set to -1.0 and with an exception set, so one
should call PyErr_Occurred() to check for errors.
Changed in version 3.8: Use __index__() if available.

8.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

8.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and called with a non-bytes parameter.
type PyBytesObject

This subtype of PyObject represents a Python bytes object.
PyTypeObject PyBytes_Type

Part of the Stable ABI. This instance of PyTypeObject represents the Python bytes type; it is the same
object as bytes in the Python layer.

int PyBytes_Check(PyObject *o)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type. This function always
succeeds.

int PyBytes_CheckExact(PyObject *o)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type. This function
always succeeds.

PyObject *PyBytes_FromString(const char *v)
Return value: New reference. Part of the Stable ABI. Return a new bytes object with a copy of the string v as
value on success, and NULL on failure. The parameter v must not be NULL; it will not be checked.

PyObject *PyBytes_FromStringAndSize(const char *v, Py_ssize_t len)
Return value: New reference. Part of the Stable ABI. Return a new bytes object with a copy of the string v
as value and length len on success, and NULL on failure. If v is NULL, the contents of the bytes object are
uninitialized.

PyObject *PyBytes_FromFormat(const char *format, ...)
Return value: New reference. Part of the Stable ABI. Take a C printf()-style format string and a variable
number of arguments, calculate the size of the resulting Python bytes object and return a bytes object with the
values formatted into it. The variable arguments must be C types and must correspond exactly to the format
characters in the format string. The following format characters are allowed:

142 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

Format Characters Type Comment
%% n/a The literal % character.
%c int A single byte, represented as a C int.
%d int Equivalent to printf("%d").1
%u unsigned int Equivalent to printf("%u").1
%ld long Equivalent to printf("%ld").1
%lu unsigned long Equivalent to printf("%lu").1
%zd Py_ssize_t Equivalent to printf("%zd").1
%zu size_t Equivalent to printf("%zu").1
%i int Equivalent to printf("%i").1
%x int Equivalent to printf("%x").1
%s const char* A null-terminated C character array.
%p const void* The hex representation of a C pointer. Mostly equivalent to

printf("%p") except that it is guaranteed to start with the
literal 0x regardless of what the platform’s printf yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object,
and any extra arguments discarded.

PyObject *PyBytes_FromFormatV(const char *format, va_list vargs)
Return value: New reference. Part of the Stable ABI. Identical to PyBytes_FromFormat() except that it
takes exactly two arguments.

PyObject *PyBytes_FromObject(PyObject *o)
Return value: New reference. Part of the Stable ABI.Return the bytes representation of object o that implements
the buffer protocol.

Py_ssize_t PyBytes_Size(PyObject *o)
Part of the Stable ABI. Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE(PyObject *o)
Similar to PyBytes_Size(), but without error checking.

char *PyBytes_AsString(PyObject *o)
Part of the Stable ABI. Return a pointer to the contents of o. The pointer refers to the internal buffer of o,
which consists of len(o) + 1 bytes. The last byte in the buffer is always null, regardless of whether there
are any other null bytes. The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize(NULL, size). It must not be deallocated. If o is not a bytes object
at all, PyBytes_AsString() returns NULL and raises TypeError.

char *PyBytes_AS_STRING(PyObject *string)
Similar to PyBytes_AsString(), but without error checking.

int PyBytes_AsStringAndSize(PyObject *obj, char **buffer, Py_ssize_t *length)
Part of the Stable ABI. Return the null-terminated contents of the object obj through the output variables buffer
and length. Returns 0 on success.
If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns -1
and a ValueError is raised.
The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not
counted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize(NULL, size). It must not be deallocated. If obj is not a bytes
object at all, PyBytes_AsStringAndSize() returns -1 and raises TypeError.
Changed in version 3.5: Previously, TypeError was raised when embedded null bytes were encountered in
the bytes object.

1 For integer specifiers (d, u, ld, lu, zd, zu, i, x): the 0-conversion flag has effect even when a precision is given.

8.3. Sequence Objects 143



The Python/C API, Release 3.13.0

void PyBytes_Concat(PyObject **bytes, PyObject *newpart)
Part of the Stable ABI. Create a new bytes object in *bytes containing the contents of newpart appended to
bytes; the caller will own the new reference. The reference to the old value of bytes will be stolen. If the new
object cannot be created, the old reference to bytes will still be discarded and the value of *bytes will be set to
NULL; the appropriate exception will be set.

void PyBytes_ConcatAndDel(PyObject **bytes, PyObject *newpart)
Part of the Stable ABI. Create a new bytes object in *bytes containing the contents of newpart appended to
bytes. This version releases the strong reference to newpart (i.e. decrements its reference count).

int _PyBytes_Resize(PyObject **bytes, Py_ssize_t newsize)
Resize a bytes object. newsize will be the new length of the bytes object. You can think of it as creating a new
bytes object and destroying the old one, only more efficiently. Pass the address of an existing bytes object as an
lvalue (it may be written into), and the new size desired. On success, *bytes holds the resized bytes object and
0 is returned; the address in *bytes may differ from its input value. If the reallocation fails, the original bytes
object at *bytes is deallocated, *bytes is set to NULL, MemoryError is set, and -1 is returned.

8.3.2 Byte Array Objects

type PyByteArrayObject
This subtype of PyObject represents a Python bytearray object.

PyTypeObject PyByteArray_Type
Part of the Stable ABI. This instance of PyTypeObject represents the Python bytearray type; it is the same
object as bytearray in the Python layer.

Type check macros

int PyByteArray_Check(PyObject *o)
Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type. This function
always succeeds.

int PyByteArray_CheckExact(PyObject *o)
Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type. This
function always succeeds.

Direct API functions

PyObject *PyByteArray_FromObject(PyObject *o)
Return value: New reference. Part of the Stable ABI. Return a new bytearray object from any object, o, that
implements the buffer protocol.
On failure, return NULL with an exception set.

PyObject *PyByteArray_FromStringAndSize(const char *string, Py_ssize_t len)
Return value: New reference. Part of the Stable ABI. Create a new bytearray object from string and its length,
len.
On failure, return NULL with an exception set.

PyObject *PyByteArray_Concat(PyObject *a, PyObject *b)
Return value: New reference. Part of the Stable ABI. Concat bytearrays a and b and return a new bytearray
with the result.
On failure, return NULL with an exception set.

144 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

Py_ssize_t PyByteArray_Size(PyObject *bytearray)
Part of the Stable ABI. Return the size of bytearray after checking for a NULL pointer.

char *PyByteArray_AsString(PyObject *bytearray)
Part of the Stable ABI. Return the contents of bytearray as a char array after checking for a NULL pointer.
The returned array always has an extra null byte appended.

int PyByteArray_Resize(PyObject *bytearray, Py_ssize_t len)
Part of the Stable ABI. Resize the internal buffer of bytearray to len.

Macros

These macros trade safety for speed and they don’t check pointers.
char *PyByteArray_AS_STRING(PyObject *bytearray)

Similar to PyByteArray_AsString(), but without error checking.
Py_ssize_t PyByteArray_GET_SIZE(PyObject *bytearray)

Similar to PyByteArray_Size(), but without error checking.

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in
order to allow handling the complete range of Unicode characters while staying memory efficient. There are special
cases for strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112
(which is the full Unicode range).
UTF-8 representation is created on demand and cached in the Unicode object.

Note

The Py_UNICODE representation has been removed since Python 3.12 with deprecated APIs. See PEP 623 for
more information.

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:
type Py_UCS4
type Py_UCS2
type Py_UCS1

Part of the Stable ABI. These types are typedefs for unsigned integer types wide enough to contain characters
of 32 bits, 16 bits and 8 bits, respectively. When dealing with single Unicode characters, use Py_UCS4.
Added in version 3.3.

type Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.
Changed in version 3.3: In previous versions, this was a 16-bit type or a 32-bit type depending on whether you
selected a “narrow” or “wide” Unicode version of Python at build time.
Deprecated since version 3.13, will be removed in version 3.15.

type PyASCIIObject

8.3. Sequence Objects 145

https://peps.python.org/pep-0393/
https://peps.python.org/pep-0623/


The Python/C API, Release 3.13.0

type PyCompactUnicodeObject
type PyUnicodeObject

These subtypes of PyObject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyObject pointers.
Added in version 3.3.

PyTypeObject PyUnicode_Type
Part of the Stable ABI. This instance of PyTypeObject represents the Python Unicode type. It is exposed
to Python code as str.

The following APIs are C macros and static inlined functions for fast checks and access to internal read-only data of
Unicode objects:
int PyUnicode_Check(PyObject *obj)

Return true if the object obj is a Unicode object or an instance of a Unicode subtype. This function always
succeeds.

int PyUnicode_CheckExact(PyObject *obj)
Return true if the object obj is a Unicode object, but not an instance of a subtype. This function always succeeds.

int PyUnicode_READY(PyObject *unicode)
Returns 0. This API is kept only for backward compatibility.
Added in version 3.3.
Deprecated since version 3.10: This API does nothing since Python 3.12.

Py_ssize_t PyUnicode_GET_LENGTH(PyObject *unicode)
Return the length of the Unicode string, in code points. unicode has to be a Unicode object in the “canonical”
representation (not checked).
Added in version 3.3.

Py_UCS1 *PyUnicode_1BYTE_DATA(PyObject *unicode)
Py_UCS2 *PyUnicode_2BYTE_DATA(PyObject *unicode)
Py_UCS4 *PyUnicode_4BYTE_DATA(PyObject *unicode)

Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct character
access. No checks are performed if the canonical representation has the correct character size; use PyUni-
code_KIND() to select the right function.
Added in version 3.3.

PyUnicode_1BYTE_KIND

PyUnicode_2BYTE_KIND

PyUnicode_4BYTE_KIND

Return values of the PyUnicode_KIND() macro.
Added in version 3.3.
Changed in version 3.12: PyUnicode_WCHAR_KIND has been removed.

int PyUnicode_KIND(PyObject *unicode)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Uni-
code object uses to store its data. unicode has to be a Unicode object in the “canonical” representation (not
checked).
Added in version 3.3.

void *PyUnicode_DATA(PyObject *unicode)
Return a void pointer to the raw Unicode buffer. unicode has to be a Unicode object in the “canonical” repre-
sentation (not checked).
Added in version 3.3.

146 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

void PyUnicode_WRITE(int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA()). This function performs
no sanity checks, and is intended for usage in loops. The caller should cache the kind value and data pointer
as obtained from other calls. index is the index in the string (starts at 0) and value is the new code point value
which should be written to that location.
Added in version 3.3.

Py_UCS4 PyUnicode_READ(int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_DATA()). No checks
or ready calls are performed.
Added in version 3.3.

Py_UCS4 PyUnicode_READ_CHAR(PyObject *unicode, Py_ssize_t index)
Read a character from a Unicode object unicode, which must be in the “canonical” representation. This is less
efficient than PyUnicode_READ() if you do multiple consecutive reads.
Added in version 3.3.

Py_UCS4 PyUnicode_MAX_CHAR_VALUE(PyObject *unicode)
Return the maximum code point that is suitable for creating another string based on unicode, which must be
in the “canonical” representation. This is always an approximation but more efficient than iterating over the
string.
Added in version 3.3.

int PyUnicode_IsIdentifier(PyObject *unicode)
Part of the Stable ABI. Return 1 if the string is a valid identifier according to the language definition, section
identifiers. Return 0 otherwise.
Changed in version 3.9: The function does not call Py_FatalError() anymore if the string is not ready.

Unicode Character Properties

Unicode provides many different character properties. Themost often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.
int Py_UNICODE_ISSPACE(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a whitespace character.
int Py_UNICODE_ISLOWER(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a lowercase character.
int Py_UNICODE_ISUPPER(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is an uppercase character.
int Py_UNICODE_ISTITLE(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a titlecase character.
int Py_UNICODE_ISLINEBREAK(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a linebreak character.
int Py_UNICODE_ISDECIMAL(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a decimal character.
int Py_UNICODE_ISDIGIT(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a digit character.
int Py_UNICODE_ISNUMERIC(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a numeric character.

8.3. Sequence Objects 147



The Python/C API, Release 3.13.0

int Py_UNICODE_ISALPHA(Py_UCS4 ch)
Return 1 or 0 depending on whether ch is an alphabetic character.

int Py_UNICODE_ISALNUM(Py_UCS4 ch)
Return 1 or 0 depending on whether ch is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE(Py_UCS4 ch)
Return 1 or 0 depending on whether ch is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space (0x20) which
is considered printable. (Note that printable characters in this context are those which should not be escaped
when repr() is invoked on a string. It has no bearing on the handling of strings written to sys.stdout
or sys.stderr.)

These APIs can be used for fast direct character conversions:
Py_UCS4 Py_UNICODE_TOLOWER(Py_UCS4 ch)

Return the character ch converted to lower case.
Py_UCS4 Py_UNICODE_TOUPPER(Py_UCS4 ch)

Return the character ch converted to upper case.
Py_UCS4 Py_UNICODE_TOTITLE(Py_UCS4 ch)

Return the character ch converted to title case.
int Py_UNICODE_TODECIMAL(Py_UCS4 ch)

Return the character ch converted to a decimal positive integer. Return -1 if this is not possible. This function
does not raise exceptions.

int Py_UNICODE_TODIGIT(Py_UCS4 ch)
Return the character ch converted to a single digit integer. Return -1 if this is not possible. This function does
not raise exceptions.

double Py_UNICODE_TONUMERIC(Py_UCS4 ch)
Return the character ch converted to a double. Return -1.0 if this is not possible. This function does not
raise exceptions.

These APIs can be used to work with surrogates:
int Py_UNICODE_IS_SURROGATE(Py_UCS4 ch)

Check if ch is a surrogate (0xD800 <= ch <= 0xDFFF).
int Py_UNICODE_IS_HIGH_SURROGATE(Py_UCS4 ch)

Check if ch is a high surrogate (0xD800 <= ch <= 0xDBFF).
int Py_UNICODE_IS_LOW_SURROGATE(Py_UCS4 ch)

Check if ch is a low surrogate (0xDC00 <= ch <= 0xDFFF).
Py_UCS4 Py_UNICODE_JOIN_SURROGATES(Py_UCS4 high, Py_UCS4 low)

Join two surrogate code points and return a single Py_UCS4 value. high and low are respectively the leading
and trailing surrogates in a surrogate pair. high must be in the range [0xD800; 0xDBFF] and low must be in
the range [0xDC00; 0xDFFF].

148 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:
PyObject *PyUnicode_New(Py_ssize_t size, Py_UCS4 maxchar)

Return value: New reference. Create a new Unicode object. maxchar should be the true maximum code point
to be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence 127,
255, 65535, 1114111.
This is the recommended way to allocate a new Unicode object. Objects created using this function are not
resizable.
On error, set an exception and return NULL.
Added in version 3.3.

PyObject *PyUnicode_FromKindAndData(int kind, const void *buffer, Py_ssize_t size)
Return value: New reference. Create a new Unicode object with the given kind (possible values are PyUni-
code_1BYTE_KIND etc., as returned by PyUnicode_KIND()). The buffer must point to an array of size
units of 1, 2 or 4 bytes per character, as given by the kind.
If necessary, the input buffer is copied and transformed into the canonical representation. For example, if the
buffer is a UCS4 string (PyUnicode_4BYTE_KIND) and it consists only of codepoints in the UCS1 range,
it will be transformed into UCS1 (PyUnicode_1BYTE_KIND).
Added in version 3.3.

PyObject *PyUnicode_FromStringAndSize(const char *str, Py_ssize_t size)
Return value: New reference. Part of the Stable ABI. Create a Unicode object from the char buffer str. The
bytes will be interpreted as being UTF-8 encoded. The buffer is copied into the new object. The return value
might be a shared object, i.e. modification of the data is not allowed.
This function raises SystemError when:

• size < 0,
• str is NULL and size > 0

Changed in version 3.12: str == NULL with size > 0 is not allowed anymore.
PyObject *PyUnicode_FromString(const char *str)

Return value: New reference. Part of the Stable ABI. Create a Unicode object from a UTF-8 encoded null-
terminated char buffer str.

PyObject *PyUnicode_FromFormat(const char *format, ...)
Return value: New reference. Part of the Stable ABI. Take a C printf()-style format string and a variable
number of arguments, calculate the size of the resulting Python Unicode string and return a string with the
values formatted into it. The variable arguments must be C types and must correspond exactly to the format
characters in the format ASCII-encoded string.
A conversion specifier contains two or more characters and has the following components, which must occur
in this order:
1. The '%' character, which marks the start of the specifier.
2. Conversion flags (optional), which affect the result of some conversion types.
3. Minimum field width (optional). If specified as an '*' (asterisk), the actual width is given in the next

argument, which must be of type int, and the object to convert comes after the minimum field width
and optional precision.

4. Precision (optional), given as a '.' (dot) followed by the precision. If specified as '*' (an asterisk),
the actual precision is given in the next argument, which must be of type int, and the value to convert
comes after the precision.

5. Length modifier (optional).

8.3. Sequence Objects 149



The Python/C API, Release 3.13.0

6. Conversion type.
The conversion flag characters are:

Flag Meaning
0 The conversion will be zero padded for numeric values.
- The converted value is left adjusted (overrides the 0 flag if both are given).

The length modifiers for following integer conversions (d, i, o, u, x, or X) specify the type of the argument
(int by default):

Modifier Types
l long or unsigned long
ll long long or unsigned long long
j intmax_t or uintmax_t
z size_t or ssize_t
t ptrdiff_t

The length modifier l for following conversions s or V specify that the type of the argument is const
wchar_t*.
The conversion specifiers are:

150 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

Con-
version
Speci-
fier

Type Comment

% n/a The literal % character.
d, i Specified by the

length modifier
The decimal representation of a signed C integer.

u Specified by the
length modifier

The decimal representation of an unsigned C integer.

o Specified by the
length modifier

The octal representation of an unsigned C integer.

x Specified by the
length modifier

The hexadecimal representation of an unsigned C integer (lowercase).

X Specified by the
length modifier

The hexadecimal representation of an unsigned C integer (uppercase).

c int A single character.
s const char* or

const wchar_t*
A null-terminated C character array.

p const void* The hex representation of a C pointer. Mostly equivalent to
printf("%p") except that it is guaranteed to start with the literal
0x regardless of what the platform’s printf yields.

A PyObject* The result of calling ascii().
U PyObject* A Unicode object.
V PyObject*,

const char* or
const wchar_t*

AUnicode object (which may be NULL) and a null-terminated C char-
acter array as a second parameter (which will be used, if the first pa-
rameter is NULL).

S PyObject* The result of calling PyObject_Str().
R PyObject* The result of calling PyObject_Repr().
T PyObject* Get the fully qualified name of an object type; call Py-

Type_GetFullyQualifiedName().
#T PyObject* Similar to T format, but use a colon (:) as separator between the mod-

ule name and the qualified name.
N PyTypeObject* Get the fully qualified name of a type; call Py-

Type_GetFullyQualifiedName().
#N PyTypeObject* Similar to N format, but use a colon (:) as separator between the mod-

ule name and the qualified name.

Note

The width formatter unit is number of characters rather than bytes. The precision formatter unit is number
of bytes or wchar_t items (if the length modifier l is used) for "%s" and "%V" (if the PyObject*
argument is NULL), and a number of characters for "%A", "%U", "%S", "%R" and "%V" (if the Py-
Object* argument is not NULL).

Note

Unlike to C printf() the 0 flag has effect even when a precision is given for integer conversions (d, i,
u, o, x, or X).

Changed in version 3.2: Support for "%lld" and "%llu" added.
Changed in version 3.3: Support for "%li", "%lli" and "%zi" added.
Changed in version 3.4: Support width and precision formatter for "%s", "%A", "%U", "%V", "%S", "%R"

8.3. Sequence Objects 151



The Python/C API, Release 3.13.0

added.
Changed in version 3.12: Support for conversion specifiers o and X. Support for length modifiers j and t.
Length modifiers are now applied to all integer conversions. Length modifier l is now applied to conversion
specifiers s and V. Support for variable width and precision *. Support for flag -.
An unrecognized format character now sets a SystemError. In previous versions it caused all the rest of
the format string to be copied as-is to the result string, and any extra arguments discarded.
Changed in version 3.13: Support for %T, %#T, %N and %#N formats added.

PyObject *PyUnicode_FromFormatV(const char *format, va_list vargs)
Return value: New reference. Part of the Stable ABI. Identical to PyUnicode_FromFormat() except that
it takes exactly two arguments.

PyObject *PyUnicode_FromObject(PyObject *obj)
Return value: New reference. Part of the Stable ABI. Copy an instance of a Unicode subtype to a new true
Unicode object if necessary. If obj is already a true Unicode object (not a subtype), return a new strong reference
to the object.
Objects other than Unicode or its subtypes will cause a TypeError.

PyObject *PyUnicode_FromEncodedObject(PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABI. Decode an encoded object obj to a Unicode object.
bytes, bytearray and other bytes-like objects are decoded according to the given encoding and using the
error handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in
Codecs for details).
All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

Py_ssize_t PyUnicode_GetLength(PyObject *unicode)
Part of the Stable ABI since version 3.7. Return the length of the Unicode object, in code points.
On error, set an exception and return -1.
Added in version 3.3.

Py_ssize_t PyUnicode_CopyCharacters(PyObject *to, Py_ssize_t to_start, PyObject *from, Py_ssize_t
from_start, Py_ssize_t how_many)

Copy characters from one Unicode object into another. This function performs character conversion when
necessary and falls back to memcpy() if possible. Returns -1 and sets an exception on error, otherwise
returns the number of copied characters.
Added in version 3.3.

Py_ssize_t PyUnicode_Fill(PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode[start:start+length].
Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return -1 and raise an exception on error.
Added in version 3.3.

int PyUnicode_WriteChar(PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Part of the Stable ABI since version 3.7. Write a character to a string. The string must have been created
through PyUnicode_New(). Since Unicode strings are supposed to be immutable, the string must not be
shared, or have been hashed yet.
This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object
can be modified safely (i.e. that it its reference count is one).
Return 0 on success, -1 on error with an exception set.
Added in version 3.3.

152 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

Py_UCS4 PyUnicode_ReadChar(PyObject *unicode, Py_ssize_t index)
Part of the Stable ABI since version 3.7. Read a character from a string. This function checks that unicode
is a Unicode object and the index is not out of bounds, in contrast to PyUnicode_READ_CHAR(), which
performs no error checking.
Return character on success, -1 on error with an exception set.
Added in version 3.3.

PyObject *PyUnicode_Substring(PyObject *unicode, Py_ssize_t start, Py_ssize_t end)
Return value: New reference. Part of the Stable ABI since version 3.7. Return a substring of unicode, from
character index start (included) to character index end (excluded). Negative indices are not supported. On
error, set an exception and return NULL.
Added in version 3.3.

Py_UCS4 *PyUnicode_AsUCS4(PyObject *unicode, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Part of the Stable ABI since version 3.7. Copy the string unicode into a UCS4 buffer, including a null character,
if copy_null is set. Returns NULL and sets an exception on error (in particular, a SystemError if buflen is
smaller than the length of unicode). buffer is returned on success.
Added in version 3.3.

Py_UCS4 *PyUnicode_AsUCS4Copy(PyObject *unicode)
Part of the Stable ABI since version 3.7. Copy the string unicode into a new UCS4 buffer that is allocated using
PyMem_Malloc(). If this fails, NULL is returned with a MemoryError set. The returned buffer always
has an extra null code point appended.
Added in version 3.3.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.
PyObject *PyUnicode_DecodeLocaleAndSize(const char *str, Py_ssize_t length, const char *errors)

Return value: New reference. Part of the Stable ABI since version 3.7. Decode a string from UTF-8 on Android
and VxWorks, or from the current locale encoding on other platforms. The supported error handlers are
"strict" and "surrogateescape" (PEP 383). The decoder uses "strict" error handler if errors
is NULL. str must end with a null character but cannot contain embedded null characters.
Use PyUnicode_DecodeFSDefaultAndSize() to decode a string from the filesystem encoding and
error handler.
This function ignores the Python UTF-8 Mode.

See also

The Py_DecodeLocale() function.

Added in version 3.3.
Changed in version 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py_DecodeLocale() was used for the surroga-
teescape, and the current locale encoding was used for strict.

PyObject *PyUnicode_DecodeLocale(const char *str, const char *errors)
Return value: New reference. Part of the Stable ABI since version 3.7. Similar to PyUni-
code_DecodeLocaleAndSize(), but compute the string length using strlen().
Added in version 3.3.

8.3. Sequence Objects 153

https://peps.python.org/pep-0383/


The Python/C API, Release 3.13.0

PyObject *PyUnicode_EncodeLocale(PyObject *unicode, const char *errors)
Return value: New reference. Part of the Stable ABI since version 3.7. Encode a Unicode object to UTF-8 on
Android and VxWorks, or to the current locale encoding on other platforms. The supported error handlers are
"strict" and "surrogateescape" (PEP 383). The encoder uses "strict" error handler if errors
is NULL. Return a bytes object. unicode cannot contain embedded null characters.
Use PyUnicode_EncodeFSDefault() to encode a string to the filesystem encoding and error handler.
This function ignores the Python UTF-8 Mode.

See also

The Py_EncodeLocale() function.

Added in version 3.3.
Changed in version 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py_EncodeLocale() was used for the surroga-
teescape, and the current locale encoding was used for strict.

File System Encoding

Functions encoding to and decoding from the filesystem encoding and error handler (PEP 383 and PEP 529).
To encode file names to bytes during argument parsing, the "O&" converter should be used, passing PyUni-
code_FSConverter() as the conversion function:
int PyUnicode_FSConverter(PyObject *obj, void *result)

Part of the Stable ABI. ParseTuple converter: encode str objects – obtained directly or through the os.
PathLike interface – to bytes using PyUnicode_EncodeFSDefault(); bytes objects are output
as-is. result must be a PyBytesObject* which must be released when it is no longer used.
Added in version 3.1.
Changed in version 3.6: Accepts a path-like object.

To decode file names to str during argument parsing, the "O&" converter should be used, passing PyUni-
code_FSDecoder() as the conversion function:
int PyUnicode_FSDecoder(PyObject *obj, void *result)

Part of the Stable ABI. ParseTuple converter: decode bytes objects – obtained either directly or indirectly
through the os.PathLike interface – to str using PyUnicode_DecodeFSDefaultAndSize();
str objects are output as-is. result must be a PyUnicodeObject* which must be released when it is no
longer used.
Added in version 3.2.
Changed in version 3.6: Accepts a path-like object.

PyObject *PyUnicode_DecodeFSDefaultAndSize(const char *str, Py_ssize_t size)
Return value: New reference. Part of the Stable ABI. Decode a string from the filesystem encoding and error
handler.
If you need to decode a string from the current locale encoding, use PyUni-
code_DecodeLocaleAndSize().

See also

The Py_DecodeLocale() function.

Changed in version 3.6: The filesystem error handler is now used.

154 Chapter 8. Concrete Objects Layer

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0383/
https://peps.python.org/pep-0529/


The Python/C API, Release 3.13.0

PyObject *PyUnicode_DecodeFSDefault(const char *str)
Return value: New reference. Part of the Stable ABI. Decode a null-terminated string from the filesystem
encoding and error handler.
If the string length is known, use PyUnicode_DecodeFSDefaultAndSize().
Changed in version 3.6: The filesystem error handler is now used.

PyObject *PyUnicode_EncodeFSDefault(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object to the filesystem encoding and
error handler, and return bytes. Note that the resulting bytes object can contain null bytes.
If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale().

See also

The Py_EncodeLocale() function.

Added in version 3.2.
Changed in version 3.6: The filesystem error handler is now used.

wchar_t Support

wchar_t support for platforms which support it:
PyObject *PyUnicode_FromWideChar(const wchar_t *wstr, Py_ssize_t size)

Return value: New reference. Part of the Stable ABI. Create a Unicode object from the wchar_t buffer
wstr of the given size. Passing -1 as the size indicates that the function must itself compute the length, using
wcslen(). Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar(PyObject *unicode, wchar_t *wstr, Py_ssize_t size)
Part of the Stable ABI. Copy the Unicode object contents into the wchar_t buffer wstr. At most size
wchar_t characters are copied (excluding a possibly trailing null termination character). Return the number
of wchar_t characters copied or -1 in case of an error.
Whenwstr is NULL, instead return the size that would be required to store all of unicode including a terminating
null.
Note that the resultingwchar_t* stringmay ormay not be null-terminated. It is the responsibility of the caller
to make sure that the wchar_t* string is null-terminated in case this is required by the application. Also,
note that the wchar_t* string might contain null characters, which would cause the string to be truncated
when used with most C functions.

wchar_t *PyUnicode_AsWideCharString(PyObject *unicode, Py_ssize_t *size)
Part of the Stable ABI since version 3.7. Convert the Unicode object to a wide character string. The output
string always ends with a null character. If size is not NULL, write the number of wide characters (excluding
the trailing null termination character) into *size. Note that the resulting wchar_t string might contain null
characters, which would cause the string to be truncated when used with most C functions. If size is NULL and
the wchar_t* string contains null characters a ValueError is raised.
Returns a buffer allocated by PyMem_New (use PyMem_Free() to free it) on success. On error, returns
NULL and *size is undefined. Raises a MemoryError if memory allocation is failed.
Added in version 3.2.
Changed in version 3.7: Raises a ValueError if size is NULL and the wchar_t* string contains null
characters.

8.3. Sequence Objects 155



The Python/C API, Release 3.13.0

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via
the following functions.
Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones
of the built-in str() string object constructor.
Setting encoding to NULL causes the default encoding to be used which is UTF-8. The file system calls should
use PyUnicode_FSConverter() for encoding file names. This uses the filesystem encoding and error handler
internally.
Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the
codec. Default error handling for all built-in codecs is “strict” (ValueError is raised).
The codecs all use a similar interface. Only deviations from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:
PyObject *PyUnicode_Decode(const char *str, Py_ssize_t size, const char *encoding, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the
encoded string str. encoding and errors have the same meaning as the parameters of the same name in the
str() built-in function. The codec to be used is looked up using the Python codec registry. Return NULL if
an exception was raised by the codec.

PyObject *PyUnicode_AsEncodedString(PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object and return the result as Python
bytes object. encoding and errors have the same meaning as the parameters of the same name in the Unicode
encode() method. The codec to be used is looked up using the Python codec registry. Return NULL if an
exception was raised by the codec.

UTF-8 Codecs

These are the UTF-8 codec APIs:
PyObject *PyUnicode_DecodeUTF8(const char *str, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the
UTF-8 encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF8Stateful(const char *str, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

Return value: New reference. Part of the Stable ABI. If consumed is NULL, behave like PyUni-
code_DecodeUTF8(). If consumed is not NULL, trailing incomplete UTF-8 byte sequences will not be
treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be
stored in consumed.

PyObject *PyUnicode_AsUTF8String(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using UTF-8 and return the
result as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.
The function fails if the string contains surrogate code points (U+D800 - U+DFFF).

const char *PyUnicode_AsUTF8AndSize(PyObject *unicode, Py_ssize_t *size)
Part of the Stable ABI since version 3.10. Return a pointer to the UTF-8 encoding of the Unicode object, and
store the size of the encoded representation (in bytes) in size. The size argument can be NULL; in this case no
size will be stored. The returned buffer always has an extra null byte appended (not included in size), regardless
of whether there are any other null code points.
On error, set an exception, set size to -1 (if it’s not NULL) and return NULL.

156 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

The function fails if the string contains surrogate code points (U+D800 - U+DFFF).
This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a
pointer to the same buffer. The caller is not responsible for deallocating the buffer. The buffer is deallocated
and pointers to it become invalid when the Unicode object is garbage collected.
Added in version 3.3.
Changed in version 3.7: The return type is now const char * rather of char *.
Changed in version 3.10: This function is a part of the limited API.

const char *PyUnicode_AsUTF8(PyObject *unicode)
As PyUnicode_AsUTF8AndSize(), but does not store the size.
Added in version 3.3.
Changed in version 3.7: The return type is now const char * rather of char *.

UTF-32 Codecs

These are the UTF-32 codec APIs:
PyObject *PyUnicode_DecodeUTF32(const char *str, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Part of the Stable ABI. Decode size bytes from a UTF-32 encoded buffer string
and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to
“strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output.
After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF32Stateful(const char *str, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Return value: New reference. Part of the Stable ABI. If consumed is NULL, behave like PyUni-
code_DecodeUTF32(). If consumed is not NULL, PyUnicode_DecodeUTF32Stateful() will
not treat trailing incomplete UTF-32 byte sequences (such as a number of bytes not divisible by four) as an
error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in
consumed.

PyObject *PyUnicode_AsUTF32String(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Return a Python byte string using the UTF-32 encoding
in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return NULL if an
exception was raised by the codec.

8.3. Sequence Objects 157



The Python/C API, Release 3.13.0

UTF-16 Codecs

These are the UTF-16 codec APIs:
PyObject *PyUnicode_DecodeUTF16(const char *str, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Part of the Stable ABI. Decode size bytes from a UTF-16 encoded buffer string
and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to
“strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \ufffe
character).
After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF16Stateful(const char *str, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Return value: New reference. Part of the Stable ABI. If consumed is NULL, behave like PyUni-
code_DecodeUTF16(). If consumed is not NULL, PyUnicode_DecodeUTF16Stateful() will
not treat trailing incomplete UTF-16 byte sequences (such as an odd number of bytes or a split surrogate pair)
as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in
consumed.

PyObject *PyUnicode_AsUTF16String(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Return a Python byte string using the UTF-16 encoding
in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return NULL if an
exception was raised by the codec.

UTF-7 Codecs

These are the UTF-7 codec APIs:
PyObject *PyUnicode_DecodeUTF7(const char *str, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the
UTF-7 encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF7Stateful(const char *str, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

Return value: New reference. Part of the Stable ABI. If consumed is NULL, behave like PyUni-
code_DecodeUTF7(). If consumed is not NULL, trailing incomplete UTF-7 base-64 sections will not
be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded will
be stored in consumed.

158 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:
PyObject *PyUnicode_DecodeUnicodeEscape(const char *str, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the
Unicode-Escape encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using Unicode-Escape and
return the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

Raw-Unicode-Escape Codecs

These are the “Raw Unicode Escape” codec APIs:
PyObject *PyUnicode_DecodeRawUnicodeEscape(const char *str, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the
Raw-Unicode-Escape encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsRawUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using Raw-Unicode-Escape and
return the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted
by the codecs during encoding.
PyObject *PyUnicode_DecodeLatin1(const char *str, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the
Latin-1 encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsLatin1String(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using Latin-1 and return the
result as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.
PyObject *PyUnicode_DecodeASCII(const char *str, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the
ASCII encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsASCIIString(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using ASCII and return the
result as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

8.3. Sequence Objects 159



The Python/C API, Release 3.13.0

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done
to obtain most of the standard codecs included in the encodings package). The codec uses mappings to encode
and decode characters. The mapping objects provided must support the __getitem__() mapping interface;
dictionaries and sequences work well.
These are the mapping codec APIs:
PyObject *PyUnicode_DecodeCharmap(const char *str, Py_ssize_t length, PyObject *mapping, const char

*errors)
Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the
encoded string str using the given mapping object. Return NULL if an exception was raised by the codec.
If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the
range from 0 to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None.
Unmapped data bytes – ones which cause a LookupError, as well as ones which get mapped to None,
0xFFFE or '\ufffe', are treated as undefined mappings and cause an error.

PyObject *PyUnicode_AsCharmapString(PyObject *unicode, PyObject *mapping)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using the given mapping object
and return the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by
the codec.
The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are
treated as “undefined mapping” and cause an error.

The following codec API is special in that maps Unicode to Unicode.
PyObject *PyUnicode_Translate(PyObject *unicode, PyObject *table, const char *errors)

Return value: New reference. Part of the Stable ABI. Translate a string by applying a character mapping table
to it and return the resulting Unicode object. Return NULL if an exception was raised by the codec.
The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).
Mapping tables need only provide the __getitem__() interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.
errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

MBCS codecs for Windows

These are theMBCS codec APIs. They are currently only available onWindows and use theWin32MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding
is defined by the user settings on the machine running the codec.
PyObject *PyUnicode_DecodeMBCS(const char *str, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI on Windows since version 3.7. Create a Unicode object
by decoding size bytes of the MBCS encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeMBCSStateful(const char *str, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

Return value: New reference. Part of the Stable ABI on Windows since version 3.7. If con-
sumed is NULL, behave like PyUnicode_DecodeMBCS(). If consumed is not NULL, PyUni-
code_DecodeMBCSStateful() will not decode trailing lead byte and the number of bytes that have
been decoded will be stored in consumed.

160 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

PyObject *PyUnicode_AsMBCSString(PyObject *unicode)
Return value: New reference. Part of the Stable ABI on Windows since version 3.7. Encode a Unicode object
using MBCS and return the result as Python bytes object. Error handling is “strict”. Return NULL if an
exception was raised by the codec.

PyObject *PyUnicode_EncodeCodePage(int code_page, PyObject *unicode, const char *errors)
Return value: New reference. Part of the Stable ABI on Windows since version 3.7. Encode the Unicode object
using the specified code page and return a Python bytes object. Return NULL if an exception was raised by the
codec. Use CP_ACP code page to get the MBCS encoder.
Added in version 3.3.

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.
They all return NULL or -1 if an exception occurs.
PyObject *PyUnicode_Concat(PyObject *left, PyObject *right)

Return value: New reference. Part of the Stable ABI. Concat two strings giving a new Unicode string.
PyObject *PyUnicode_Split(PyObject *unicode, PyObject *sep, Py_ssize_t maxsplit)

Return value: New reference. Part of the Stable ABI. Split a string giving a list of Unicode strings. If sep is
NULL, splitting will be done at all whitespace substrings. Otherwise, splits occur at the given separator. At
most maxsplit splits will be done. If negative, no limit is set. Separators are not included in the resulting list.

PyObject *PyUnicode_Splitlines(PyObject *unicode, int keepends)
Return value: New reference. Part of the Stable ABI. Split a Unicode string at line breaks, returning a list of
Unicode strings. CRLF is considered to be one line break. If keepends is 0, the Line break characters are not
included in the resulting strings.

PyObject *PyUnicode_Join(PyObject *separator, PyObject *seq)
Return value: New reference. Part of the Stable ABI. Join a sequence of strings using the given separator and
return the resulting Unicode string.

Py_ssize_t PyUnicode_Tailmatch(PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int
direction)

Part of the Stable ABI. Return 1 if substr matches unicode[start:end] at the given tail end (direction
== -1means to do a prefix match, direction == 1 a suffix match), 0 otherwise. Return -1 if an error occurred.

Py_ssize_t PyUnicode_Find(PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int
direction)

Part of the Stable ABI.Return the first position of substr in unicode[start:end] using the given direction
(direction == 1means to do a forward search, direction == -1 a backward search). The return value is the index
of the first match; a value of -1 indicates that no match was found, and -2 indicates that an error occurred
and an exception has been set.

Py_ssize_t PyUnicode_FindChar(PyObject *unicode, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int
direction)

Part of the Stable ABI since version 3.7. Return the first position of the character ch in uni-
code[start:end] using the given direction (direction == 1means to do a forward search, direction == -1
a backward search). The return value is the index of the first match; a value of -1 indicates that no match was
found, and -2 indicates that an error occurred and an exception has been set.
Added in version 3.3.
Changed in version 3.7: start and end are now adjusted to behave like unicode[start:end].

8.3. Sequence Objects 161



The Python/C API, Release 3.13.0

Py_ssize_t PyUnicode_Count(PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Part of the Stable ABI. Return the number of non-overlapping occurrences of substr in uni-
code[start:end]. Return -1 if an error occurred.

PyObject *PyUnicode_Replace(PyObject *unicode, PyObject *substr, PyObject *replstr, Py_ssize_t
maxcount)

Return value: New reference. Part of the Stable ABI.Replace at mostmaxcount occurrences of substr in unicode
with replstr and return the resulting Unicode object. maxcount == -1 means replace all occurrences.

int PyUnicode_Compare(PyObject *left, PyObject *right)
Part of the Stable ABI. Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respec-
tively.
This function returns -1 upon failure, so one should call PyErr_Occurred() to check for errors.

int PyUnicode_EqualToUTF8AndSize(PyObject *unicode, const char *string, Py_ssize_t size)
Part of the Stable ABI since version 3.13. Compare a Unicode object with a char buffer which is interpreted
as being UTF-8 or ASCII encoded and return true (1) if they are equal, or false (0) otherwise. If the Unicode
object contains surrogate code points (U+D800 - U+DFFF) or the C string is not valid UTF-8, false (0) is
returned.
This function does not raise exceptions.
Added in version 3.13.

int PyUnicode_EqualToUTF8(PyObject *unicode, const char *string)
Part of the Stable ABI since version 3.13. Similar to PyUnicode_EqualToUTF8AndSize(), but com-
pute string length using strlen(). If the Unicode object contains null characters, false (0) is returned.
Added in version 3.13.

int PyUnicode_CompareWithASCIIString(PyObject *unicode, const char *string)
Part of the Stable ABI. Compare a Unicode object, unicode, with string and return -1, 0, 1 for less than,
equal, and greater than, respectively. It is best to pass only ASCII-encoded strings, but the function interprets
the input string as ISO-8859-1 if it contains non-ASCII characters.
This function does not raise exceptions.

PyObject *PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
Return value: New reference. Part of the Stable ABI. Rich compare two Unicode strings and return one of the
following:

• NULL in case an exception was raised
• Py_True or Py_False for successful comparisons
• Py_NotImplemented in case the type combination is unknown

Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_LE.
PyObject *PyUnicode_Format(PyObject *format, PyObject *args)

Return value: New reference. Part of the Stable ABI. Return a new string object from format and args; this is
analogous to format % args.

int PyUnicode_Contains(PyObject *unicode, PyObject *substr)
Part of the Stable ABI. Check whether substr is contained in unicode and return true or false accordingly.
substr has to coerce to a one element Unicode string. -1 is returned if there was an error.

void PyUnicode_InternInPlace(PyObject **p_unicode)
Part of the Stable ABI. Intern the argument *p_unicode in place. The argument must be the address of a
pointer variable pointing to a Python Unicode string object. If there is an existing interned string that is the
same as *p_unicode, it sets *p_unicode to it (releasing the reference to the old string object and creating
a new strong reference to the interned string object), otherwise it leaves *p_unicode alone and interns it.

162 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

(Clarification: even though there is a lot of talk about references, think of this function as reference-neutral.
You must own the object you pass in; after the call you no longer own the passed-in reference, but you newly
own the result.)
This function never raises an exception. On error, it leaves its argument unchanged without interning it.
Instances of subclasses of str may not be interned, that is, PyUnicode_CheckExact(*p_unicode)
must be true. If it is not, then – as with any other error – the argument is left unchanged.
Note that interned strings are not “immortal”. You must keep a reference to the result to benefit from interning.

PyObject *PyUnicode_InternFromString(const char *str)
Return value: New reference. Part of the Stable ABI. A combination of PyUnicode_FromString() and
PyUnicode_InternInPlace(), meant for statically allocated strings.
Return a new (“owned”) reference to either a new Unicode string object that has been interned, or an earlier
interned string object with the same value.
Python may keep a reference to the result, or make it immortal, preventing it from being garbage-collected
promptly. For interning an unbounded number of different strings, such as ones coming from user input,
prefer calling PyUnicode_FromString() and PyUnicode_InternInPlace() directly.
CPython implementation detail: Strings interned this way are made immortal.

8.3.4 Tuple Objects

type PyTupleObject
This subtype of PyObject represents a Python tuple object.

PyTypeObject PyTuple_Type
Part of the Stable ABI. This instance of PyTypeObject represents the Python tuple type; it is the same
object as tuple in the Python layer.

int PyTuple_Check(PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type. This function always succeeds.

int PyTuple_CheckExact(PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type. This function always
succeeds.

PyObject *PyTuple_New(Py_ssize_t len)
Return value: New reference. Part of the Stable ABI. Return a new tuple object of size len, or NULL with an
exception set on failure.

PyObject *PyTuple_Pack(Py_ssize_t n, ...)
Return value: New reference. Part of the Stable ABI. Return a new tuple object of size n, or NULL with an
exception set on failure. The tuple values are initialized to the subsequent n C arguments pointing to Python
objects. PyTuple_Pack(2, a, b) is equivalent to Py_BuildValue("(OO)", a, b).

Py_ssize_t PyTuple_Size(PyObject *p)
Part of the Stable ABI. Take a pointer to a tuple object, and return the size of that tuple. On error, return -1
and with an exception set.

Py_ssize_t PyTuple_GET_SIZE(PyObject *p)
Like PyTuple_Size(), but without error checking.

PyObject *PyTuple_GetItem(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Part of the Stable ABI. Return the object at position pos in the tuple pointed
to by p. If pos is negative or out of bounds, return NULL and set an IndexError exception.
The returned reference is borrowed from the tuple p (that is: it is only valid as long as you hold a ref-
erence to p). To get a strong reference, use Py_NewRef(PyTuple_GetItem(...)) or PySe-
quence_GetItem().

8.3. Sequence Objects 163



The Python/C API, Release 3.13.0

PyObject *PyTuple_GET_ITEM(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple_GetItem(), but does no checking of its arguments.

PyObject *PyTuple_GetSlice(PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Part of the Stable ABI. Return the slice of the tuple pointed to by p between low
and high, or NULL with an exception set on failure.
This is the equivalent of the Python expression p[low:high]. Indexing from the end of the tuple is not
supported.

int PyTuple_SetItem(PyObject *p, Py_ssize_t pos, PyObject *o)
Part of the Stable ABI. Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on
success. If pos is out of bounds, return -1 and set an IndexError exception.

Note

This function “steals” a reference to o and discards a reference to an item already in the tuple at the affected
position.

void PyTuple_SET_ITEM(PyObject *p, Py_ssize_t pos, PyObject *o)
Like PyTuple_SetItem(), but does no error checking, and should only be used to fill in brand new tuples.
Bounds checking is performed as an assertion if Python is built in debug mode or with assertions.

Note

This function “steals” a reference to o, and, unlike PyTuple_SetItem(), does not discard a reference
to any item that is being replaced; any reference in the tuple at position pos will be leaked.

int _PyTuple_Resize(PyObject **p, Py_ssize_t newsize)
Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple
may already be known to some other part of the code. The tuple will always grow or shrink at the end. Think
of this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client
code should never assume that the resulting value of *p will be the same as before calling this function. If the
object referenced by *p is replaced, the original *p is destroyed. On failure, returns -1 and sets *p to NULL,
and raises MemoryError or SystemError.

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple() objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.
PyTypeObject *PyStructSequence_NewType(PyStructSequence_Desc *desc)

Return value: New reference. Part of the Stable ABI. Create a new struct sequence type from the data in desc,
described below. Instances of the resulting type can be created with PyStructSequence_New().
Return NULL with an exception set on failure.

void PyStructSequence_InitType(PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type type from desc in place.

int PyStructSequence_InitType2(PyTypeObject *type, PyStructSequence_Desc *desc)
Like PyStructSequence_InitType(), but returns 0 on success and -1 with an exception set on fail-
ure.
Added in version 3.4.

164 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

type PyStructSequence_Desc
Part of the Stable ABI (including all members). Contains the meta information of a struct sequence type to
create.
const char *name

Name of the struct sequence type.
const char *doc

Pointer to docstring for the type or NULL to omit.
PyStructSequence_Field *fields

Pointer to NULL-terminated array with field names of the new type.
int n_in_sequence

Number of fields visible to the Python side (if used as tuple).
type PyStructSequence_Field

Part of the Stable ABI (including all members). Describes a field of a struct sequence. As a struct sequence is
modeled as a tuple, all fields are typed as PyObject*. The index in the fields array of the PyStruct-
Sequence_Desc determines which field of the struct sequence is described.
const char *name

Name for the field or NULL to end the list of named fields, set to PyStructSe-
quence_UnnamedField to leave unnamed.

const char *doc
Field docstring or NULL to omit.

const char *const PyStructSequence_UnnamedField
Part of the Stable ABI since version 3.11. Special value for a field name to leave it unnamed.
Changed in version 3.9: The type was changed from char *.

PyObject *PyStructSequence_New(PyTypeObject *type)
Return value: New reference. Part of the Stable ABI. Creates an instance of type, which must have been created
with PyStructSequence_NewType().
Return NULL with an exception set on failure.

PyObject *PyStructSequence_GetItem(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Part of the Stable ABI. Return the object at position pos in the struct
sequence pointed to by p.
Bounds checking is performed as an assertion if Python is built in debug mode or with assertions.

PyObject *PyStructSequence_GET_ITEM(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Alias to PyStructSequence_GetItem().
Changed in version 3.13: Now implemented as an alias to PyStructSequence_GetItem().

void PyStructSequence_SetItem(PyObject *p, Py_ssize_t pos, PyObject *o)
Part of the Stable ABI. Sets the field at index pos of the struct sequence p to value o. Like PyTu-
ple_SET_ITEM(), this should only be used to fill in brand new instances.
Bounds checking is performed as an assertion if Python is built in debug mode or with assertions.

Note

This function “steals” a reference to o.

void PyStructSequence_SET_ITEM(PyObject *p, Py_ssize_t *pos, PyObject *o)
Alias to PyStructSequence_SetItem().
Changed in version 3.13: Now implemented as an alias to PyStructSequence_SetItem().

8.3. Sequence Objects 165



The Python/C API, Release 3.13.0

8.3.6 List Objects

type PyListObject
This subtype of PyObject represents a Python list object.

PyTypeObject PyList_Type

Part of the Stable ABI. This instance of PyTypeObject represents the Python list type. This is the same
object as list in the Python layer.

int PyList_Check(PyObject *p)
Return true if p is a list object or an instance of a subtype of the list type. This function always succeeds.

int PyList_CheckExact(PyObject *p)
Return true if p is a list object, but not an instance of a subtype of the list type. This function always succeeds.

PyObject *PyList_New(Py_ssize_t len)
Return value: New reference. Part of the Stable ABI. Return a new list of length len on success, or NULL on
failure.

Note

If len is greater than zero, the returned list object’s items are set to NULL. Thus you cannot use abstract
API functions such as PySequence_SetItem() or expose the object to Python code before setting
all items to a real object with PyList_SetItem() or PyList_SET_ITEM(). The following APIs
are safe APIs before the list is fully initialized: PyList_SetItem() and PyList_SET_ITEM().

Py_ssize_t PyList_Size(PyObject *list)
Part of the Stable ABI. Return the length of the list object in list; this is equivalent to len(list) on a list
object.

Py_ssize_t PyList_GET_SIZE(PyObject *list)
Similar to PyList_Size(), but without error checking.

PyObject *PyList_GetItemRef(PyObject *list, Py_ssize_t index)
Return value: New reference. Part of the Stable ABI since version 3.13. Return the object at position index in
the list pointed to by list. The position must be non-negative; indexing from the end of the list is not supported.
If index is out of bounds (<0 or >=len(list)), return NULL and set an IndexError exception.
Added in version 3.13.

PyObject *PyList_GetItem(PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. Part of the Stable ABI. Like PyList_GetItemRef(), but returns a
borrowed reference instead of a strong reference.

PyObject *PyList_GET_ITEM(PyObject *list, Py_ssize_t i)
Return value: Borrowed reference. Similar to PyList_GetItem(), but without error checking.

int PyList_SetItem(PyObject *list, Py_ssize_t index, PyObject *item)
Part of the Stable ABI. Set the item at index index in list to item. Return 0 on success. If index is out of bounds,
return -1 and set an IndexError exception.

Note

This function “steals” a reference to item and discards a reference to an item already in the list at the affected
position.

166 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

void PyList_SET_ITEM(PyObject *list, Py_ssize_t i, PyObject *o)
Macro form of PyList_SetItem() without error checking. This is normally only used to fill in new lists
where there is no previous content.
Bounds checking is performed as an assertion if Python is built in debug mode or with assertions.

Note

This macro “steals” a reference to item, and, unlike PyList_SetItem(), does not discard a reference
to any item that is being replaced; any reference in list at position i will be leaked.

int PyList_Insert(PyObject *list, Py_ssize_t index, PyObject *item)
Part of the Stable ABI. Insert the item item into list list in front of index index. Return 0 if successful; return
-1 and set an exception if unsuccessful. Analogous to list.insert(index, item).

int PyList_Append(PyObject *list, PyObject *item)
Part of the Stable ABI. Append the object item at the end of list list. Return 0 if successful; return -1 and set
an exception if unsuccessful. Analogous to list.append(item).

PyObject *PyList_GetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Part of the Stable ABI. Return a list of the objects in list containing the objects
between low and high. Return NULL and set an exception if unsuccessful. Analogous to list[low:high].
Indexing from the end of the list is not supported.

int PyList_SetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Part of the Stable ABI. Set the slice of list between low and high to the contents of itemlist. Analogous to
list[low:high] = itemlist. The itemlist may be NULL, indicating the assignment of an empty list
(slice deletion). Return 0 on success, -1 on failure. Indexing from the end of the list is not supported.

int PyList_Extend(PyObject *list, PyObject *iterable)
Extend list with the contents of iterable. This is the same as PyList_SetSlice(list,
PY_SSIZE_T_MAX, PY_SSIZE_T_MAX, iterable) and analogous to list.
extend(iterable) or list += iterable.
Raise an exception and return -1 if list is not a list object. Return 0 on success.
Added in version 3.13.

int PyList_Clear(PyObject *list)
Remove all items from list. This is the same as PyList_SetSlice(list, 0, PY_SSIZE_T_MAX,
NULL) and analogous to list.clear() or del list[:].
Raise an exception and return -1 if list is not a list object. Return 0 on success.
Added in version 3.13.

int PyList_Sort(PyObject *list)
Part of the Stable ABI. Sort the items of list in place. Return 0 on success, -1 on failure. This is equivalent to
list.sort().

int PyList_Reverse(PyObject *list)
Part of the Stable ABI. Reverse the items of list in place. Return 0 on success, -1 on failure. This is the
equivalent of list.reverse().

PyObject *PyList_AsTuple(PyObject *list)
Return value: New reference. Part of the Stable ABI. Return a new tuple object containing the contents of list;
equivalent to tuple(list).

8.3. Sequence Objects 167



The Python/C API, Release 3.13.0

8.4 Container Objects

8.4.1 Dictionary Objects

type PyDictObject
This subtype of PyObject represents a Python dictionary object.

PyTypeObject PyDict_Type

Part of the Stable ABI. This instance of PyTypeObject represents the Python dictionary type. This is the
same object as dict in the Python layer.

int PyDict_Check(PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type. This function always succeeds.

int PyDict_CheckExact(PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type. This function always succeeds.

PyObject *PyDict_New()
Return value: New reference. Part of the Stable ABI. Return a new empty dictionary, or NULL on failure.

PyObject *PyDictProxy_New(PyObject *mapping)
Return value: New reference. Part of the Stable ABI. Return a types.MappingProxyType object for a
mapping which enforces read-only behavior. This is normally used to create a view to prevent modification of
the dictionary for non-dynamic class types.

void PyDict_Clear(PyObject *p)
Part of the Stable ABI. Empty an existing dictionary of all key-value pairs.

int PyDict_Contains(PyObject *p, PyObject *key)
Part of the Stable ABI.Determine if dictionary p contains key. If an item in p is matches key, return1, otherwise
return 0. On error, return -1. This is equivalent to the Python expression key in p.

int PyDict_ContainsString(PyObject *p, const char *key)
This is the same as PyDict_Contains(), but key is specified as a const char* UTF-8 encoded bytes
string, rather than a PyObject*.
Added in version 3.13.

PyObject *PyDict_Copy(PyObject *p)
Return value: New reference. Part of the Stable ABI. Return a new dictionary that contains the same key-value
pairs as p.

int PyDict_SetItem(PyObject *p, PyObject *key, PyObject *val)
Part of the Stable ABI. Insert val into the dictionary p with a key of key. key must be hashable; if it isn’t,
TypeError will be raised. Return 0 on success or -1 on failure. This function does not steal a reference to
val.

int PyDict_SetItemString(PyObject *p, const char *key, PyObject *val)
Part of the Stable ABI. This is the same as PyDict_SetItem(), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

int PyDict_DelItem(PyObject *p, PyObject *key)
Part of the Stable ABI. Remove the entry in dictionary p with key key. key must be hashable; if it isn’t,
TypeError is raised. If key is not in the dictionary, KeyError is raised. Return 0 on success or -1 on
failure.

int PyDict_DelItemString(PyObject *p, const char *key)
Part of the Stable ABI. This is the same as PyDict_DelItem(), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

168 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

int PyDict_GetItemRef(PyObject *p, PyObject *key, PyObject **result)
Part of the Stable ABI since version 3.13. Return a new strong reference to the object from dictionary p which
has a key key:

• If the key is present, set *result to a new strong reference to the value and return 1.
• If the key is missing, set *result to NULL and return 0.
• On error, raise an exception and return -1.

Added in version 3.13.
See also the PyObject_GetItem() function.

PyObject *PyDict_GetItem(PyObject *p, PyObject *key)
Return value: Borrowed reference. Part of the Stable ABI. Return a borrowed reference to the object from
dictionary p which has a key key. Return NULL if the key key is missing without setting an exception.

Note

Exceptions that occur while this calls __hash__() and __eq__()methods are silently ignored. Prefer
the PyDict_GetItemWithError() function instead.

Changed in version 3.10: Calling this API without GIL held had been allowed for historical reason. It is no
longer allowed.

PyObject *PyDict_GetItemWithError(PyObject *p, PyObject *key)
Return value: Borrowed reference. Part of the Stable ABI. Variant of PyDict_GetItem() that does not
suppress exceptions. Return NULL with an exception set if an exception occurred. Return NULL without an
exception set if the key wasn’t present.

PyObject *PyDict_GetItemString(PyObject *p, const char *key)
Return value: Borrowed reference. Part of the Stable ABI. This is the same as PyDict_GetItem(), but
key is specified as a const char* UTF-8 encoded bytes string, rather than a PyObject*.

Note

Exceptions that occur while this calls __hash__() and __eq__() methods or while creating the tem-
porary str object are silently ignored. Prefer using the PyDict_GetItemWithError() function
with your own PyUnicode_FromString() key instead.

int PyDict_GetItemStringRef(PyObject *p, const char *key, PyObject **result)
Part of the Stable ABI since version 3.13. Similar than PyDict_GetItemRef(), but key is specified as a
const char* UTF-8 encoded bytes string, rather than a PyObject*.
Added in version 3.13.

PyObject *PyDict_SetDefault(PyObject *p, PyObject *key, PyObject *defaultobj)
Return value: Borrowed reference. This is the same as the Python-level dict.setdefault(). If present,
it returns the value corresponding to key from the dictionary p. If the key is not in the dict, it is inserted with
value defaultobj and defaultobj is returned. This function evaluates the hash function of key only once, instead
of evaluating it independently for the lookup and the insertion.
Added in version 3.4.

int PyDict_SetDefaultRef(PyObject *p, PyObject *key, PyObject *default_value, PyObject **result)
Inserts default_value into the dictionary p with a key of key if the key is not already present in the dictionary.
If result is not NULL, then *result is set to a strong reference to either default_value, if the key was not present,
or the existing value, if key was already present in the dictionary. Returns 1 if the key was present and de-
fault_value was not inserted, or 0 if the key was not present and default_value was inserted. On failure, returns
-1, sets an exception, and sets *result to NULL.

8.4. Container Objects 169



The Python/C API, Release 3.13.0

For clarity: if you have a strong reference to default_value before calling this function, then after it returns,
you hold a strong reference to both default_value and *result (if it’s not NULL). These may refer to the same
object: in that case you hold two separate references to it.
Added in version 3.13.

int PyDict_Pop(PyObject *p, PyObject *key, PyObject **result)
Remove key from dictionary p and optionally return the removed value. Do not raise KeyError if the key
missing.

• If the key is present, set *result to a new reference to the removed value if result is not NULL, and return
1.

• If the key is missing, set *result to NULL if result is not NULL, and return 0.
• On error, raise an exception and return -1.

This is similar to dict.pop(), but without the default value and not raising KeyError if the key missing.
Added in version 3.13.

int PyDict_PopString(PyObject *p, const char *key, PyObject **result)
Similar to PyDict_Pop(), but key is specified as a const char* UTF-8 encoded bytes string, rather
than a PyObject*.
Added in version 3.13.

PyObject *PyDict_Items(PyObject *p)
Return value: New reference. Part of the Stable ABI. Return a PyListObject containing all the items from
the dictionary.

PyObject *PyDict_Keys(PyObject *p)
Return value: New reference. Part of the Stable ABI. Return a PyListObject containing all the keys from
the dictionary.

PyObject *PyDict_Values(PyObject *p)
Return value: New reference. Part of the Stable ABI. Return a PyListObject containing all the values from
the dictionary p.

Py_ssize_t PyDict_Size(PyObject *p)
Part of the Stable ABI. Return the number of items in the dictionary. This is equivalent to len(p) on a
dictionary.

int PyDict_Next(PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Part of the Stable ABI. Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by
pposmust be initialized to 0 prior to the first call to this function to start the iteration; the function returns true
for each pair in the dictionary, and false once all pairs have been reported. The parameters pkey and pvalue
should either point to PyObject* variables that will be filled in with each key and value, respectively, or may
be NULL. Any references returned through them are borrowed. ppos should not be altered during iteration. Its
value represents offsets within the internal dictionary structure, and since the structure is sparse, the offsets are
not consecutive.
For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */
...

}

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

170 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) {

return -1;
}
PyObject *o = PyLong_FromLong(i + 1);
if (o == NULL)

return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {

Py_DECREF(o);
return -1;

}
Py_DECREF(o);

}

The function is not thread-safe in the free-threaded build without external synchronization. You can use
Py_BEGIN_CRITICAL_SECTION to lock the dictionary while iterating over it:

Py_BEGIN_CRITICAL_SECTION(self->dict);
while (PyDict_Next(self->dict, &pos, &key, &value)) {

...
}
Py_END_CRITICAL_SECTION();

int PyDict_Merge(PyObject *a, PyObject *b, int override)
Part of the Stable ABI. Iterate over mapping object b adding key-value pairs to dictionary a. b may be a
dictionary, or any object supporting PyMapping_Keys() and PyObject_GetItem(). If override is
true, existing pairs in a will be replaced if a matching key is found in b, otherwise pairs will only be added if
there is not a matching key in a. Return 0 on success or -1 if an exception was raised.

int PyDict_Update(PyObject *a, PyObject *b)
Part of the Stable ABI. This is the same as PyDict_Merge(a, b, 1) in C, and is similar to a.
update(b) in Python except that PyDict_Update() doesn’t fall back to the iterating over a sequence
of key value pairs if the second argument has no “keys” attribute. Return 0 on success or -1 if an exception
was raised.

int PyDict_MergeFromSeq2(PyObject *a, PyObject *seq2, int override)
Part of the Stable ABI. Update or merge into dictionary a, from the key-value pairs in seq2. seq2 must be an
iterable object producing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the
last wins if override is true, else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent
Python (except for the return value):

def PyDict_MergeFromSeq2(a, seq2, override):
for key, value in seq2:

if override or key not in a:
a[key] = value

int PyDict_AddWatcher(PyDict_WatchCallback callback)
Register callback as a dictionary watcher. Return a non-negative integer id which must be passed to future calls
to PyDict_Watch(). In case of error (e.g. no more watcher IDs available), return -1 and set an exception.
Added in version 3.12.

int PyDict_ClearWatcher(int watcher_id)
Clear watcher identified by watcher_id previously returned from PyDict_AddWatcher(). Return 0 on
success, -1 on error (e.g. if the given watcher_id was never registered.)
Added in version 3.12.

8.4. Container Objects 171



The Python/C API, Release 3.13.0

int PyDict_Watch(int watcher_id, PyObject *dict)
Mark dictionary dict as watched. The callback granted watcher_id by PyDict_AddWatcher() will be
called when dict is modified or deallocated. Return 0 on success or -1 on error.
Added in version 3.12.

int PyDict_Unwatch(int watcher_id, PyObject *dict)
Mark dictionary dict as no longer watched. The callback granted watcher_id by PyDict_AddWatcher()
will no longer be called when dict is modified or deallocated. The dict must previously have been watched by
this watcher. Return 0 on success or -1 on error.
Added in version 3.12.

type PyDict_WatchEvent
Enumeration of possible dictionary watcher events: PyDict_EVENT_ADDED, Py-
Dict_EVENT_MODIFIED, PyDict_EVENT_DELETED, PyDict_EVENT_CLONED, Py-
Dict_EVENT_CLEARED, or PyDict_EVENT_DEALLOCATED.
Added in version 3.12.

typedef int (*PyDict_WatchCallback)(PyDict_WatchEvent event, PyObject *dict, PyObject *key, PyObject
*new_value)

Type of a dict watcher callback function.
If event is PyDict_EVENT_CLEARED or PyDict_EVENT_DEALLOCATED, both key and new_value
will be NULL. If event is PyDict_EVENT_ADDED or PyDict_EVENT_MODIFIED, new_value will be
the new value for key. If event is PyDict_EVENT_DELETED, key is being deleted from the dictionary and
new_value will be NULL.
PyDict_EVENT_CLONED occurs when dict was previously empty and another dict is merged into it. To
maintain efficiency of this operation, per-key PyDict_EVENT_ADDED events are not issued in this case;
instead a single PyDict_EVENT_CLONED is issued, and key will be the source dictionary.
The callback may inspect but must not modify dict; doing so could have unpredictable effects, including infinite
recursion. Do not trigger Python code execution in the callback, as it could modify the dict as a side effect.
If event is PyDict_EVENT_DEALLOCATED, taking a new reference in the callback to the about-to-be-
destroyed dictionary will resurrect it and prevent it from being freed at this time. When the resurrected object
is destroyed later, any watcher callbacks active at that time will be called again.
Callbacks occur before the notified modification to dict takes place, so the prior state of dict can be inspected.
If the callback sets an exception, it must return -1; this exception will be printed as an unraisable exception
using PyErr_WriteUnraisable(). Otherwise it should return 0.
There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.
Added in version 3.12.

8.4.2 Set Objects

This section details the public API for set and frozenset objects. Any functionality not listed below
is best accessed using either the abstract object protocol (including PyObject_CallMethod(), PyOb-
ject_RichCompareBool(), PyObject_Hash(), PyObject_Repr(), PyObject_IsTrue(),
PyObject_Print(), and PyObject_GetIter()) or the abstract number protocol (including
PyNumber_And(), PyNumber_Subtract(), PyNumber_Or(), PyNumber_Xor(), PyNum-
ber_InPlaceAnd(), PyNumber_InPlaceSubtract(), PyNumber_InPlaceOr(), and PyNum-
ber_InPlaceXor()).

172 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

type PySetObject
This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of
this structure should be considered public and all are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type
Part of the Stable ABI. This is an instance of PyTypeObject representing the Python set type.

PyTypeObject PyFrozenSet_Type

Part of the Stable ABI. This is an instance of PyTypeObject representing the Python frozenset type.
The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.
int PySet_Check(PyObject *p)

Return true if p is a set object or an instance of a subtype. This function always succeeds.
int PyFrozenSet_Check(PyObject *p)

Return true if p is a frozenset object or an instance of a subtype. This function always succeeds.
int PyAnySet_Check(PyObject *p)

Return true if p is a set object, a frozenset object, or an instance of a subtype. This function always
succeeds.

int PySet_CheckExact(PyObject *p)
Return true if p is a set object but not an instance of a subtype. This function always succeeds.
Added in version 3.10.

int PyAnySet_CheckExact(PyObject *p)
Return true if p is a set object or a frozenset object but not an instance of a subtype. This function always
succeeds.

int PyFrozenSet_CheckExact(PyObject *p)
Return true if p is a frozenset object but not an instance of a subtype. This function always succeeds.

PyObject *PySet_New(PyObject *iterable)
Return value: New reference. Part of the Stable ABI. Return a new set containing objects returned by the
iterable. The iterable may be NULL to create a new empty set. Return the new set on success or NULL on
failure. Raise TypeError if iterable is not actually iterable. The constructor is also useful for copying a set
(c=set(s)).

PyObject *PyFrozenSet_New(PyObject *iterable)
Return value: New reference. Part of the Stable ABI. Return a new frozenset containing objects returned
by the iterable. The iterable may be NULL to create a new empty frozenset. Return the new set on success or
NULL on failure. Raise TypeError if iterable is not actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

Py_ssize_t PySet_Size(PyObject *anyset)
Part of the Stable ABI. Return the length of a set or frozenset object. Equivalent to len(anyset).
Raises a SystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE(PyObject *anyset)
Macro form of PySet_Size() without error checking.

int PySet_Contains(PyObject *anyset, PyObject *key)
Part of the Stable ABI. Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Python
__contains__() method, this function does not automatically convert unhashable sets into temporary

8.4. Container Objects 173



The Python/C API, Release 3.13.0

frozensets. Raise a TypeError if the key is unhashable. Raise SystemError if anyset is not a set,
frozenset, or an instance of a subtype.

int PySet_Add(PyObject *set, PyObject *key)
Part of the Stable ABI. Add key to a set instance. Also works with frozenset instances (like PyTu-
ple_SetItem() it can be used to fill in the values of brand new frozensets before they are exposed to
other code). Return 0 on success or -1 on failure. Raise a TypeError if the key is unhashable. Raise a
MemoryError if there is no room to grow. Raise a SystemError if set is not an instance of set or its
subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or
its subtypes.
int PySet_Discard(PyObject *set, PyObject *key)

Part of the Stable ABI. Return 1 if found and removed, 0 if not found (no action taken), and -1 if an error
is encountered. Does not raise KeyError for missing keys. Raise a TypeError if the key is unhashable.
Unlike the Python discard() method, this function does not automatically convert unhashable sets into
temporary frozensets. Raise SystemError if set is not an instance of set or its subtype.

PyObject *PySet_Pop(PyObject *set)
Return value: New reference. Part of the Stable ABI. Return a new reference to an arbitrary object in the set,
and removes the object from the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a
SystemError if set is not an instance of set or its subtype.

int PySet_Clear(PyObject *set)
Part of the Stable ABI. Empty an existing set of all elements. Return 0 on success. Return -1 and raise
SystemError if set is not an instance of set or its subtype.

8.5 Function Objects

8.5.1 Function Objects

There are a few functions specific to Python functions.
type PyFunctionObject

The C structure used for functions.
PyTypeObject PyFunction_Type

This is an instance of PyTypeObject and represents the Python function type. It is exposed to Python
programmers as types.FunctionType.

int PyFunction_Check(PyObject *o)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL. This
function always succeeds.

PyObject *PyFunction_New(PyObject *code, PyObject *globals)
Return value: New reference. Return a new function object associated with the code object code. globals must
be a dictionary with the global variables accessible to the function.
The function’s docstring and name are retrieved from the code object. __module__ is retrieved from globals.
The argument defaults, annotations and closure are set to NULL. __qualname__ is set to the same value as
the code object’s co_qualname field.

PyObject *PyFunction_NewWithQualName(PyObject *code, PyObject *globals, PyObject *qualname)
Return value: New reference. As PyFunction_New(), but also allows setting the function object’s
__qualname__ attribute. qualname should be a unicode object or NULL; if NULL, the __qualname__
attribute is set to the same value as the code object’s co_qualname field.
Added in version 3.3.

174 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

PyObject *PyFunction_GetCode(PyObject *op)
Return value: Borrowed reference. Return the code object associated with the function object op.

PyObject *PyFunction_GetGlobals(PyObject *op)
Return value: Borrowed reference. Return the globals dictionary associated with the function object op.

PyObject *PyFunction_GetModule(PyObject *op)
Return value: Borrowed reference. Return a borrowed reference to the __module__ attribute of the function
object op. It can be NULL.
This is normally a string containing the module name, but can be set to any other object by Python code.

PyObject *PyFunction_GetDefaults(PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be a
tuple of arguments or NULL.

int PyFunction_SetDefaults(PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.
Raises SystemError and returns -1 on failure.

void PyFunction_SetVectorcall(PyFunctionObject *func, vectorcallfunc vectorcall)
Set the vectorcall field of a given function object func.
Warning: extensions using this API must preserve the behavior of the unaltered (default) vectorcall function!
Added in version 3.12.

PyObject *PyFunction_GetClosure(PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This can be NULL
or a tuple of cell objects.

int PyFunction_SetClosure(PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.
Raises SystemError and returns -1 on failure.

PyObject *PyFunction_GetAnnotations(PyObject *op)
Return value: Borrowed reference. Return the annotations of the function object op. This can be a mutable
dictionary or NULL.

int PyFunction_SetAnnotations(PyObject *op, PyObject *annotations)
Set the annotations for the function object op. annotations must be a dictionary or Py_None.
Raises SystemError and returns -1 on failure.

int PyFunction_AddWatcher(PyFunction_WatchCallback callback)
Register callback as a function watcher for the current interpreter. Return an ID which may be passed to
PyFunction_ClearWatcher(). In case of error (e.g. no more watcher IDs available), return -1 and
set an exception.
Added in version 3.12.

int PyFunction_ClearWatcher(int watcher_id)
Clear watcher identified by watcher_id previously returned from PyFunction_AddWatcher() for the
current interpreter. Return 0 on success, or -1 and set an exception on error (e.g. if the given watcher_id was
never registered.)
Added in version 3.12.

type PyFunction_WatchEvent
Enumeration of possible function watcher events: - PyFunction_EVENT_CREATE - Py-
Function_EVENT_DESTROY - PyFunction_EVENT_MODIFY_CODE - PyFunc-
tion_EVENT_MODIFY_DEFAULTS - PyFunction_EVENT_MODIFY_KWDEFAULTS
Added in version 3.12.

8.5. Function Objects 175



The Python/C API, Release 3.13.0

typedef int (*PyFunction_WatchCallback)(PyFunction_WatchEvent event, PyFunctionObject *func,
PyObject *new_value)

Type of a function watcher callback function.
If event is PyFunction_EVENT_CREATE or PyFunction_EVENT_DESTROY then new_value will be
NULL. Otherwise, new_value will hold a borrowed reference to the new value that is about to be stored in func
for the attribute that is being modified.
The callbackmay inspect but must not modify func; doing so could have unpredictable effects, including infinite
recursion.
If event is PyFunction_EVENT_CREATE, then the callback is invoked after func has been fully initialized.
Otherwise, the callback is invoked before the modification to func takes place, so the prior state of func can be
inspected. The runtime is permitted to optimize away the creation of function objects when possible. In such
cases no event will be emitted. Although this creates the possibility of an observable difference of runtime
behavior depending on optimization decisions, it does not change the semantics of the Python code being
executed.
If event isPyFunction_EVENT_DESTROY, Taking a reference in the callback to the about-to-be-destroyed
function will resurrect it, preventing it from being freed at this time. When the resurrected object is destroyed
later, any watcher callbacks active at that time will be called again.
If the callback sets an exception, it must return -1; this exception will be printed as an unraisable exception
using PyErr_WriteUnraisable(). Otherwise it should return 0.
There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.
Added in version 3.12.

8.5.2 Instance Method Objects

An instance method is a wrapper for a PyCFunction and the new way to bind a PyCFunction to a class object.
It replaces the former call PyMethod_New(func, NULL, class).
PyTypeObject PyInstanceMethod_Type

This instance of PyTypeObject represents the Python instance method type. It is not exposed to Python
programs.

int PyInstanceMethod_Check(PyObject *o)
Return true if o is an instance method object (has type PyInstanceMethod_Type). The parameter must
not be NULL. This function always succeeds.

PyObject *PyInstanceMethod_New(PyObject *func)
Return value: New reference. Return a new instance method object, with func being any callable object. func
is the function that will be called when the instance method is called.

PyObject *PyInstanceMethod_Function(PyObject *im)
Return value: Borrowed reference. Return the function object associated with the instance method im.

PyObject *PyInstanceMethod_GET_FUNCTION(PyObject *im)
Return value: Borrowed reference. Macro version of PyInstanceMethod_Function() which avoids
error checking.

176 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

8.5.3 Method Objects

Methods are bound function objects. Methods are always bound to an instance of a user-defined class. Unbound
methods (methods bound to a class object) are no longer available.
PyTypeObject PyMethod_Type

This instance of PyTypeObject represents the Python method type. This is exposed to Python programs
as types.MethodType.

int PyMethod_Check(PyObject *o)
Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL. This
function always succeeds.

PyObject *PyMethod_New(PyObject *func, PyObject *self)
Return value: New reference. Return a new method object, with func being any callable object and self the
instance the method should be bound. func is the function that will be called when the method is called. self
must not be NULL.

PyObject *PyMethod_Function(PyObject *meth)
Return value: Borrowed reference. Return the function object associated with the method meth.

PyObject *PyMethod_GET_FUNCTION(PyObject *meth)
Return value: Borrowed reference. Macro version ofPyMethod_Function()which avoids error checking.

PyObject *PyMethod_Self(PyObject *meth)
Return value: Borrowed reference. Return the instance associated with the method meth.

PyObject *PyMethod_GET_SELF(PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Self() which avoids error checking.

8.5.4 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the
cells from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used
instead of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code;
these are not automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.
type PyCellObject

The C structure used for cell objects.
PyTypeObject PyCell_Type

The type object corresponding to cell objects.
int PyCell_Check(PyObject *ob)

Return true if ob is a cell object; ob must not be NULL. This function always succeeds.
PyObject *PyCell_New(PyObject *ob)

Return value: New reference. Create and return a new cell object containing the value ob. The parameter may
be NULL.

PyObject *PyCell_Get(PyObject *cell)
Return value: New reference. Return the contents of the cell cell, which can be NULL. If cell is not a cell object,
returns NULL with an exception set.

PyObject *PyCell_GET(PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-
NULL and a cell object.

8.5. Function Objects 177



The Python/C API, Release 3.13.0

int PyCell_Set(PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell.
value may be NULL. cell must be non-NULL.
On success, return 0. If cell is not a cell object, set an exception and return -1.

void PyCell_SET(PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for
safety; cell must be non-NULL and must be a cell object.

8.5.5 Code Objects

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable code
that hasn’t yet been bound into a function.
type PyCodeObject

The C structure of the objects used to describe code objects. The fields of this type are subject to change at
any time.

PyTypeObject PyCode_Type
This is an instance of PyTypeObject representing the Python code object.

int PyCode_Check(PyObject *co)
Return true if co is a code object. This function always succeeds.

Py_ssize_t PyCode_GetNumFree(PyCodeObject *co)
Return the number of free variables in a code object.

int PyUnstable_Code_GetFirstFree(PyCodeObject *co)

This is Unstable API. It may change without warning in minor releases.

Return the position of the first free variable in a code object.
Changed in version 3.13: Renamed from PyCode_GetFirstFree as part of Unstable C API. The old
name is deprecated, but will remain available until the signature changes again.

PyCodeObject *PyUnstable_Code_New(int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject *names, PyObject
*varnames, PyObject *freevars, PyObject *cellvars, PyObject
*filename, PyObject *name, PyObject *qualname, int firstlineno,
PyObject *linetable, PyObject *exceptiontable)

This is Unstable API. It may change without warning in minor releases.

Return a new code object. If you need a dummy code object to create a frame, use PyCode_NewEmpty()
instead.
Since the definition of the bytecode changes often, calling PyUnstable_Code_New() directly can bind
you to a precise Python version.
The many arguments of this function are inter-dependent in complex ways, meaning that subtle changes to
values are likely to result in incorrect execution or VM crashes. Use this function only with extreme care.
Changed in version 3.11: Added qualname and exceptiontable parameters.

178 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

Changed in version 3.12: Renamed fromPyCode_New as part ofUnstable CAPI. The old name is deprecated,
but will remain available until the signature changes again.

PyCodeObject *PyUnstable_Code_NewWithPosOnlyArgs(int argcount, int posonlyargcount, int
kwonlyargcount, int nlocals, int stacksize, int
flags, PyObject *code, PyObject *consts,
PyObject *names, PyObject *varnames,
PyObject *freevars, PyObject *cellvars,
PyObject *filename, PyObject *name,
PyObject *qualname, int firstlineno, PyObject
*linetable, PyObject *exceptiontable)

This is Unstable API. It may change without warning in minor releases.

Similar to PyUnstable_Code_New(), but with an extra “posonlyargcount” for positional-only arguments.
The same caveats that apply to PyUnstable_Code_New also apply to this function.
Added in version 3.8: as PyCode_NewWithPosOnlyArgs
Changed in version 3.11: Added qualname and exceptiontable parameters.
Changed in version 3.12: Renamed to PyUnstable_Code_NewWithPosOnlyArgs. The old name is
deprecated, but will remain available until the signature changes again.

PyCodeObject *PyCode_NewEmpty(const char *filename, const char *funcname, int firstlineno)
Return value: New reference. Return a new empty code object with the specified filename, function name, and
first line number. The resulting code object will raise an Exception if executed.

int PyCode_Addr2Line(PyCodeObject *co, int byte_offset)
Return the line number of the instruction that occurs on or before byte_offset and ends after it. If you
just need the line number of a frame, use PyFrame_GetLineNumber() instead.
For efficiently iterating over the line numbers in a code object, use the API described in PEP 626.

int PyCode_Addr2Location(PyObject *co, int byte_offset, int *start_line, int *start_column, int *end_line,
int *end_column)

Sets the passed int pointers to the source code line and column numbers for the instruction at
byte_offset. Sets the value to 0 when information is not available for any particular element.
Returns 1 if the function succeeds and 0 otherwise.
Added in version 3.11.

PyObject *PyCode_GetCode(PyCodeObject *co)
Equivalent to the Python code getattr(co, 'co_code'). Returns a strong reference to a PyByte-
sObject representing the bytecode in a code object. On error, NULL is returned and an exception is raised.
This PyBytesObject may be created on-demand by the interpreter and does not necessarily represent the
bytecode actually executed by CPython. The primary use case for this function is debuggers and profilers.
Added in version 3.11.

PyObject *PyCode_GetVarnames(PyCodeObject *co)
Equivalent to the Python code getattr(co, 'co_varnames'). Returns a new reference to a PyTu-
pleObject containing the names of the local variables. On error, NULL is returned and an exception is
raised.
Added in version 3.11.

8.5. Function Objects 179

https://peps.python.org/pep-0626/#out-of-process-debuggers-and-profilers


The Python/C API, Release 3.13.0

PyObject *PyCode_GetCellvars(PyCodeObject *co)
Equivalent to the Python code getattr(co, 'co_cellvars'). Returns a new reference to a PyTu-
pleObject containing the names of the local variables that are referenced by nested functions. On error,
NULL is returned and an exception is raised.
Added in version 3.11.

PyObject *PyCode_GetFreevars(PyCodeObject *co)
Equivalent to the Python code getattr(co, 'co_freevars'). Returns a new reference to a Py-
TupleObject containing the names of the free variables. On error, NULL is returned and an exception is
raised.
Added in version 3.11.

int PyCode_AddWatcher(PyCode_WatchCallback callback)
Register callback as a code object watcher for the current interpreter. Return an ID which may be passed to
PyCode_ClearWatcher(). In case of error (e.g. no more watcher IDs available), return -1 and set an
exception.
Added in version 3.12.

int PyCode_ClearWatcher(int watcher_id)
Clear watcher identified by watcher_id previously returned from PyCode_AddWatcher() for the current
interpreter. Return 0 on success, or -1 and set an exception on error (e.g. if the given watcher_id was never
registered.)
Added in version 3.12.

type PyCodeEvent
Enumeration of possible code object watcher events: - PY_CODE_EVENT_CREATE -
PY_CODE_EVENT_DESTROY

Added in version 3.12.
typedef int (*PyCode_WatchCallback)(PyCodeEvent event, PyCodeObject *co)

Type of a code object watcher callback function.
If event is PY_CODE_EVENT_CREATE, then the callback is invoked after co has been fully initialized. Oth-
erwise, the callback is invoked before the destruction of co takes place, so the prior state of co can be inspected.
If event isPY_CODE_EVENT_DESTROY, taking a reference in the callback to the about-to-be-destroyed code
object will resurrect it and prevent it from being freed at this time. When the resurrected object is destroyed
later, any watcher callbacks active at that time will be called again.
Users of this API should not rely on internal runtime implementation details. Such details may include, but
are not limited to, the exact order and timing of creation and destruction of code objects. While changes in
these details may result in differences observable by watchers (including whether a callback is invoked or not),
it does not change the semantics of the Python code being executed.
If the callback sets an exception, it must return -1; this exception will be printed as an unraisable exception
using PyErr_WriteUnraisable(). Otherwise it should return 0.
There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.
Added in version 3.12.

180 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

8.5.6 Extra information

To support low-level extensions to frame evaluation, such as external just-in-time compilers, it is possible to attach
arbitrary extra data to code objects.
These functions are part of the unstable C API tier: this functionality is a CPython implementation detail, and the
API may change without deprecation warnings.
Py_ssize_t PyUnstable_Eval_RequestCodeExtraIndex(freefunc free)

This is Unstable API. It may change without warning in minor releases.

Return a new an opaque index value used to adding data to code objects.
You generally call this function once (per interpreter) and use the result with PyCode_GetExtra and Py-
Code_SetExtra to manipulate data on individual code objects.
If free is not NULL: when a code object is deallocated, free will be called on non-NULL data stored under the
new index. Use Py_DecRef() when storing PyObject.
Added in version 3.6: as _PyEval_RequestCodeExtraIndex
Changed in version 3.12: Renamed to PyUnstable_Eval_RequestCodeExtraIndex. The old pri-
vate name is deprecated, but will be available until the API changes.

int PyUnstable_Code_GetExtra(PyObject *code, Py_ssize_t index, void **extra)

This is Unstable API. It may change without warning in minor releases.

Set extra to the extra data stored under the given index. Return 0 on success. Set an exception and return -1
on failure.
If no data was set under the index, set extra to NULL and return 0 without setting an exception.
Added in version 3.6: as _PyCode_GetExtra
Changed in version 3.12: Renamed to PyUnstable_Code_GetExtra. The old private name is depre-
cated, but will be available until the API changes.

int PyUnstable_Code_SetExtra(PyObject *code, Py_ssize_t index, void *extra)

This is Unstable API. It may change without warning in minor releases.

Set the extra data stored under the given index to extra. Return 0 on success. Set an exception and return -1
on failure.
Added in version 3.6: as _PyCode_SetExtra
Changed in version 3.12: Renamed to PyUnstable_Code_SetExtra. The old private name is depre-
cated, but will be available until the API changes.

8.5. Function Objects 181



The Python/C API, Release 3.13.0

8.6 Other Objects

8.6.1 File Objects

These APIs are a minimal emulation of the Python 2 C API for built-in file objects, which used to rely on the
buffered I/O (FILE*) support from the C standard library. In Python 3, files and streams use the new io module,
which defines several layers over the low-level unbuffered I/O of the operating system. The functions described below
are convenience C wrappers over these new APIs, and meant mostly for internal error reporting in the interpreter;
third-party code is advised to access the io APIs instead.
PyObject *PyFile_FromFd(int fd, const char *name, const char *mode, int buffering, const char *encoding,

const char *errors, const char *newline, int closefd)
Return value: New reference. Part of the Stable ABI. Create a Python file object from the file descriptor of an
already opened file fd. The arguments name, encoding, errors and newline can be NULL to use the defaults;
buffering can be -1 to use the default. name is ignored and kept for backward compatibility. Return NULL
on failure. For a more comprehensive description of the arguments, please refer to the io.open() function
documentation.

Warning

Since Python streams have their own buffering layer, mixing themwithOS-level file descriptors can produce
various issues (such as unexpected ordering of data).

Changed in version 3.2: Ignore name attribute.
int PyObject_AsFileDescriptor(PyObject *p)

Part of the Stable ABI. Return the file descriptor associated with p as an int. If the object is an integer,
its value is returned. If not, the object’s fileno() method is called if it exists; the method must return an
integer, which is returned as the file descriptor value. Sets an exception and returns -1 on failure.

PyObject *PyFile_GetLine(PyObject *p, int n)
Return value: New reference. Part of the Stable ABI. Equivalent to p.readline([n]), this function reads
one line from the object p. pmay be a file object or any object with a readline()method. If n is 0, exactly
one line is read, regardless of the length of the line. If n is greater than 0, no more than n bytes will be read
from the file; a partial line can be returned. In both cases, an empty string is returned if the end of the file
is reached immediately. If n is less than 0, however, one line is read regardless of length, but EOFError is
raised if the end of the file is reached immediately.

int PyFile_SetOpenCodeHook(Py_OpenCodeHookFunction handler)
Overrides the normal behavior of io.open_code() to pass its parameter through the provided handler.
The handler is a function of type:
typedef PyObject *(*Py_OpenCodeHookFunction)(PyObject*, void*)

Equivalent of PyObject *(*)(PyObject *path, void *userData), where path is guar-
anteed to be PyUnicodeObject.

The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.
As this hook is intentionally used during import, avoid importing new modules during its execution unless they
are known to be frozen or available in sys.modules.
Once a hook has been set, it cannot be removed or replaced, and later calls to Py-
File_SetOpenCodeHook() will fail. On failure, the function returns -1 and sets an exception if
the interpreter has been initialized.
This function is safe to call before Py_Initialize().
Raises an auditing event setopencodehook with no arguments.

182 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

Added in version 3.8.
int PyFile_WriteObject(PyObject *obj, PyObject *p, int flags)

Part of the Stable ABI.Write object obj to file object p. The only supported flag for flags is Py_PRINT_RAW ;
if given, the str() of the object is written instead of the repr(). Return 0 on success or -1 on failure; the
appropriate exception will be set.

int PyFile_WriteString(const char *s, PyObject *p)
Part of the Stable ABI. Write string s to file object p. Return 0 on success or -1 on failure; the appropriate
exception will be set.

8.6.2 Module Objects

PyTypeObject PyModule_Type

Part of the Stable ABI. This instance of PyTypeObject represents the Python module type. This is exposed
to Python programs as types.ModuleType.

int PyModule_Check(PyObject *p)
Return true if p is a module object, or a subtype of a module object. This function always succeeds.

int PyModule_CheckExact(PyObject *p)
Return true if p is a module object, but not a subtype of PyModule_Type. This function always succeeds.

PyObject *PyModule_NewObject(PyObject *name)
Return value: New reference. Part of the Stable ABI since version 3.7. Return a new module object
with the __name__ attribute set to name. The module’s __name__, __doc__, __package__, and
__loader__ attributes are filled in (all but __name__ are set to None); the caller is responsible for pro-
viding a __file__ attribute.
Return NULL with an exception set on error.
Added in version 3.3.
Changed in version 3.4: __package__ and __loader__ are set to None.

PyObject *PyModule_New(const char *name)
Return value: New reference. Part of the Stable ABI. Similar to PyModule_NewObject(), but the name
is a UTF-8 encoded string instead of a Unicode object.

PyObject *PyModule_GetDict(PyObject *module)
Return value: Borrowed reference. Part of the Stable ABI. Return the dictionary object that implements mod-
ule’s namespace; this object is the same as the __dict__ attribute of the module object. If module is not a
module object (or a subtype of a module object), SystemError is raised and NULL is returned.
It is recommended extensions use other PyModule_* and PyObject_* functions rather than directly ma-
nipulate a module’s __dict__.

PyObject *PyModule_GetNameObject(PyObject *module)
Return value: New reference. Part of the Stable ABI since version 3.7. Return module’s __name__ value. If
the module does not provide one, or if it is not a string, SystemError is raised and NULL is returned.
Added in version 3.3.

const char *PyModule_GetName(PyObject *module)
Part of the Stable ABI. Similar to PyModule_GetNameObject() but return the name encoded to
'utf-8'.

void *PyModule_GetState(PyObject *module)
Part of the Stable ABI. Return the “state” of the module, that is, a pointer to the block of memory allocated at
module creation time, or NULL. See PyModuleDef.m_size.

8.6. Other Objects 183



The Python/C API, Release 3.13.0

PyModuleDef *PyModule_GetDef(PyObject *module)
Part of the Stable ABI. Return a pointer to the PyModuleDef struct from which the module was created, or
NULL if the module wasn’t created from a definition.

PyObject *PyModule_GetFilenameObject(PyObject *module)
Return value: New reference. Part of the Stable ABI.Return the name of the file from whichmodulewas loaded
usingmodule’s __file__ attribute. If this is not defined, or if it is not a unicode string, raise SystemError
and return NULL; otherwise return a reference to a Unicode object.
Added in version 3.2.

const char *PyModule_GetFilename(PyObject *module)
Part of the Stable ABI. Similar to PyModule_GetFilenameObject() but return the filename encoded
to ‘utf-8’.
Deprecated since version 3.2: PyModule_GetFilename() raises UnicodeEncodeError on unen-
codable filenames, use PyModule_GetFilenameObject() instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function),
or compiled-in modules (where the initialization function is added using PyImport_AppendInittab()). See
building or extending-with-embedding for details.
The initialization function can either pass a module definition instance to PyModule_Create(), and return the
resulting module object, or request “multi-phase initialization” by returning the definition struct itself.
type PyModuleDef

Part of the Stable ABI (including all members). The module definition struct, which holds all information
needed to create a module object. There is usually only one statically initialized variable of this type for each
module.
PyModuleDef_Base m_base

Always initialize this member to PyModuleDef_HEAD_INIT.
const char *m_name

Name for the new module.
const char *m_doc

Docstring for the module; usually a docstring variable created with PyDoc_STRVAR is used.
Py_ssize_t m_size

Module state may be kept in a per-module memory area that can be retrieved with PyMod-
ule_GetState(), rather than in static globals. This makes modules safe for use in multiple sub-
interpreters.
This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_free function has been called, if present.
Setting m_size to -1 means that the module does not support sub-interpreters, because it has global
state.
Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m_size is required for multi-phase initializa-
tion.
See PEP 3121 for more details.

PyMethodDef *m_methods
A pointer to a table of module-level functions, described by PyMethodDef values. Can be NULL if no
functions are present.

184 Chapter 8. Concrete Objects Layer

https://peps.python.org/pep-3121/


The Python/C API, Release 3.13.0

PyModuleDef_Slot *m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When
using single-phase initialization, m_slots must be NULL.
Changed in version 3.5: Prior to version 3.5, this member was always set to NULL, and was defined as:

inquiry m_reload

traverseproc m_traverse

A traversal function to call during GC traversal of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).
More precisely, this function is not called if m_size is greater than 0 and the module state (as returned
by PyModule_GetState()) is NULL.
Changed in version 3.9: No longer called before the module state is allocated.

inquiry m_clear
A clear function to call during GC clearing of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).
More precisely, this function is not called if m_size is greater than 0 and the module state (as returned
by PyModule_GetState()) is NULL.
Like PyTypeObject.tp_clear, this function is not always called before a module is deallocated.
For example, when reference counting is enough to determine that an object is no longer used, the cyclic
garbage collector is not involved and m_free is called directly.
Changed in version 3.9: No longer called before the module state is allocated.

freefunc m_free
A function to call during deallocation of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).
More precisely, this function is not called if m_size is greater than 0 and the module state (as returned
by PyModule_GetState()) is NULL.
Changed in version 3.9: No longer called before the module state is allocated.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as “single-
phase initialization”, and uses one of the following two module creation functions:
PyObject *PyModule_Create(PyModuleDef *def)

Return value: New reference. Create a new module object, given the definition in def. This behaves like
PyModule_Create2() with module_api_version set to PYTHON_API_VERSION.

PyObject *PyModule_Create2(PyModuleDef *def, int module_api_version)
Return value: New reference. Part of the Stable ABI. Create a new module object, given the definition in
def, assuming the API version module_api_version. If that version does not match the version of the running
interpreter, a RuntimeWarning is emitted.
Return NULL with an exception set on error.

Note

Most uses of this function should be using PyModule_Create() instead; only use this if you are sure
you need it.

8.6. Other Objects 185



The Python/C API, Release 3.13.0

Before it is returned from in the initialization function, the resulting module object is typically populated using func-
tions like PyModule_AddObjectRef().

Multi-phase initialization

An alternate way to specify extensions is to request “multi-phase initialization”. Extension modules created this way
behave more like Python modules: the initialization is split between the creation phase, when the module object is cre-
ated, and the execution phase, when it is populated. The distinction is similar to the __new__() and __init__()
methods of classes.
Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry
is removed and the module is re-imported, a new module object is created, and the old module is subject to normal
garbage collection – as with Python modules. By default, multiple modules created from the same definition should
be independent: changes to one should not affect the others. This means that all state should be specific to the module
object (using e.g. using PyModule_GetState()), or its contents (such as the module’s __dict__ or individual
classes created with PyType_FromSpec()).
All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple
modules are independent is typically enough to achieve this.
To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDef in-
stance with non-empty m_slots. Before it is returned, the PyModuleDef instance must be initialized with the
following function:
PyObject *PyModuleDef_Init(PyModuleDef *def)

Return value: Borrowed reference. Part of the Stable ABI since version 3.5. Ensures a module definition is a
properly initialized Python object that correctly reports its type and reference count.
Returns def cast to PyObject*, or NULL if an error occurred.
Added in version 3.5.

The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:
type PyModuleDef_Slot

int slot
A slot ID, chosen from the available values explained below.

void *value
Value of the slot, whose meaning depends on the slot ID.

Added in version 3.5.
The m_slots array must be terminated by a slot with id 0.
The available slot types are:
Py_mod_create

Specifies a function that is called to create the module object itself. The value pointer of this slot must point
to a function of the signature:
PyObject *create_module(PyObject *spec, PyModuleDef *def)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should
return a new module object, or set an error and return NULL.
This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.
Multiple Py_mod_create slots may not be specified in one module definition.
If Py_mod_create is not specified, the import machinery will create a normal module object using Py-
Module_New(). The name is taken from spec, not the definition, to allow extension modules to dynamically

186 Chapter 8. Concrete Objects Layer

https://peps.python.org/pep-0451/


The Python/C API, Release 3.13.0

adjust to their place in the module hierarchy and be imported under different names through symlinks, all while
sharing a single module definition.
There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be
used, as long as it supports setting and getting import-related attributes. However, only PyModule_Type
instances may be returned if the PyModuleDef has non-NULL m_traverse, m_clear, m_free; non-
zero m_size; or slots other than Py_mod_create.

Py_mod_exec

Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python
module: typically, this function adds classes and constants to the module. The signature of the function is:
int exec_module(PyObject *module)

If multiple Py_mod_exec slots are specified, they are processed in the order they appear in them_slots array.
Py_mod_multiple_interpreters

Specifies one of the following values:
Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED

The module does not support being imported in subinterpreters.
Py_MOD_MULTIPLE_INTERPRETERS_SUPPORTED

The module supports being imported in subinterpreters, but only when they share the main interpreter’s
GIL. (See isolating-extensions-howto.)

Py_MOD_PER_INTERPRETER_GIL_SUPPORTED

The module supports being imported in subinterpreters, even when they have their own GIL. (See
isolating-extensions-howto.)

This slot determines whether or not importing this module in a subinterpreter will fail.
Multiple Py_mod_multiple_interpreters slots may not be specified in one module definition.
If Py_mod_multiple_interpreters is not specified, the import machinery defaults to
Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED.
Added in version 3.12.

Py_mod_gil

Specifies one of the following values:
Py_MOD_GIL_USED

The module depends on the presence of the global interpreter lock (GIL), and may access global state
without synchronization.

Py_MOD_GIL_NOT_USED

The module is safe to run without an active GIL.
This slot is ignored by Python builds not configured with--disable-gil. Otherwise, it determines whether
or not importing this module will cause the GIL to be automatically enabled. See whatsnew313-free-threaded-
cpython for more detail.
Multiple Py_mod_gil slots may not be specified in one module definition.
If Py_mod_gil is not specified, the import machinery defaults to Py_MOD_GIL_USED.
Added in version 3.13.

See PEP 489 for more details on multi-phase initialization.

8.6. Other Objects 187

https://peps.python.org/pep-0489/


The Python/C API, Release 3.13.0

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used directly,
for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and Py-
Module_ExecDef must be called to fully initialize a module.
PyObject *PyModule_FromDefAndSpec(PyModuleDef *def, PyObject *spec)

Return value: New reference. Create a new module object, given the definition in def and the Mod-
uleSpec spec. This behaves like PyModule_FromDefAndSpec2() with module_api_version set to
PYTHON_API_VERSION.
Added in version 3.5.

PyObject *PyModule_FromDefAndSpec2(PyModuleDef *def, PyObject *spec, int module_api_version)
Return value: New reference. Part of the Stable ABI since version 3.7. Create a new module object, given the
definition in def and the ModuleSpec spec, assuming the API version module_api_version. If that version does
not match the version of the running interpreter, a RuntimeWarning is emitted.
Return NULL with an exception set on error.

Note

Most uses of this function should be using PyModule_FromDefAndSpec() instead; only use this if
you are sure you need it.

Added in version 3.5.
int PyModule_ExecDef(PyObject *module, PyModuleDef *def)

Part of the Stable ABI since version 3.7. Process any execution slots (Py_mod_exec) given in def.
Added in version 3.5.

int PyModule_SetDocString(PyObject *module, const char *docstring)
Part of the Stable ABI since version 3.7. Set the docstring for module to docstring. This function is called
automatically when creating a module from PyModuleDef, using either PyModule_Create or PyMod-
ule_FromDefAndSpec.
Added in version 3.5.

int PyModule_AddFunctions(PyObject *module, PyMethodDef *functions)
Part of the Stable ABI since version 3.7. Add the functions from the NULL terminated functions array to
module. Refer to the PyMethodDef documentation for details on individual entries (due to the lack of a
shared module namespace, module level “functions” implemented in C typically receive the module as their
first parameter, making them similar to instance methods on Python classes). This function is called auto-
matically when creating a module from PyModuleDef, using either PyModule_Create or PyMod-
ule_FromDefAndSpec.
Added in version 3.5.

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution
slot (if using multi-phase initialization), can use the following functions to help initialize the module state:
int PyModule_AddObjectRef(PyObject *module, const char *name, PyObject *value)

Part of the Stable ABI since version 3.10. Add an object to module as name. This is a convenience function
which can be used from the module’s initialization function.
On success, return 0. On error, raise an exception and return -1.
Return -1 if value is NULL. It must be called with an exception raised in this case.

188 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

Example usage:

static int
add_spam(PyObject *module, int value)
{

PyObject *obj = PyLong_FromLong(value);
if (obj == NULL) {

return -1;
}
int res = PyModule_AddObjectRef(module, "spam", obj);
Py_DECREF(obj);
return res;

}

The example can also be written without checking explicitly if obj is NULL:

static int
add_spam(PyObject *module, int value)
{

PyObject *obj = PyLong_FromLong(value);
int res = PyModule_AddObjectRef(module, "spam", obj);
Py_XDECREF(obj);
return res;

}

Note that Py_XDECREF() should be used instead of Py_DECREF() in this case, since obj can be NULL.
The number of different name strings passed to this function should be kept small, usually by only us-
ing statically allocated strings as name. For names that aren’t known at compile time, prefer calling
PyUnicode_FromString() and PyObject_SetAttr() directly. For more details, see PyUni-
code_InternFromString(), which may be used internally to create a key object.
Added in version 3.10.

int PyModule_Add(PyObject *module, const char *name, PyObject *value)
Part of the Stable ABI since version 3.13. Similar to PyModule_AddObjectRef(), but “steals” a refer-
ence to value. It can be called with a result of function that returns a new reference without bothering to check
its result or even saving it to a variable.
Example usage:

if (PyModule_Add(module, "spam", PyBytes_FromString(value)) < 0) {
goto error;

}

Added in version 3.13.
int PyModule_AddObject(PyObject *module, const char *name, PyObject *value)

Part of the Stable ABI. Similar to PyModule_AddObjectRef(), but steals a reference to value on success
(if it returns 0).
The new PyModule_Add() or PyModule_AddObjectRef() functions are recommended, since it is
easy to introduce reference leaks by misusing the PyModule_AddObject() function.

Note

Unlike other functions that steal references, PyModule_AddObject() only releases the reference to
value on success.
This means that its return value must be checked, and calling code must Py_XDECREF() valuemanually
on error.

Example usage:

8.6. Other Objects 189



The Python/C API, Release 3.13.0

PyObject *obj = PyBytes_FromString(value);
if (PyModule_AddObject(module, "spam", obj) < 0) {

// If 'obj' is not NULL and PyModule_AddObject() failed,
// 'obj' strong reference must be deleted with Py_XDECREF().
// If 'obj' is NULL, Py_XDECREF() does nothing.
Py_XDECREF(obj);
goto error;

}
// PyModule_AddObject() stole a reference to obj:
// Py_XDECREF(obj) is not needed here.

Deprecated since version 3.13: PyModule_AddObject() is soft deprecated.
int PyModule_AddIntConstant(PyObject *module, const char *name, long value)

Part of the Stable ABI. Add an integer constant to module as name. This convenience function can be used
from the module’s initialization function. Return -1 with an exception set on error, 0 on success.
This is a convenience function that calls PyLong_FromLong() and PyModule_AddObjectRef();
see their documentation for details.

int PyModule_AddStringConstant(PyObject *module, const char *name, const char *value)
Part of the Stable ABI. Add a string constant to module as name. This convenience function can be used from
the module’s initialization function. The string value must be NULL-terminated. Return -1 with an exception
set on error, 0 on success.
This is a convenience function that calls PyUnicode_InternFromString() and PyMod-
ule_AddObjectRef(); see their documentation for details.

PyModule_AddIntMacro(module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro(module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return -1 with an exception set on error, 0 on success.

PyModule_AddStringMacro(module, macro)
Add a string constant to module.

int PyModule_AddType(PyObject *module, PyTypeObject *type)
Part of the Stable ABI since version 3.10. Add a type object to module. The type object is finalized by calling
internally PyType_Ready(). The name of the type object is taken from the last component of tp_name
after dot. Return -1 with an exception set on error, 0 on success.
Added in version 3.9.

int PyUnstable_Module_SetGIL(PyObject *module, void *gil)

This is Unstable API. It may change without warning in minor releases.

Indicate that module does or does not support running without the global interpreter lock (GIL), using one of
the values from Py_mod_gil. It must be called during module’s initialization function. If this function is
not called during module initialization, the import machinery assumes the module does not support running
without the GIL. This function is only available in Python builds configured with --disable-gil. Return
-1 with an exception set on error, 0 on success.
Added in version 3.13.

190 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter.
This allows the module object to be retrieved later with only a reference to the module definition.
These functions will not work on modules created using multi-phase initialization, since multiple such modules can
be created from a single definition.
PyObject *PyState_FindModule(PyModuleDef *def)

Return value: Borrowed reference. Part of the Stable ABI. Returns the module object that was created from def
for the current interpreter. This method requires that the module object has been attached to the interpreter
state with PyState_AddModule() beforehand. In case the corresponding module object is not found or
has not been attached to the interpreter state yet, it returns NULL.

int PyState_AddModule(PyObject *module, PyModuleDef *def)
Part of the Stable ABI since version 3.3. Attaches the module object passed to the function to the interpreter
state. This allows the module object to be accessible via PyState_FindModule().
Only effective on modules created using single-phase initialization.
Python calls PyState_AddModule automatically after importing a module, so it is unnecessary (but harm-
less) to call it from module initialization code. An explicit call is needed only if the module’s own init code
subsequently calls PyState_FindModule. The function is mainly intended for implementing alternative
import mechanisms (either by calling it directly, or by referring to its implementation for details of the required
state updates).
The caller must hold the GIL.
Return -1 with an exception set on error, 0 on success.
Added in version 3.3.

int PyState_RemoveModule(PyModuleDef *def)
Part of the Stable ABI since version 3.3. Removes the module object created from def from the interpreter
state. Return -1 with an exception set on error, 0 on success.
The caller must hold the GIL.
Added in version 3.3.

8.6.3 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__()method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.
PyTypeObject PySeqIter_Type

Part of the Stable ABI. Type object for iterator objects returned by PySeqIter_New() and the one-
argument form of the iter() built-in function for built-in sequence types.

int PySeqIter_Check(PyObject *op)
Return true if the type of op is PySeqIter_Type. This function always succeeds.

PyObject *PySeqIter_New(PyObject *seq)
Return value: New reference. Part of the Stable ABI. Return an iterator that works with a general sequence
object, seq. The iteration ends when the sequence raises IndexError for the subscripting operation.

PyTypeObject PyCallIter_Type
Part of the Stable ABI. Type object for iterator objects returned by PyCallIter_New() and the two-
argument form of the iter() built-in function.

int PyCallIter_Check(PyObject *op)
Return true if the type of op is PyCallIter_Type. This function always succeeds.

8.6. Other Objects 191



The Python/C API, Release 3.13.0

PyObject *PyCallIter_New(PyObject *callable, PyObject *sentinel)
Return value: New reference. Part of the Stable ABI. Return a new iterator. The first parameter, callable, can
be any Python callable object that can be called with no parameters; each call to it should return the next item
in the iteration. When callable returns a value equal to sentinel, the iteration will be terminated.

8.6.4 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.
PyTypeObject PyProperty_Type

Part of the Stable ABI. The type object for the built-in descriptor types.
PyObject *PyDescr_NewGetSet(PyTypeObject *type, struct PyGetSetDef *getset)

Return value: New reference. Part of the Stable ABI.
PyObject *PyDescr_NewMember(PyTypeObject *type, struct PyMemberDef *meth)

Return value: New reference. Part of the Stable ABI.
PyObject *PyDescr_NewMethod(PyTypeObject *type, struct PyMethodDef *meth)

Return value: New reference. Part of the Stable ABI.
PyObject *PyDescr_NewWrapper(PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)

Return value: New reference.

PyObject *PyDescr_NewClassMethod(PyTypeObject *type, PyMethodDef *method)
Return value: New reference. Part of the Stable ABI.

int PyDescr_IsData(PyObject *descr)
Return non-zero if the descriptor objects descr describes a data attribute, or 0 if it describes a method. descr
must be a descriptor object; there is no error checking.

PyObject *PyWrapper_New(PyObject*, PyObject*)
Return value: New reference. Part of the Stable ABI.

8.6.5 Slice Objects

PyTypeObject PySlice_Type
Part of the Stable ABI. The type object for slice objects. This is the same as slice in the Python layer.

int PySlice_Check(PyObject *ob)
Return true if ob is a slice object; ob must not be NULL. This function always succeeds.

PyObject *PySlice_New(PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference. Part of the Stable ABI. Return a new slice object with the given values. The start,
stop, and step parameters are used as the values of the slice object attributes of the same names. Any of the
values may be NULL, in which case the None will be used for the corresponding attribute.
Return NULL with an exception set if the new object could not be allocated.

int PySlice_GetIndices(PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t
*step)

Part of the Stable ABI. Retrieve the start, stop and step indices from the slice object slice, assuming a sequence
of length length. Treats indices greater than length as errors.
Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed
to be converted to an integer, in which case -1 is returned with an exception set).
You probably do not want to use this function.
Changed in version 3.2: The parameter type for the slice parameter was PySliceObject* before.

192 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

int PySlice_GetIndicesEx(PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)

Part of the Stable ABI. Usable replacement for PySlice_GetIndices(). Retrieve the start, stop, and
step indices from the slice object slice assuming a sequence of length length, and store the length of the slice
in slicelength. Out of bounds indices are clipped in a manner consistent with the handling of normal slices.
Return 0 on success and -1 on error with an exception set.

Note

This function is considered not safe for resizable sequences. Its invocation should be replaced by a combi-
nation of PySlice_Unpack() and PySlice_AdjustIndices() where
if (PySlice_GetIndicesEx(slice, length, &start, &stop, &step, &slicelength)
↪→< 0) {

// return error
}

is replaced by
if (PySlice_Unpack(slice, &start, &stop, &step) < 0) {

// return error
}
slicelength = PySlice_AdjustIndices(length, &start, &stop, step);

Changed in version 3.2: The parameter type for the slice parameter was PySliceObject* before.
Changed in version 3.6.1: If Py_LIMITED_API is not set or set to the value between 0x03050400 and
0x03060000 (not including) or 0x03060100 or higher PySlice_GetIndicesEx() is implemented
as a macro using PySlice_Unpack() and PySlice_AdjustIndices(). Arguments start, stop and
step are evaluated more than once.
Deprecated since version 3.6.1: If Py_LIMITED_API is set to the value less than 0x03050400 or between
0x03060000 and 0x03060100 (not including) PySlice_GetIndicesEx() is a deprecated function.

int PySlice_Unpack(PyObject *slice, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
Part of the Stable ABI since version 3.7. Extract the start, stop and step data members from a slice object as
C integers. Silently reduce values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX, silently boost the
start and stop values less than PY_SSIZE_T_MIN to PY_SSIZE_T_MIN, and silently boost the step values
less than -PY_SSIZE_T_MAX to -PY_SSIZE_T_MAX.
Return -1 with an exception set on error, 0 on success.
Added in version 3.6.1.

Py_ssize_t PySlice_AdjustIndices(Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t step)
Part of the Stable ABI since version 3.7. Adjust start/end slice indices assuming a sequence of the specified
length. Out of bounds indices are clipped in a manner consistent with the handling of normal slices.
Return the length of the slice. Always successful. Doesn’t call Python code.
Added in version 3.6.1.

8.6. Other Objects 193



The Python/C API, Release 3.13.0

Ellipsis Object

PyObject *Py_Ellipsis
The Python Ellipsis object. This object has no methods. Like Py_None, it is an immortal singleton
object.
Changed in version 3.12: Py_Ellipsis is immortal.

8.6.6 MemoryView objects

A memoryview object exposes the C level buffer interface as a Python object which can then be passed around like
any other object.
PyObject *PyMemoryView_FromObject(PyObject *obj)

Return value: New reference. Part of the Stable ABI. Create a memoryview object from an object that pro-
vides the buffer interface. If obj supports writable buffer exports, the memoryview object will be read/write,
otherwise it may be either read-only or read/write at the discretion of the exporter.

PyBUF_READ

Flag to request a readonly buffer.
PyBUF_WRITE

Flag to request a writable buffer.
PyObject *PyMemoryView_FromMemory(char *mem, Py_ssize_t size, int flags)

Return value: New reference. Part of the Stable ABI since version 3.7. Create a memoryview object using mem
as the underlying buffer. flags can be one of PyBUF_READ or PyBUF_WRITE.
Added in version 3.3.

PyObject *PyMemoryView_FromBuffer(const Py_buffer *view)
Return value: New reference. Part of the Stable ABI since version 3.11. Create a memoryview object wrapping
the given buffer structure view. For simple byte buffers, PyMemoryView_FromMemory() is the preferred
function.

PyObject *PyMemoryView_GetContiguous(PyObject *obj, int buffertype, char order)
Return value: New reference. Part of the Stable ABI. Create a memoryview object to a contiguous chunk of
memory (in either ‘C’ or ‘F’ortran order) from an object that defines the buffer interface. If memory is contigu-
ous, the memoryview object points to the original memory. Otherwise, a copy is made and the memoryview
points to a new bytes object.
buffertype can be one of PyBUF_READ or PyBUF_WRITE.

int PyMemoryView_Check(PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of mem-
oryview. This function always succeeds.

Py_buffer *PyMemoryView_GET_BUFFER(PyObject *mview)
Return a pointer to the memoryview’s private copy of the exporter’s buffer. mview must be a memoryview
instance; this macro doesn’t check its type, you must do it yourself or you will risk crashes.

PyObject *PyMemoryView_GET_BASE(PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if the mem-
oryview has been created by one of the functions PyMemoryView_FromMemory() or PyMemo-
ryView_FromBuffer(). mviewmust be a memoryview instance.

194 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

8.6.7 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement
weak references. The first is a simple reference object, and the second acts as a proxy for the original object as much
as it can.
int PyWeakref_Check(PyObject *ob)

Return non-zero if ob is either a reference or proxy object. This function always succeeds.
int PyWeakref_CheckRef(PyObject *ob)

Return non-zero if ob is a reference object. This function always succeeds.
int PyWeakref_CheckProxy(PyObject *ob)

Return non-zero if ob is a proxy object. This function always succeeds.
PyObject *PyWeakref_NewRef(PyObject *ob, PyObject *callback)

Return value: New reference. Part of the Stable ABI. Return a weak reference object for the object ob. This
will always return a new reference, but is not guaranteed to create a new object; an existing reference object
may be returned. The second parameter, callback, can be a callable object that receives notification when ob is
garbage collected; it should accept a single parameter, which will be the weak reference object itself. callback
may also be None or NULL. If ob is not a weakly referenceable object, or if callback is not callable, None, or
NULL, this will return NULL and raise TypeError.

PyObject *PyWeakref_NewProxy(PyObject *ob, PyObject *callback)
Return value: New reference. Part of the Stable ABI. Return a weak reference proxy object for the object ob.
This will always return a new reference, but is not guaranteed to create a new object; an existing proxy object
may be returned. The second parameter, callback, can be a callable object that receives notification when ob is
garbage collected; it should accept a single parameter, which will be the weak reference object itself. callback
may also be None or NULL. If ob is not a weakly referenceable object, or if callback is not callable, None, or
NULL, this will return NULL and raise TypeError.

int PyWeakref_GetRef(PyObject *ref, PyObject **pobj)
Part of the Stable ABI since version 3.13. Get a strong reference to the referenced object from a weak reference,
ref, into *pobj.

• On success, set *pobj to a new strong reference to the referenced object and return 1.
• If the reference is dead, set *pobj to NULL and return 0.
• On error, raise an exception and return -1.

Added in version 3.13.
PyObject *PyWeakref_GetObject(PyObject *ref)

Return value: Borrowed reference. Part of the Stable ABI. Return a borrowed reference to the referenced object
from a weak reference, ref. If the referent is no longer live, returns Py_None.

Note

This function returns a borrowed reference to the referenced object. This means that you should always call
Py_INCREF() on the object except when it cannot be destroyed before the last usage of the borrowed
reference.

Deprecated since version 3.13, will be removed in version 3.15: Use PyWeakref_GetRef() instead.
PyObject *PyWeakref_GET_OBJECT(PyObject *ref)

Return value: Borrowed reference. Similar to PyWeakref_GetObject(), but does no error checking.
Deprecated since version 3.13, will be removed in version 3.15: Use PyWeakref_GetRef() instead.

8.6. Other Objects 195



The Python/C API, Release 3.13.0

void PyObject_ClearWeakRefs(PyObject *object)
Part of the Stable ABI. This function is called by the tp_dealloc handler to clear weak references.
This iterates through the weak references for object and calls callbacks for those references which have one. It
returns when all callbacks have been attempted.

void PyUnstable_Object_ClearWeakRefsNoCallbacks(PyObject *object)

This is Unstable API. It may change without warning in minor releases.

Clears the weakrefs for object without calling the callbacks.
This function is called by the tp_dealloc handler for types with finalizers (i.e., __del__()). The handler
for those objects first calls PyObject_ClearWeakRefs() to clear weakrefs and call their callbacks, then
the finalizer, and finally this function to clear any weakrefs that may have been created by the finalizer.
In most circumstances, it’s more appropriate to use PyObject_ClearWeakRefs() to clear weakrefs
instead of this function.
Added in version 3.13.

8.6.8 Capsules

Refer to using-capsules for more information on using these objects.
Added in version 3.1.
type PyCapsule

This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to
access C APIs defined in dynamically loaded modules.

type PyCapsule_Destructor
Part of the Stable ABI. The type of a destructor callback for a capsule. Defined as:

typedef void (*PyCapsule_Destructor)(PyObject *);

See PyCapsule_New() for the semantics of PyCapsule_Destructor callbacks.
int PyCapsule_CheckExact(PyObject *p)

Return true if its argument is a PyCapsule. This function always succeeds.
PyObject *PyCapsule_New(void *pointer, const char *name, PyCapsule_Destructor destructor)

Return value: New reference. Part of the Stable ABI. Create a PyCapsule encapsulating the pointer. The
pointer argument may not be NULL.
On failure, set an exception and return NULL.
The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)
If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.
If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule_Import().

196 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

void *PyCapsule_GetPointer(PyObject *capsule, const char *name)
Part of the Stable ABI. Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.
The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule
is NULL, the name passed in must also be NULL. Python uses the C function strcmp() to compare capsule
names.

PyCapsule_Destructor PyCapsule_GetDestructor(PyObject *capsule)
Part of the Stable ABI. Return the current destructor stored in the capsule. On failure, set an exception and
return NULL.
It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

void *PyCapsule_GetContext(PyObject *capsule)
Part of the Stable ABI. Return the current context stored in the capsule. On failure, set an exception and return
NULL.
It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

const char *PyCapsule_GetName(PyObject *capsule)
Part of the Stable ABI. Return the current name stored in the capsule. On failure, set an exception and return
NULL.
It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

void *PyCapsule_Import(const char *name, int no_block)
Part of the Stable ABI. Import a pointer to a C object from a capsule attribute in a module. The name parameter
should specify the full name to the attribute, as in module.attribute. The name stored in the capsule
must match this string exactly.
Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.
Changed in version 3.3: no_block has no effect anymore.

int PyCapsule_IsValid(PyObject *capsule, const char *name)
Part of the Stable ABI. Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL,
passesPyCapsule_CheckExact(), has a non-NULL pointer stored in it, and its internal namematches the
name parameter. (SeePyCapsule_GetPointer() for information on how capsule names are compared.)
In other words, if PyCapsule_IsValid() returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get) are guaranteed to succeed.
Return a nonzero value if the object is valid andmatches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext(PyObject *capsule, void *context)
Part of the Stable ABI. Set the context pointer inside capsule to context.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor(PyObject *capsule, PyCapsule_Destructor destructor)
Part of the Stable ABI. Set the destructor inside capsule to destructor.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName(PyObject *capsule, const char *name)
Part of the Stable ABI. Set the name inside capsule to name. If non-NULL, the name must outlive the capsule.
If the previous name stored in the capsule was not NULL, no attempt is made to free it.
Return 0 on success. Return nonzero and set an exception on failure.

8.6. Other Objects 197



The Python/C API, Release 3.13.0

int PyCapsule_SetPointer(PyObject *capsule, void *pointer)
Part of the Stable ABI. Set the void pointer inside capsule to pointer. The pointer may not be NULL.
Return 0 on success. Return nonzero and set an exception on failure.

8.6.9 Frame Objects

type PyFrameObject
Part of the Limited API (as an opaque struct). The C structure of the objects used to describe frame objects.
There are no public members in this structure.
Changed in version 3.11: The members of this structure were removed from the public C API. Refer to the
What’s New entry for details.

The PyEval_GetFrame() and PyThreadState_GetFrame() functions can be used to get a frame object.
See also Reflection.
PyTypeObject PyFrame_Type

The type of frame objects. It is the same object as types.FrameType in the Python layer.
Changed in version 3.11: Previously, this type was only available after including <frameobject.h>.

int PyFrame_Check(PyObject *obj)
Return non-zero if obj is a frame object.
Changed in version 3.11: Previously, this function was only available after including <frameobject.h>.

PyFrameObject *PyFrame_GetBack(PyFrameObject *frame)
Return value: New reference. Get the frame next outer frame.
Return a strong reference, or NULL if frame has no outer frame.
Added in version 3.9.

PyObject *PyFrame_GetBuiltins(PyFrameObject *frame)
Return value: New reference. Get the frame’s f_builtins attribute.
Return a strong reference. The result cannot be NULL.
Added in version 3.11.

PyCodeObject *PyFrame_GetCode(PyFrameObject *frame)
Return value: New reference. Part of the Stable ABI since version 3.10. Get the frame code.
Return a strong reference.
The result (frame code) cannot be NULL.
Added in version 3.9.

PyObject *PyFrame_GetGenerator(PyFrameObject *frame)
Return value: New reference. Get the generator, coroutine, or async generator that owns this frame, or NULL
if this frame is not owned by a generator. Does not raise an exception, even if the return value is NULL.
Return a strong reference, or NULL.
Added in version 3.11.

PyObject *PyFrame_GetGlobals(PyFrameObject *frame)
Return value: New reference. Get the frame’s f_globals attribute.
Return a strong reference. The result cannot be NULL.
Added in version 3.11.

198 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

int PyFrame_GetLasti(PyFrameObject *frame)
Get the frame’s f_lasti attribute.
Returns -1 if frame.f_lasti is None.
Added in version 3.11.

PyObject *PyFrame_GetVar(PyFrameObject *frame, PyObject *name)
Return value: New reference. Get the variable name of frame.

• Return a strong reference to the variable value on success.
• Raise NameError and return NULL if the variable does not exist.
• Raise an exception and return NULL on error.

name type must be a str.
Added in version 3.12.

PyObject *PyFrame_GetVarString(PyFrameObject *frame, const char *name)
Return value: New reference. Similar to PyFrame_GetVar(), but the variable name is a C string encoded
in UTF-8.
Added in version 3.12.

PyObject *PyFrame_GetLocals(PyFrameObject *frame)
Return value: New reference. Get the frame’s f_locals attribute. If the frame refers to an optimized scope,
this returns a write-through proxy object that allows modifying the locals. In all other cases (classes, mod-
ules, exec(), eval()) it returns the mapping representing the frame locals directly (as described for lo-
cals()).
Return a strong reference.
Added in version 3.11.
Changed in version 3.13: As part of PEP 667, return a proxy object for optimized scopes.

int PyFrame_GetLineNumber(PyFrameObject *frame)
Part of the Stable ABI since version 3.10. Return the line number that frame is currently executing.

Internal Frames

Unless using PEP 523, you will not need this.
struct _PyInterpreterFrame

The interpreter’s internal frame representation.
Added in version 3.11.

PyObject *PyUnstable_InterpreterFrame_GetCode(struct _PyInterpreterFrame *frame);

This is Unstable API. It may change without warning in minor releases.

Return a strong reference to the code object for the frame.

Added in version 3.12.

8.6. Other Objects 199

https://peps.python.org/pep-0667/
https://peps.python.org/pep-0523/


The Python/C API, Release 3.13.0

int PyUnstable_InterpreterFrame_GetLasti(struct _PyInterpreterFrame *frame);

This is Unstable API. It may change without warning in minor releases.

Return the byte offset into the last executed instruction.
Added in version 3.12.

int PyUnstable_InterpreterFrame_GetLine(struct _PyInterpreterFrame *frame);

This is Unstable API. It may change without warning in minor releases.

Return the currently executing line number, or -1 if there is no line number.
Added in version 3.12.

8.6.10 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over
a function that yields values, rather than explicitly calling PyGen_New() or PyGen_NewWithQualName().
type PyGenObject

The C structure used for generator objects.
PyTypeObject PyGen_Type

The type object corresponding to generator objects.
int PyGen_Check(PyObject *ob)

Return true if ob is a generator object; ob must not be NULL. This function always succeeds.
int PyGen_CheckExact(PyObject *ob)

Return true if ob’s type is PyGen_Type; ob must not be NULL. This function always succeeds.
PyObject *PyGen_New(PyFrameObject *frame)

Return value: New reference. Create and return a new generator object based on the frame object. A reference
to frame is stolen by this function. The argument must not be NULL.

PyObject *PyGen_NewWithQualName(PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new generator object based on the frame object, with
__name__ and __qualname__ set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.11 Coroutine Objects

Added in version 3.5.
Coroutine objects are what functions declared with an async keyword return.
type PyCoroObject

The C structure used for coroutine objects.
PyTypeObject PyCoro_Type

The type object corresponding to coroutine objects.

200 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

int PyCoro_CheckExact(PyObject *ob)
Return true if ob’s type is PyCoro_Type; ob must not be NULL. This function always succeeds.

PyObject *PyCoro_New(PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new coroutine object based on the frame object, with
__name__ and __qualname__ set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.12 Context Variables Objects

Added in version 3.7.
Changed in version 3.7.1:

Note

In Python 3.7.1 the signatures of all context variables C APIs were changed to use PyObject pointers instead
of PyContext, PyContextVar, and PyContextToken, e.g.:
// in 3.7.0:
PyContext *PyContext_New(void);

// in 3.7.1+:
PyObject *PyContext_New(void);

See bpo-34762 for more details.

This section details the public C API for the contextvars module.
type PyContext

The C structure used to represent a contextvars.Context object.
type PyContextVar

The C structure used to represent a contextvars.ContextVar object.
type PyContextToken

The C structure used to represent a contextvars.Token object.
PyTypeObject PyContext_Type

The type object representing the context type.
PyTypeObject PyContextVar_Type

The type object representing the context variable type.
PyTypeObject PyContextToken_Type

The type object representing the context variable token type.
Type-check macros:
int PyContext_CheckExact(PyObject *o)

Return true if o is of type PyContext_Type. o must not be NULL. This function always succeeds.
int PyContextVar_CheckExact(PyObject *o)

Return true if o is of type PyContextVar_Type. o must not be NULL. This function always succeeds.
int PyContextToken_CheckExact(PyObject *o)

Return true if o is of type PyContextToken_Type. o must not be NULL. This function always succeeds.
Context object management functions:

8.6. Other Objects 201

https://bugs.python.org/issue?@action=redirect&bpo=34762


The Python/C API, Release 3.13.0

PyObject *PyContext_New(void)
Return value: New reference. Create a new empty context object. Returns NULL if an error has occurred.

PyObject *PyContext_Copy(PyObject *ctx)
Return value: New reference. Create a shallow copy of the passed ctx context object. Returns NULL if an error
has occurred.

PyObject *PyContext_CopyCurrent(void)
Return value: New reference. Create a shallow copy of the current thread context. Returns NULL if an error
has occurred.

int PyContext_Enter(PyObject *ctx)
Set ctx as the current context for the current thread. Returns 0 on success, and -1 on error.

int PyContext_Exit(PyObject *ctx)
Deactivate the ctx context and restore the previous context as the current context for the current thread. Returns
0 on success, and -1 on error.

Context variable functions:
PyObject *PyContextVar_New(const char *name, PyObject *def)

Return value: New reference. Create a new ContextVar object. The name parameter is used for introspec-
tion and debug purposes. The def parameter specifies a default value for the context variable, or NULL for no
default. If an error has occurred, this function returns NULL.

int PyContextVar_Get(PyObject *var, PyObject *default_value, PyObject **value)
Get the value of a context variable. Returns -1 if an error has occurred during lookup, and 0 if no error
occurred, whether or not a value was found.
If the context variable was found, value will be a pointer to it. If the context variable was not found, value will
point to:

• default_value, if not NULL;
• the default value of var, if not NULL;
• NULL

Except for NULL, the function returns a new reference.
PyObject *PyContextVar_Set(PyObject *var, PyObject *value)

Return value: New reference. Set the value of var to value in the current context. Returns a new token object
for this change, or NULL if an error has occurred.

int PyContextVar_Reset(PyObject *var, PyObject *token)
Reset the state of the var context variable to that it was in before PyContextVar_Set() that returned the
token was called. This function returns 0 on success and -1 on error.

8.6.13 DateTime Objects

Various date and time objects are supplied by the datetime module. Before using any of these functions, the
header file datetime.h must be included in your source (note that this is not included by Python.h), and the
macro PyDateTime_IMPORT must be invoked, usually as part of the module initialisation function. The macro
puts a pointer to a C structure into a static variable, PyDateTimeAPI, that is used by the following macros.
type PyDateTime_Date

This subtype of PyObject represents a Python date object.
type PyDateTime_DateTime

This subtype of PyObject represents a Python datetime object.

202 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

type PyDateTime_Time
This subtype of PyObject represents a Python time object.

type PyDateTime_Delta
This subtype of PyObject represents the difference between two datetime values.

PyTypeObject PyDateTime_DateType

This instance of PyTypeObject represents the Python date type; it is the same object as datetime.date
in the Python layer.

PyTypeObject PyDateTime_DateTimeType

This instance of PyTypeObject represents the Python datetime type; it is the same object as datetime.
datetime in the Python layer.

PyTypeObject PyDateTime_TimeType
This instance of PyTypeObject represents the Python time type; it is the same object as datetime.time
in the Python layer.

PyTypeObject PyDateTime_DeltaType
This instance of PyTypeObject represents Python type for the difference between two datetime values; it
is the same object as datetime.timedelta in the Python layer.

PyTypeObject PyDateTime_TZInfoType
This instance of PyTypeObject represents the Python time zone info type; it is the same object as
datetime.tzinfo in the Python layer.

Macro for access to the UTC singleton:
PyObject *PyDateTime_TimeZone_UTC

Returns the time zone singleton representing UTC, the same object as datetime.timezone.utc.
Added in version 3.7.

Type-check macros:
int PyDate_Check(PyObject *ob)

Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob
must not be NULL. This function always succeeds.

int PyDate_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateType. obmust not be NULL. This function always succeeds.

int PyDateTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType or a subtype of PyDate-
Time_DateTimeType. ob must not be NULL. This function always succeeds.

int PyDateTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL. This function always
succeeds.

int PyTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob
must not be NULL. This function always succeeds.

int PyTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. obmust not be NULL. This function always succeeds.

int PyDelta_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or a subtype of PyDateTime_DeltaType. ob
must not be NULL. This function always succeeds.

8.6. Other Objects 203



The Python/C API, Release 3.13.0

int PyDelta_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL. This function always suc-
ceeds.

int PyTZInfo_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType.
ob must not be NULL. This function always succeeds.

int PyTZInfo_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL. This function always
succeeds.

Macros to create objects:
PyObject *PyDate_FromDate(int year, int month, int day)

Return value: New reference. Return a datetime.date object with the specified year, month and day.
PyObject *PyDateTime_FromDateAndTime(int year, int month, int day, int hour, int minute, int second, int

usecond)
Return value: New reference. Return a datetime.datetime object with the specified year, month, day,
hour, minute, second and microsecond.

PyObject *PyDateTime_FromDateAndTimeAndFold(int year, int month, int day, int hour, int minute, int
second, int usecond, int fold)

Return value: New reference. Return a datetime.datetime object with the specified year, month, day,
hour, minute, second, microsecond and fold.
Added in version 3.6.

PyObject *PyTime_FromTime(int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second and
microsecond.

PyObject *PyTime_FromTimeAndFold(int hour, int minute, int second, int usecond, int fold)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second,
microsecond and fold.
Added in version 3.6.

PyObject *PyDelta_FromDSU(int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of
days, seconds and microseconds. Normalization is performed so that the resulting number of microseconds
and seconds lie in the ranges documented for datetime.timedelta objects.

PyObject *PyTimeZone_FromOffset(PyObject *offset)
Return value: New reference. Return a datetime.timezone object with an unnamed fixed offset repre-
sented by the offset argument.
Added in version 3.7.

PyObject *PyTimeZone_FromOffsetAndName(PyObject *offset, PyObject *name)
Return value: New reference. Return a datetime.timezone object with a fixed offset represented by the
offset argument and with tzname name.
Added in version 3.7.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including
subclasses (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:
int PyDateTime_GET_YEAR(PyDateTime_Date *o)

Return the year, as a positive int.
int PyDateTime_GET_MONTH(PyDateTime_Date *o)

Return the month, as an int from 1 through 12.

204 Chapter 8. Concrete Objects Layer



The Python/C API, Release 3.13.0

int PyDateTime_GET_DAY(PyDateTime_Date *o)
Return the day, as an int from 1 through 31.

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime,
including subclasses. The argument must not be NULL, and the type is not checked:
int PyDateTime_DATE_GET_HOUR(PyDateTime_DateTime *o)

Return the hour, as an int from 0 through 23.
int PyDateTime_DATE_GET_MINUTE(PyDateTime_DateTime *o)

Return the minute, as an int from 0 through 59.
int PyDateTime_DATE_GET_SECOND(PyDateTime_DateTime *o)

Return the second, as an int from 0 through 59.
int PyDateTime_DATE_GET_MICROSECOND(PyDateTime_DateTime *o)

Return the microsecond, as an int from 0 through 999999.
int PyDateTime_DATE_GET_FOLD(PyDateTime_DateTime *o)

Return the fold, as an int from 0 through 1.
Added in version 3.6.

PyObject *PyDateTime_DATE_GET_TZINFO(PyDateTime_DateTime *o)
Return the tzinfo (which may be None).
Added in version 3.10.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including
subclasses. The argument must not be NULL, and the type is not checked:
int PyDateTime_TIME_GET_HOUR(PyDateTime_Time *o)

Return the hour, as an int from 0 through 23.
int PyDateTime_TIME_GET_MINUTE(PyDateTime_Time *o)

Return the minute, as an int from 0 through 59.
int PyDateTime_TIME_GET_SECOND(PyDateTime_Time *o)

Return the second, as an int from 0 through 59.
int PyDateTime_TIME_GET_MICROSECOND(PyDateTime_Time *o)

Return the microsecond, as an int from 0 through 999999.
int PyDateTime_TIME_GET_FOLD(PyDateTime_Time *o)

Return the fold, as an int from 0 through 1.
Added in version 3.6.

PyObject *PyDateTime_TIME_GET_TZINFO(PyDateTime_Time *o)
Return the tzinfo (which may be None).
Added in version 3.10.

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta,
including subclasses. The argument must not be NULL, and the type is not checked:
int PyDateTime_DELTA_GET_DAYS(PyDateTime_Delta *o)

Return the number of days, as an int from -999999999 to 999999999.
Added in version 3.3.

int PyDateTime_DELTA_GET_SECONDS(PyDateTime_Delta *o)
Return the number of seconds, as an int from 0 through 86399.
Added in version 3.3.

8.6. Other Objects 205



The Python/C API, Release 3.13.0

int PyDateTime_DELTA_GET_MICROSECONDS(PyDateTime_Delta *o)
Return the number of microseconds, as an int from 0 through 999999.
Added in version 3.3.

Macros for the convenience of modules implementing the DB API:
PyObject *PyDateTime_FromTimestamp(PyObject *args)

Return value: New reference. Create and return a new datetime.datetime object given an argument
tuple suitable for passing to datetime.datetime.fromtimestamp().

PyObject *PyDate_FromTimestamp(PyObject *args)
Return value: New reference. Create and return a new datetime.date object given an argument tuple
suitable for passing to datetime.date.fromtimestamp().

8.6.14 Objects for Type Hinting

Various built-in types for type hinting are provided. Currently, two types exist – GenericAlias and Union. Only
GenericAlias is exposed to C.
PyObject *Py_GenericAlias(PyObject *origin, PyObject *args)

Part of the Stable ABI since version 3.9. Create a GenericAlias object. Equivalent to calling the Python
class types.GenericAlias. The origin and args arguments set the GenericAlias‘s __origin__
and __args__ attributes respectively. origin should be a PyTypeObject*, and args can be a PyTu-
pleObject* or any PyObject*. If args passed is not a tuple, a 1-tuple is automatically constructed and
__args__ is set to (args,). Minimal checking is done for the arguments, so the function will succeed
even if origin is not a type. The GenericAlias‘s __parameters__ attribute is constructed lazily from
__args__. On failure, an exception is raised and NULL is returned.
Here’s an example of how to make an extension type generic:

...
static PyMethodDef my_obj_methods[] = {

// Other methods.
...
{"__class_getitem__", Py_GenericAlias, METH_O|METH_CLASS, "See PEP 585"}
...

}

See also

The data model method __class_getitem__().

Added in version 3.9.
PyTypeObject Py_GenericAliasType

Part of the Stable ABI since version 3.9. The C type of the object returned by Py_GenericAlias().
Equivalent to types.GenericAlias in Python.
Added in version 3.9.

206 Chapter 8. Concrete Objects Layer



CHAPTER

NINE

INITIALIZATION, FINALIZATION, AND THREADS

See also Python Initialization Configuration.

9.1 Before Python Initialization

In an application embedding Python, the Py_Initialize() function must be called before using any other
Python/C API functions; with the exception of a few functions and the global configuration variables.
The following functions can be safely called before Python is initialized:

• Configuration functions:
– PyImport_AppendInittab()

– PyImport_ExtendInittab()

– PyInitFrozenExtensions()

– PyMem_SetAllocator()

– PyMem_SetupDebugHooks()

– PyObject_SetArenaAllocator()

– Py_SetProgramName()

– Py_SetPythonHome()

– PySys_ResetWarnOptions()

• Informative functions:
– Py_IsInitialized()

– PyMem_GetAllocator()

– PyObject_GetArenaAllocator()

– Py_GetBuildInfo()

– Py_GetCompiler()

– Py_GetCopyright()

– Py_GetPlatform()

– Py_GetVersion()

• Utilities:
– Py_DecodeLocale()

• Memory allocators:
– PyMem_RawMalloc()

– PyMem_RawRealloc()

207



The Python/C API, Release 3.13.0

– PyMem_RawCalloc()

– PyMem_RawFree()

• Synchronization:
– PyMutex_Lock()

– PyMutex_Unlock()

Note

The following functions should not be called before Py_Initialize(): Py_EncodeLocale(),
Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), Py_GetProgramFullPath(),
Py_GetPythonHome(), Py_GetProgramName() and PyEval_InitThreads().

9.2 Global configuration variables

Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.
When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, -b
sets Py_BytesWarningFlag to 1 and -bb sets Py_BytesWarningFlag to 2.
int Py_BytesWarningFlag

This API is kept for backward compatibility: setting PyConfig.bytes_warning should be used instead,
see Python Initialization Configuration.
Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if
greater or equal to 2.
Set by the -b option.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_DebugFlag
This API is kept for backward compatibility: setting PyConfig.parser_debug should be used instead,
see Python Initialization Configuration.
Turn on parser debugging output (for expert only, depending on compilation options).
Set by the -d option and the PYTHONDEBUG environment variable.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_DontWriteBytecodeFlag
This API is kept for backward compatibility: setting PyConfig.write_bytecode should be used in-
stead, see Python Initialization Configuration.
If set to non-zero, Python won’t try to write .pyc files on the import of source modules.
Set by the -B option and the PYTHONDONTWRITEBYTECODE environment variable.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_FrozenFlag
This API is kept for backward compatibility: settingPyConfig.pathconfig_warnings should be used
instead, see Python Initialization Configuration.
Suppress error messages when calculating the module search path in Py_GetPath().
Private flag used by _freeze_module and frozenmain programs.
Deprecated since version 3.12, will be removed in version 3.14.

208 Chapter 9. Initialization, Finalization, and Threads



The Python/C API, Release 3.13.0

int Py_HashRandomizationFlag
This API is kept for backward compatibility: setting PyConfig.hash_seed and PyConfig.
use_hash_seed should be used instead, see Python Initialization Configuration.
Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.
If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_IgnoreEnvironmentFlag
This API is kept for backward compatibility: setting PyConfig.use_environment should be used in-
stead, see Python Initialization Configuration.
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.
Set by the -E and -I options.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_InspectFlag
This API is kept for backward compatibility: setting PyConfig.inspect should be used instead, see
Python Initialization Configuration.
When a script is passed as first argument or the -c option is used, enter interactive mode after executing the
script or the command, even when sys.stdin does not appear to be a terminal.
Set by the -i option and the PYTHONINSPECT environment variable.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_InteractiveFlag
This API is kept for backward compatibility: setting PyConfig.interactive should be used instead,
see Python Initialization Configuration.
Set by the -i option.
Deprecated since version 3.12.

int Py_IsolatedFlag
This API is kept for backward compatibility: setting PyConfig.isolated should be used instead, see
Python Initialization Configuration.
Run Python in isolated mode. In isolated mode sys.path contains neither the script’s directory nor the
user’s site-packages directory.
Set by the -I option.
Added in version 3.4.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_LegacyWindowsFSEncodingFlag
This API is kept for backward compatibility: setting PyPreConfig.
legacy_windows_fs_encoding should be used instead, see Python Initialization Configuration.
If the flag is non-zero, use the mbcs encoding with replace error handler, instead of the UTF-8 encoding
with surrogatepass error handler, for the filesystem encoding and error handler.
Set to 1 if the PYTHONLEGACYWINDOWSFSENCODING environment variable is set to a non-empty string.
See PEP 529 for more details.
Availability: Windows.
Deprecated since version 3.12, will be removed in version 3.14.

9.2. Global configuration variables 209

https://peps.python.org/pep-0529/


The Python/C API, Release 3.13.0

int Py_LegacyWindowsStdioFlag
This API is kept for backward compatibility: setting PyConfig.legacy_windows_stdio should be
used instead, see Python Initialization Configuration.
If the flag is non-zero, use io.FileIO instead of io._WindowsConsoleIO for sys standard streams.
Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
See PEP 528 for more details.
Availability: Windows.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_NoSiteFlag
This API is kept for backward compatibility: setting PyConfig.site_import should be used instead,
see Python Initialization Configuration.
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main() if you want them
to be triggered).
Set by the -S option.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_NoUserSiteDirectory
This API is kept for backward compatibility: setting PyConfig.user_site_directory should be
used instead, see Python Initialization Configuration.
Don’t add the user site-packages directory to sys.path.
Set by the -s and -I options, and the PYTHONNOUSERSITE environment variable.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_OptimizeFlag
This API is kept for backward compatibility: setting PyConfig.optimization_level should be used
instead, see Python Initialization Configuration.
Set by the -O option and the PYTHONOPTIMIZE environment variable.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_QuietFlag
This API is kept for backward compatibility: setting PyConfig.quiet should be used instead, see Python
Initialization Configuration.
Don’t display the copyright and version messages even in interactive mode.
Set by the -q option.
Added in version 3.2.
Deprecated since version 3.12, will be removed in version 3.14.

int Py_UnbufferedStdioFlag
This API is kept for backward compatibility: setting PyConfig.buffered_stdio should be used in-
stead, see Python Initialization Configuration.
Force the stdout and stderr streams to be unbuffered.
Set by the -u option and the PYTHONUNBUFFERED environment variable.
Deprecated since version 3.12, will be removed in version 3.14.

210 Chapter 9. Initialization, Finalization, and Threads

https://peps.python.org/pep-0528/


The Python/C API, Release 3.13.0

int Py_VerboseFlag
This API is kept for backward compatibility: setting PyConfig.verbose should be used instead, see
Python Initialization Configuration.
Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit.
Set by the -v option and the PYTHONVERBOSE environment variable.
Deprecated since version 3.12, will be removed in version 3.14.

9.3 Initializing and finalizing the interpreter

void Py_Initialize()
Part of the Stable ABI. Initialize the Python interpreter. In an application embedding Python, this should be
called before using any other Python/C API functions; see Before Python Initialization for the few exceptions.
This initializes the table of loaded modules (sys.modules), and creates the fundamental modules
builtins, __main__ and sys. It also initializes the module search path (sys.path). It does not set
sys.argv; use the new PyConfig API of the Python Initialization Configuration for that. This is a no-op
when called for a second time (without calling Py_FinalizeEx() first). There is no return value; it is a
fatal error if the initialization fails.
Use the Py_InitializeFromConfig() function to customize the Python Initialization Configuration.

Note

On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect non-Python
uses of the console using the C Runtime.

void Py_InitializeEx(int initsigs)
Part of the Stable ABI. This function works like Py_Initialize() if initsigs is 1. If initsigs is 0, it skips
initialization registration of signal handlers, which might be useful when Python is embedded.
Use the Py_InitializeFromConfig() function to customize the Python Initialization Configuration.

int Py_IsInitialized()
Part of the Stable ABI. Return true (nonzero) when the Python interpreter has been initialized, false (zero) if
not. After Py_FinalizeEx() is called, this returns false until Py_Initialize() is called again.

int Py_IsFinalizing()
Part of the Stable ABI since version 3.13. Return true (non-zero) if the main Python interpreter is shutting
down. Return false (zero) otherwise.
Added in version 3.13.

int Py_FinalizeEx()
Part of the Stable ABI since version 3.6. Undo all initializations made by Py_Initialize() and sub-
sequent use of Python/C API functions, and destroy all sub-interpreters (see Py_NewInterpreter()
below) that were created and not yet destroyed since the last call to Py_Initialize(). Ideally, this frees
all memory allocated by the Python interpreter. This is a no-op when called for a second time (without calling
Py_Initialize() again first).
Since this is the reverse of Py_Initialize(), it should be called in the same thread with the same in-
terpreter active. That means the main thread and the main interpreter. This should never be called while
Py_RunMain() is running.
Normally the return value is 0. If there were errors during finalization (flushing buffered data), -1 is returned.

9.3. Initializing and finalizing the interpreter 211



The Python/C API, Release 3.13.0

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the
DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated
by Python before exiting from the application.
Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may
cause destructors (__del__() methods) to fail when they depend on other objects (even functions) or mod-
ules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory
allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in
circular references between objects is not freed. Some memory allocated by extension modules may not be
freed. Some extensions may not work properly if their initialization routine is called more than once; this can
happen if an application calls Py_Initialize() and Py_FinalizeEx() more than once.
Raises an auditing event cpython._PySys_ClearAuditHooks with no arguments.
Added in version 3.6.

void Py_Finalize()
Part of the Stable ABI. This is a backwards-compatible version of Py_FinalizeEx() that disregards the
return value.

9.4 Process-wide parameters

void Py_SetProgramName(const wchar_t *name)
Part of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.program_name
should be used instead, see Python Initialization Configuration.
This function should be called before Py_Initialize() is called for the first time, if it is called at all. It
tells the interpreter the value of the argv[0] argument to the main() function of the program (converted
to wide characters). This is used by Py_GetPath() and some other functions below to find the Python run-
time libraries relative to the interpreter executable. The default value is 'python'. The argument should
point to a zero-terminated wide character string in static storage whose contents will not change for the duration
of the program’s execution. No code in the Python interpreter will change the contents of this storage.
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.
Deprecated since version 3.11.

wchar_t *Py_GetProgramName()
Part of the Stable ABI. Return the program name set with PyConfig.program_name, or the default. The
returned string points into static storage; the caller should not modify its value.
This function should not be called before Py_Initialize(), otherwise it returns NULL.
Changed in version 3.10: It now returns NULL if called before Py_Initialize().
Deprecated since version 3.13, will be removed in version 3.15: Get sys.executable instead.

wchar_t *Py_GetPrefix()
Part of the Stable ABI. Return the prefix for installed platform-independent files. This is derived through
a number of complicated rules from the program name set with PyConfig.program_name and some
environment variables; for example, if the program name is '/usr/local/bin/python', the prefix
is '/usr/local'. The returned string points into static storage; the caller should not modify its value.
This corresponds to the prefix variable in the top-level Makefile and the --prefix argument to the
configure script at build time. The value is available to Python code as sys.prefix. It is only useful
on Unix. See also the next function.
This function should not be called before Py_Initialize(), otherwise it returns NULL.
Changed in version 3.10: It now returns NULL if called before Py_Initialize().
Deprecated since version 3.13, will be removed in version 3.15: Get sys.prefix instead.

212 Chapter 9. Initialization, Finalization, and Threads



The Python/C API, Release 3.13.0

wchar_t *Py_GetExecPrefix()
Part of the Stable ABI. Return the exec-prefix for installed platform-dependent files. This is derived through
a number of complicated rules from the program name set with PyConfig.program_name and some
environment variables; for example, if the program name is'/usr/local/bin/python', the exec-prefix
is '/usr/local'. The returned string points into static storage; the caller should not modify its value. This
corresponds to theexec_prefix variable in the top-levelMakefile and the--exec-prefix argument
to the configure script at build time. The value is available to Python code as sys.exec_prefix. It is
only useful on Unix.
Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files
may be installed in the /usr/local/plat subtree while platform independent may be installed in /usr/
local.
Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Non-Unix operating systems are a different
story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaning-
less, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).
System administrators will know how to configure the mount or automount programs to share /usr/
local between platforms while having /usr/local/plat be a different filesystem for each platform.
This function should not be called before Py_Initialize(), otherwise it returns NULL.
Changed in version 3.10: It now returns NULL if called before Py_Initialize().
Deprecated since version 3.13, will be removed in version 3.15: Get sys.exec_prefix instead.

wchar_t *Py_GetProgramFullPath()
Part of the Stable ABI.Return the full program name of the Python executable; this is computed as a side-effect
of deriving the default module search path from the program name (set by PyConfig.program_name).
The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.executable.
This function should not be called before Py_Initialize(), otherwise it returns NULL.
Changed in version 3.10: It now returns NULL if called before Py_Initialize().
Deprecated since version 3.13, will be removed in version 3.15: Get sys.executable instead.

wchar_t *Py_GetPath()
Part of the Stable ABI. Return the default module search path; this is computed from the program name (set
by PyConfig.program_name) and some environment variables. The returned string consists of a series
of directory names separated by a platform dependent delimiter character. The delimiter character is ':'
on Unix and macOS, ';' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys.path is initialized with this value on interpreter startup; it can be (and usually
is) modified later to change the search path for loading modules.
This function should not be called before Py_Initialize(), otherwise it returns NULL.
Changed in version 3.10: It now returns NULL if called before Py_Initialize().
Deprecated since version 3.13, will be removed in version 3.15: Get sys.path instead.

const char *Py_GetVersion()
Part of the Stable ABI. Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as sys.version.

9.4. Process-wide parameters 213



The Python/C API, Release 3.13.0

See also the Py_Version constant.
const char *Py_GetPlatform()

Part of the Stable ABI. Return the platform identifier for the current platform. On Unix, this is formed from
the “official” name of the operating system, converted to lower case, followed by the major revision number;
e.g., for Solaris 2.x, which is also known as SunOS 5.x, the value is 'sunos5'. On macOS, it is 'darwin'.
OnWindows, it is 'win'. The returned string points into static storage; the caller should not modify its value.
The value is available to Python code as sys.platform.

const char *Py_GetCopyright()
Part of the Stable ABI. Return the official copyright string for the current Python version, for example
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.copyright.

const char *Py_GetCompiler()
Part of the Stable ABI. Return an indication of the compiler used to build the current Python version, in square
brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

const char *Py_GetBuildInfo()
Part of the Stable ABI. Return information about the sequence number and build date and time of the current
Python interpreter instance, for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

void PySys_SetArgvEx(int argc, wchar_t **argv, int updatepath)
Part of the Stable ABI.This API is kept for backward compatibility: setting PyConfig.argv, PyConfig.
parse_argv and PyConfig.safe_path should be used instead, see Python Initialization Configuration.
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s
main() function with the difference that the first entry should refer to the script file to be executed rather
than the executable hosting the Python interpreter. If there isn’t a script that will be run, the first entry in
argv can be an empty string. If this function fails to initialize sys.argv, a fatal condition is signalled using
Py_FatalError().
If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys.
path according to the following algorithm:

• If the name of an existing script is passed in argv[0], the absolute path of the directory where the
script is located is prepended to sys.path.

• Otherwise (that is, if argc is 0 or argv[0] doesn’t point to an existing file name), an empty string is
prepended to sys.path, which is the same as prepending the current working directory (".").

Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.
See also PyConfig.orig_argv and PyConfig.argv members of the Python Initialization Configura-
tion.

Note

It is recommended that applications embedding the Python interpreter for purposes other than executing a
single script pass 0 as updatepath, and update sys.path themselves if desired. See CVE-2008-5983.

214 Chapter 9. Initialization, Finalization, and Threads

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983


The Python/C API, Release 3.13.0

On versions before 3.1.3, you can achieve the same effect bymanually popping the firstsys.path element
after having called PySys_SetArgv(), for example using:
PyRun_SimpleString("import sys; sys.path.pop(0)\n");

Added in version 3.1.3.
Deprecated since version 3.11.

void PySys_SetArgv(int argc, wchar_t **argv)
Part of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.argv and
PyConfig.parse_argv should be used instead, see Python Initialization Configuration.
This function works like PySys_SetArgvEx() with updatepath set to 1 unless the python interpreter
was started with the -I.
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.
See also PyConfig.orig_argv and PyConfig.argv members of the Python Initialization Configura-
tion.
Changed in version 3.4: The updatepath value depends on -I.
Deprecated since version 3.11.

void Py_SetPythonHome(const wchar_t *home)
Part of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.home should be
used instead, see Python Initialization Configuration.
Set the default “home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for
the meaning of the argument string.
The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the contents of this
storage.
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.
Deprecated since version 3.11.

wchar_t *Py_GetPythonHome()
Part of the Stable ABI. Return the default “home”, that is, the value set by PyConfig.home, or the value of
the PYTHONHOME environment variable if it is set.
This function should not be called before Py_Initialize(), otherwise it returns NULL.
Changed in version 3.10: It now returns NULL if called before Py_Initialize().
Deprecated since version 3.13, will be removed in version 3.15: Get PyConfig.home or PYTHONHOME
environment variable instead.

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice.
Therefore, the rule exists that only the thread that has acquired theGILmay operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see
sys.setswitchinterval()). The lock is also released around potentially blocking I/O operations like reading
or writing a file, so that other Python threads can run in the meantime.

9.5. Thread State and the Global Interpreter Lock 215



The Python/C API, Release 3.13.0

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_Get().

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
... Do some blocking I/O operation ...
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
... Do some blocking I/O operation ...
Py_END_ALLOW_THREADS

The Py_BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.
The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
... Do some blocking I/O operation ...
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the
lock is released (since another thread could immediately acquire the lock and store its own thread state in the global
variable). Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing
the thread state pointer.

Note

Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or crypto-
graphic functions operating over memory buffers. For example, the standard zlib and hashlib modules
release the GIL when compressing or hashing data.

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is
automatically associated to them and the code showed above is therefore correct. However, when threads are created
from C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there
a thread state structure for them.
If you need to call Python code from these threads (often this will be part of a callback API provided by the afore-
mentioned third-party library), you must first register these threads with the interpreter by creating a thread state
data structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using the
Python/C API. When you are done, you should reset the thread state pointer, release the GIL, and finally free the
thread state data structure.
The PyGILState_Ensure() and PyGILState_Release() functions do all of the above automatically.
The typical idiom for calling into Python from a C thread is:

216 Chapter 9. Initialization, Finalization, and Threads



The Python/C API, Release 3.13.0

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);

Note that the PyGILState_* functions assume there is only one global interpreter (created auto-
matically by Py_Initialize()). Python supports the creation of additional interpreters (using
Py_NewInterpreter()), but mixing multiple interpreters and the PyGILState_* API is unsupported.

9.5.3 Cautions about fork()

Another important thing to note about threads is their behaviour in the face of the C fork() call. On most systems
with fork(), after a process forks only the thread that issued the fork will exist. This has a concrete impact both
on how locks must be handled and on all stored state in CPython’s runtime.
The fact that only the “current” thread remains means any locks held by other threads will never be released. Python
solves this for os.fork() by acquiring the locks it uses internally before the fork, and releasing them afterwards.
In addition, it resets any lock-objects in the child. When extending or embedding Python, there is no way to inform
Python of additional (non-Python) locks that need to be acquired before or reset after a fork. OS facilities such
as pthread_atfork() would need to be used to accomplish the same thing. Additionally, when extending
or embedding Python, calling fork() directly rather than through os.fork() (and returning to or calling into
Python) may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after the
fork. PyOS_AfterFork_Child() tries to reset the necessary locks, but is not always able to.
The fact that all other threads go away also means that CPython’s runtime state there must be cleaned up properly,
which os.fork() does. This means finalizing all other PyThreadState objects belonging to the current inter-
preter and all other PyInterpreterState objects. Due to this and the special nature of the “main” interpreter,
fork() should only be called in that interpreter’s “main” thread, where the CPython global runtime was originally
initialized. The only exception is if exec() will be called immediately after.

9.5.4 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the
Python interpreter:
type PyInterpreterState

Part of the Limited API (as an opaque struct). This data structure represents the state shared by a number of
cooperating threads. Threads belonging to the same interpreter share their module administration and a few
other internal items. There are no public members in this structure.
Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

type PyThreadState
Part of the Limited API (as an opaque struct). This data structure represents the state of a single thread. The
only public data member is:
PyInterpreterState *interp

This thread’s interpreter state.
void PyEval_InitThreads()

Part of the Stable ABI. Deprecated function which does nothing.
In Python 3.6 and older, this function created the GIL if it didn’t exist.

9.5. Thread State and the Global Interpreter Lock 217



The Python/C API, Release 3.13.0

Changed in version 3.9: The function now does nothing.
Changed in version 3.7: This function is now called by Py_Initialize(), so you don’t have to call it
yourself anymore.
Changed in version 3.2: This function cannot be called before Py_Initialize() anymore.
Deprecated since version 3.9.

PyThreadState *PyEval_SaveThread()
Part of the Stable ABI. Release the global interpreter lock (if it has been created) and reset the thread state to
NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it.

void PyEval_RestoreThread(PyThreadState *tstate)
Part of the Stable ABI. Acquire the global interpreter lock (if it has been created) and set the thread state to
tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it,
otherwise deadlock ensues.

Note

Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use Py_IsFinalizing() or sys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted
termination.

PyThreadState *PyThreadState_Get()
Part of the Stable ABI. Return the current thread state. The global interpreter lock must be held. When the
current thread state is NULL, this issues a fatal error (so that the caller needn’t check for NULL).
See also PyThreadState_GetUnchecked().

PyThreadState *PyThreadState_GetUnchecked()
Similar to PyThreadState_Get(), but don’t kill the process with a fatal error if it is NULL. The caller
is responsible to check if the result is NULL.
Added in version 3.13: In Python 3.5 to 3.12, the function was private and known as _PyThread-
State_UncheckedGet().

PyThreadState *PyThreadState_Swap(PyThreadState *tstate)
Part of the Stable ABI. Swap the current thread state with the thread state given by the argument tstate, which
may be NULL. The global interpreter lock must be held and is not released.

The following functions use thread-local storage, and are not compatible with sub-interpreters:
PyGILState_STATE PyGILState_Ensure()

Part of the Stable ABI. Ensure that the current thread is ready to call the Python C API regardless of the
current state of Python, or of the global interpreter lock. This may be called as many times as desired by a
thread as long as each call is matched with a call to PyGILState_Release(). In general, other thread-
related APIs may be used between PyGILState_Ensure() and PyGILState_Release() calls as
long as the thread state is restored to its previous state before the Release(). For example, normal usage of the
Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS macros is acceptable.
The return value is an opaque “handle” to the thread state when PyGILState_Ensure() was called, and
must be passed to PyGILState_Release() to ensure Python is left in the same state. Even though
recursive calls are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure()
must save the handle for its call to PyGILState_Release().
When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code.
Failure is a fatal error.

218 Chapter 9. Initialization, Finalization, and Threads



The Python/C API, Release 3.13.0

Note

Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use Py_IsFinalizing() or sys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted
termination.

void PyGILState_Release(PyGILState_STATE)
Part of the Stable ABI. Release any resources previously acquired. After this call, Python’s state will be the
same as it was prior to the corresponding PyGILState_Ensure() call (but generally this state will be
unknown to the caller, hence the use of the GILState API).
Every call to PyGILState_Ensure() must be matched by a call to PyGILState_Release() on the
same thread.

PyThreadState *PyGILState_GetThisThreadState()
Part of the Stable ABI. Get the current thread state for this thread. May return NULL if no GILState API
has been used on the current thread. Note that the main thread always has such a thread-state, even if no
auto-thread-state call has been made on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check()
Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return
1. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory
allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or
otherwise behave differently.
Added in version 3.4.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.
Py_BEGIN_ALLOW_THREADS

Part of the Stable ABI. This macro expands to { PyThreadState *_save; _save =
PyEval_SaveThread();. Note that it contains an opening brace; it must be matched with a following
Py_END_ALLOW_THREADS macro. See above for further discussion of this macro.

Py_END_ALLOW_THREADS

Part of the Stable ABI. This macro expands to PyEval_RestoreThread(_save); }. Note that it
contains a closing brace; it must be matched with an earlier Py_BEGIN_ALLOW_THREADS macro. See
above for further discussion of this macro.

Py_BLOCK_THREADS

Part of the Stable ABI. This macro expands to PyEval_RestoreThread(_save);: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace.

Py_UNBLOCK_THREADS

Part of the Stable ABI. This macro expands to _save = PyEval_SaveThread();: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

9.5. Thread State and the Global Interpreter Lock 219



The Python/C API, Release 3.13.0

9.5.5 Low-level API

All of the following functions must be called after Py_Initialize().
Changed in version 3.7: Py_Initialize() now initializes the GIL.
PyInterpreterState *PyInterpreterState_New()

Part of the Stable ABI. Create a new interpreter state object. The global interpreter lock need not be held, but
may be held if it is necessary to serialize calls to this function.
Raises an auditing event cpython.PyInterpreterState_New with no arguments.

void PyInterpreterState_Clear(PyInterpreterState *interp)
Part of the Stable ABI. Reset all information in an interpreter state object. The global interpreter lock must be
held.
Raises an auditing event cpython.PyInterpreterState_Clear with no arguments.

void PyInterpreterState_Delete(PyInterpreterState *interp)
Part of the Stable ABI. Destroy an interpreter state object. The global interpreter lock need not be held. The
interpreter state must have been reset with a previous call to PyInterpreterState_Clear().

PyThreadState *PyThreadState_New(PyInterpreterState *interp)
Part of the Stable ABI. Create a new thread state object belonging to the given interpreter object. The global
interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear(PyThreadState *tstate)
Part of the Stable ABI. Reset all information in a thread state object. The global interpreter lock must be held.
Changed in version 3.9: This function now calls the PyThreadState.on_delete callback. Previously,
that happened in PyThreadState_Delete().

void PyThreadState_Delete(PyThreadState *tstate)
Part of the Stable ABI. Destroy a thread state object. The global interpreter lock need not be held. The thread
state must have been reset with a previous call to PyThreadState_Clear().

void PyThreadState_DeleteCurrent(void)
Destroy the current thread state and release the global interpreter lock. Like PyThreadState_Delete(),
the global interpreter lock must be held. The thread state must have been reset with a previous call to
PyThreadState_Clear().

PyFrameObject *PyThreadState_GetFrame(PyThreadState *tstate)
Part of the Stable ABI since version 3.10. Get the current frame of the Python thread state tstate.
Return a strong reference. Return NULL if no frame is currently executing.
See also PyEval_GetFrame().
tstate must not be NULL.
Added in version 3.9.

uint64_t PyThreadState_GetID(PyThreadState *tstate)
Part of the Stable ABI since version 3.10. Get the unique thread state identifier of the Python thread state tstate.
tstate must not be NULL.
Added in version 3.9.

PyInterpreterState *PyThreadState_GetInterpreter(PyThreadState *tstate)
Part of the Stable ABI since version 3.10. Get the interpreter of the Python thread state tstate.
tstate must not be NULL.
Added in version 3.9.

220 Chapter 9. Initialization, Finalization, and Threads



The Python/C API, Release 3.13.0

void PyThreadState_EnterTracing(PyThreadState *tstate)
Suspend tracing and profiling in the Python thread state tstate.
Resume them using the PyThreadState_LeaveTracing() function.
Added in version 3.11.

void PyThreadState_LeaveTracing(PyThreadState *tstate)
Resume tracing and profiling in the Python thread state tstate suspended by the PyThread-
State_EnterTracing() function.
See also PyEval_SetTrace() and PyEval_SetProfile() functions.
Added in version 3.11.

PyInterpreterState *PyInterpreterState_Get(void)
Part of the Stable ABI since version 3.9. Get the current interpreter.
Issue a fatal error if there no current Python thread state or no current interpreter. It cannot return NULL.
The caller must hold the GIL.
Added in version 3.9.

int64_t PyInterpreterState_GetID(PyInterpreterState *interp)
Part of the Stable ABI since version 3.7. Return the interpreter’s unique ID. If there was any error in doing so
then -1 is returned and an error is set.
The caller must hold the GIL.
Added in version 3.7.

PyObject *PyInterpreterState_GetDict(PyInterpreterState *interp)
Part of the Stable ABI since version 3.8. Return a dictionary in which interpreter-specific data may be stored.
If this function returns NULL then no exception has been raised and the caller should assume no interpreter-
specific dict is available.
This is not a replacement for PyModule_GetState(), which extensions should use to store interpreter-
specific state information.
Added in version 3.8.

typedef PyObject *(*_PyFrameEvalFunction)(PyThreadState *tstate, _PyInterpreterFrame *frame, int
throwflag)

Type of a frame evaluation function.
The throwflag parameter is used by the throw() method of generators: if non-zero, handle the current
exception.
Changed in version 3.9: The function now takes a tstate parameter.
Changed in version 3.11: The frame parameter changed from PyFrameObject* to _PyInterpreter-
Frame*.

_PyFrameEvalFunction _PyInterpreterState_GetEvalFrameFunc(PyInterpreterState *interp)
Get the frame evaluation function.
See the PEP 523 “Adding a frame evaluation API to CPython”.
Added in version 3.9.

void _PyInterpreterState_SetEvalFrameFunc(PyInterpreterState *interp, _PyFrameEvalFunction
eval_frame)

Set the frame evaluation function.
See the PEP 523 “Adding a frame evaluation API to CPython”.
Added in version 3.9.

9.5. Thread State and the Global Interpreter Lock 221

https://peps.python.org/pep-0523/
https://peps.python.org/pep-0523/


The Python/C API, Release 3.13.0

PyObject *PyThreadState_GetDict()
Return value: Borrowed reference. Part of the Stable ABI. Return a dictionary in which extensions can store
thread-specific state information. Each extension should use a unique key to use to store state in the dictionary.
It is okay to call this function when no current thread state is available. If this function returns NULL, no
exception has been raised and the caller should assume no current thread state is available.

int PyThreadState_SetAsyncExc(unsigned long id, PyObject *exc)
Part of the Stable ABI. Asynchronously raise an exception in a thread. The id argument is the thread id of
the target thread; exc is the exception object to be raised. This function does not steal any references to exc.
To prevent naive misuse, you must write your own C extension to call this. Must be called with the GIL held.
Returns the number of thread states modified; this is normally one, but will be zero if the thread id isn’t found.
If exc is NULL, the pending exception (if any) for the thread is cleared. This raises no exceptions.
Changed in version 3.7: The type of the id parameter changed from long to unsigned long.

void PyEval_AcquireThread(PyThreadState *tstate)
Part of the Stable ABI. Acquire the global interpreter lock and set the current thread state to tstate, which must
not be NULL. The lock must have been created earlier. If this thread already has the lock, deadlock ensues.

Note

Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use Py_IsFinalizing() or sys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted
termination.

Changed in version 3.8: Updated to be consistent with PyEval_RestoreThread(),
Py_END_ALLOW_THREADS(), and PyGILState_Ensure(), and terminate the current thread
if called while the interpreter is finalizing.
PyEval_RestoreThread() is a higher-level function which is always available (even when threads have
not been initialized).

void PyEval_ReleaseThread(PyThreadState *tstate)
Part of the Stable ABI. Reset the current thread state to NULL and release the global interpreter lock. The lock
must have been created earlier and must be held by the current thread. The tstate argument, which must not be
NULL, is only used to check that it represents the current thread state — if it isn’t, a fatal error is reported.
PyEval_SaveThread() is a higher-level function which is always available (even when threads have not
been initialized).

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do
that.
The “main” interpreter is the first one created when the runtime initializes. It is usually the only Python interpreter in
a process. Unlike sub-interpreters, the main interpreter has unique process-global responsibilities like signal handling.
It is also responsible for execution during runtime initialization and is usually the active interpreter during runtime
finalization. The PyInterpreterState_Main() function returns a pointer to its state.
You can switch between sub-interpreters using the PyThreadState_Swap() function. You can create and de-
stroy them using the following functions:
type PyInterpreterConfig

Structure containing most parameters to configure a sub-interpreter. Its values are used only in
Py_NewInterpreterFromConfig() and never modified by the runtime.

222 Chapter 9. Initialization, Finalization, and Threads



The Python/C API, Release 3.13.0

Added in version 3.12.
Structure fields:
int use_main_obmalloc

If this is 0 then the sub-interpreter will use its own “object” allocator state. Otherwise it will use (share)
the main interpreter’s.
If this is 0 then check_multi_interp_extensionsmust be 1 (non-zero). If this is 1 then gil
must not be PyInterpreterConfig_OWN_GIL.

int allow_fork
If this is 0 then the runtime will not support forking the process in any thread where the sub-interpreter
is currently active. Otherwise fork is unrestricted.
Note that the subprocess module still works when fork is disallowed.

int allow_exec
If this is 0 then the runtime will not support replacing the current process via exec (e.g. os.execv())
in any thread where the sub-interpreter is currently active. Otherwise exec is unrestricted.
Note that the subprocess module still works when exec is disallowed.

int allow_threads
If this is 0 then the sub-interpreter’s threading module won’t create threads. Otherwise threads are
allowed.

int allow_daemon_threads
If this is 0 then the sub-interpreter’s threading module won’t create daemon threads. Otherwise
daemon threads are allowed (as long as allow_threads is non-zero).

int check_multi_interp_extensions
If this is 0 then all extension modules may be imported, including legacy (single-phase init) modules,
in any thread where the sub-interpreter is currently active. Otherwise only multi-phase init extension
modules (see PEP 489) may be imported. (Also see Py_mod_multiple_interpreters.)
This must be 1 (non-zero) if use_main_obmalloc is 0.

int gil
This determines the operation of the GIL for the sub-interpreter. It may be one of the following:
PyInterpreterConfig_DEFAULT_GIL

Use the default selection (PyInterpreterConfig_SHARED_GIL).
PyInterpreterConfig_SHARED_GIL

Use (share) the main interpreter’s GIL.
PyInterpreterConfig_OWN_GIL

Use the sub-interpreter’s own GIL.
If this is PyInterpreterConfig_OWN_GIL then PyInterpreterConfig.
use_main_obmalloc must be 0.

PyStatus Py_NewInterpreterFromConfig(PyThreadState **tstate_p, const PyInterpreterConfig *config)
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python
code. In particular, the new interpreter has separate, independent versions of all imported modules, including
the fundamental modules builtins, __main__ and sys. The table of loaded modules (sys.modules)
and the module search path (sys.path) are also separate. The new environment has no sys.argv variable.
It has new standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr (however these
refer to the same underlying file descriptors).
The given config controls the options with which the interpreter is initialized.
Upon success, tstate_p will be set to the first thread state created in the new sub-interpreter. This thread state
is made in the current thread state. Note that no actual thread is created; see the discussion of thread states

9.6. Sub-interpreter support 223

https://peps.python.org/pep-0489/


The Python/C API, Release 3.13.0

below. If creation of the new interpreter is unsuccessful, tstate_p is set to NULL; no exception is set since the
exception state is stored in the current thread state and there may not be a current thread state.
Like all other Python/C API functions, the global interpreter lock must be held before calling this function and
is still held when it returns. Likewise a current thread state must be set on entry. On success, the returned
thread state will be set as current. If the sub-interpreter is created with its own GIL then the GIL of the calling
interpreter will be released. When the function returns, the new interpreter’s GIL will be held by the current
thread and the previously interpreter’s GIL will remain released here.
Added in version 3.12.
Sub-interpreters are most effective when isolated from each other, with certain functionality restricted:

PyInterpreterConfig config = {
.use_main_obmalloc = 0,
.allow_fork = 0,
.allow_exec = 0,
.allow_threads = 1,
.allow_daemon_threads = 0,
.check_multi_interp_extensions = 1,
.gil = PyInterpreterConfig_OWN_GIL,

};
PyThreadState *tstate = Py_NewInterpreterFromConfig(&config);

Note that the config is used only briefly and does not get modified. During initialization the config’s values
are converted into various PyInterpreterState values. A read-only copy of the config may be stored
internally on the PyInterpreterState.
Extension modules are shared between (sub-)interpreters as follows:

• For modules using multi-phase initialization, e.g. PyModule_FromDefAndSpec(), a separate
module object is created and initialized for each interpreter. Only C-level static and global variables
are shared between these module objects.

• For modules using single-phase initialization, e.g. PyModule_Create(), the first time a particular
extension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squir-
reled away. When the same extension is imported by another (sub-)interpreter, a newmodule is initialized
and filled with the contents of this copy; the extension’s init function is not called. Objects in the mod-
ule’s dictionary thus end up shared across (sub-)interpreters, which might cause unwanted behavior (see
Bugs and caveats below).
Note that this is different from what happens when an extension is imported after the interpreter has been
completely re-initialized by calling Py_FinalizeEx() and Py_Initialize(); in that case, the
extension’s initmodule function is called again. As with multi-phase initialization, this means that
only C-level static and global variables are shared between these modules.

PyThreadState *Py_NewInterpreter(void)
Part of the Stable ABI. Create a new sub-interpreter. This is essentially just a wrapper around
Py_NewInterpreterFromConfig() with a config that preserves the existing behavior. The result is
an unisolated sub-interpreter that shares the main interpreter’s GIL, allows fork/exec, allows daemon threads,
and allows single-phase init modules.

void Py_EndInterpreter(PyThreadState *tstate)
Part of the Stable ABI. Destroy the (sub-)interpreter represented by the given thread state. The given thread
state must be the current thread state. See the discussion of thread states below. When the call returns,
the current thread state is NULL. All thread states associated with this interpreter are destroyed. The global
interpreter lock used by the target interpreter must be held before calling this function. No GIL is held when
it returns.
Py_FinalizeEx() will destroy all sub-interpreters that haven’t been explicitly destroyed at that point.

224 Chapter 9. Initialization, Finalization, and Threads



The Python/C API, Release 3.13.0

9.6.1 A Per-Interpreter GIL

Using Py_NewInterpreterFromConfig() you can create a sub-interpreter that is completely isolated from
other interpreters, including having its own GIL. Themost important benefit of this isolation is that such an interpreter
can execute Python code without being blocked by other interpreters or blocking any others. Thus a single Python
process can truly take advantage of multiple CPU cores when running Python code. The isolation also encourages a
different approach to concurrency than that of just using threads. (See PEP 554.)
Using an isolated interpreter requires vigilance in preserving that isolation. That especially means not sharing any
objects or mutable state without guarantees about thread-safety. Even objects that are otherwise immutable (e.g.
None, (1, 5)) can’t normally be shared because of the refcount. One simple but less-efficient approach around
this is to use a global lock around all use of some state (or object). Alternately, effectively immutable objects (like
integers or strings) can be made safe in spite of their refcounts by making them immortal. In fact, this has been done
for the builtin singletons, small integers, and a number of other builtin objects.
If you preserve isolation then you will have access to proper multi-core computing without the complications that
come with free-threading. Failure to preserve isolation will expose you to the full consequences of free-threading,
including races and hard-to-debug crashes.
Aside from that, one of the main challenges of using multiple isolated interpreters is how to communicate between
them safely (not break isolation) and efficiently. The runtime and stdlib do not provide any standard approach to
this yet. A future stdlib module would help mitigate the effort of preserving isolation and expose effective tools for
communicating (and sharing) data between interpreters.
Added in version 3.12.

9.6.2 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t
perfect— for example, using low-level file operations like os.close() they can (accidentally or maliciously) affect
each other’s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when using single-phase initialization or (static) global variables. It is possible
to insert objects created in one sub-interpreter into a namespace of another (sub-)interpreter; this should be avoided
if possible.
Special care should be taken to avoid sharing user-defined functions, methods, instances or classes between sub-
interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dictionary of
loaded modules. It is equally important to avoid sharing objects from which the above are reachable.
Also note that combining this functionality with PyGILState_* APIs is delicate, because these APIs assume
a bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-
interpreters. It is highly recommended that you don’t switch sub-interpreters between a pair of matching Py-
GILState_Ensure() and PyGILState_Release() calls. Furthermore, extensions (such as ctypes) us-
ing these APIs to allow calling of Python code from non-Python created threads will probably be broken when using
sub-interpreters.

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take
the form of a function pointer and a void pointer argument.
int Py_AddPendingCall(int (*func)(void*), void *arg)

Part of the Stable ABI. Schedule a function to be called from the main interpreter thread. On success, 0 is
returned and func is queued for being called in the main thread. On failure, -1 is returned without setting any
exception.
When successfully queued, func will be eventually called from the main interpreter thread with the argument
arg. It will be called asynchronously with respect to normally running Python code, but with both these con-
ditions met:

9.7. Asynchronous Notifications 225

https://peps.python.org/pep-0554/


The Python/C API, Release 3.13.0

• on a bytecode boundary;
• with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return 0 on success, or -1 on failure with an exception set. func won’t be interrupted to perform
another asynchronous notification recursively, but it can still be interrupted to switch threads if the global
interpreter lock is released.
This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.
To call this function in a subinterpreter, the caller must hold the GIL. Otherwise, the function func can be
scheduled to be called from the wrong interpreter.

Warning

This is a low-level function, only useful for very special cases. There is no guarantee that func will be called
as quick as possible. If the main thread is busy executing a system call, func won’t be called before the
system call returns. This function is generally not suitable for calling Python code from arbitrary C threads.
Instead, use the PyGILState API.

Added in version 3.1.
Changed in version 3.9: If this function is called in a subinterpreter, the function func is now scheduled to be
called from the subinterpreter, rather than being called from the main interpreter. Each subinterpreter now has
its own list of scheduled calls.

9.8 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These
are used for profiling, debugging, and coverage analysis tools.
This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable
objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface
allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as
had been reported to the Python-level trace functions in previous versions.
typedef int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)

The type of the trace function registered using PyEval_SetProfile() and PyEval_SetTrace().
The first parameter is the object passed to the registration function as obj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION , PyTrace_LINE,
PyTrace_RETURN , PyTrace_C_CALL, PyTrace_C_EXCEPTION , PyTrace_C_RETURN , or Py-
Trace_OPCODE, and arg depends on the value of what:

Value of what Meaning of arg
PyTrace_CALL Always Py_None.
PyTrace_EXCEPTION Exception information as returned by sys.exc_info().
PyTrace_LINE Always Py_None.
PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.
PyTrace_C_EXCEPTION Function object being called.
PyTrace_C_RETURN Function object being called.
PyTrace_OPCODE Always Py_None.

int PyTrace_CALL
The value of the what parameter to a Py_tracefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

226 Chapter 9. Initialization, Finalization, and Threads



The Python/C API, Release 3.13.0

int PyTrace_EXCEPTION
The value of the what parameter to a Py_tracefunc function when an exception has been raised. The
callback function is called with this value for what when after any bytecode is processed after which the
exception becomes set within the frame being executed. The effect of this is that as exception propagation
causes the Python stack to unwind, the callback is called upon return to each frame as the exception propagates.
Only trace functions receives these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a Py_tracefunc function (but not a profiling function) when a
line-number event is being reported. It may be disabled for a frame by setting f_trace_lines to 0 on that
frame.

int PyTrace_RETURN
The value for the what parameter to Py_tracefunc functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_tracefunc functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_tracefunc functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_tracefunc functions when a C function has returned.

int PyTrace_OPCODE
The value for the what parameter to Py_tracefunc functions (but not profiling functions) when a new
opcode is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to 1 on the frame.

void PyEval_SetProfile(Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may
be any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except PyTrace_LINE PyTrace_OPCODE and PyTrace_EXCEPTION .
See also the sys.setprofile() function.
The caller must hold the GIL.

void PyEval_SetProfileAllThreads(Py_tracefunc func, PyObject *obj)
Like PyEval_SetProfile() but sets the profile function in all running threads belonging to the current
interpreter instead of the setting it only on the current thread.
The caller must hold the GIL.
As PyEval_SetProfile(), this function ignores any exceptions raised while setting the profile functions
in all threads.

Added in version 3.12.
void PyEval_SetTrace(Py_tracefunc func, PyObject *obj)

Set the tracing function to func. This is similar to PyEval_SetProfile(), except the tracing function
does receive line-number events and per-opcode events, but does not receive any event related to C func-
tion objects being called. Any trace function registered using PyEval_SetTrace() will not receive Py-
Trace_C_CALL, PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what parame-
ter.
See also the sys.settrace() function.
The caller must hold the GIL.

9.8. Profiling and Tracing 227



The Python/C API, Release 3.13.0

void PyEval_SetTraceAllThreads(Py_tracefunc func, PyObject *obj)
Like PyEval_SetTrace() but sets the tracing function in all running threads belonging to the current
interpreter instead of the setting it only on the current thread.
The caller must hold the GIL.
As PyEval_SetTrace(), this function ignores any exceptions raised while setting the trace functions in
all threads.

Added in version 3.12.

9.9 Reference tracing

Added in version 3.13.
typedef int (*PyRefTracer)(PyObject*, int event, void *data)

The type of the trace function registered using PyRefTracer_SetTracer(). The first parameter is a
Python object that has been just created (when event is set to PyRefTracer_CREATE) or about to be
destroyed (when event is set to PyRefTracer_DESTROY). The data argument is the opaque pointer that
was provided when PyRefTracer_SetTracer() was called.

Added in version 3.13.
int PyRefTracer_CREATE

The value for the event parameter to PyRefTracer functions when a Python object has been created.
int PyRefTracer_DESTROY

The value for the event parameter to PyRefTracer functions when a Python object has been destroyed.
int PyRefTracer_SetTracer(PyRefTracer tracer, void *data)

Register a reference tracer function. The function will be called when a new Python has been created or when
an object is going to be destroyed. If data is provided it must be an opaque pointer that will be provided when
the tracer function is called. Return 0 on success. Set an exception and return -1 on error.
Not that tracer functions must not create Python objects inside or otherwise the call will be re-entrant. The
tracer also must not clear any existing exception or set an exception. The GIL will be held every time the
tracer function is called.
The GIL must be held when calling this function.

Added in version 3.13.
PyRefTracer PyRefTracer_GetTracer(void **data)

Get the registered reference tracer function and the value of the opaque data pointer that was registered when
PyRefTracer_SetTracer() was called. If no tracer was registered this function will return NULL and
will set the data pointer to NULL.
The GIL must be held when calling this function.

Added in version 3.13.

228 Chapter 9. Initialization, Finalization, and Threads



The Python/C API, Release 3.13.0

9.10 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.
PyInterpreterState *PyInterpreterState_Head()

Return the interpreter state object at the head of the list of all such objects.
PyInterpreterState *PyInterpreterState_Main()

Return the main interpreter state object.
PyInterpreterState *PyInterpreterState_Next(PyInterpreterState *interp)

Return the next interpreter state object after interp from the list of all such objects.
PyThreadState *PyInterpreterState_ThreadHead(PyInterpreterState *interp)

Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter
interp.

PyThreadState *PyThreadState_Next(PyThreadState *tstate)
Return the next thread state object after tstate from the list of all such objects belonging to the same PyIn-
terpreterState object.

9.11 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native
TLS implementation to support the Python-level thread local storage API (threading.local). The CPython
C level APIs are similar to those offered by pthreads and Windows: use a thread key and functions to associate a
void* value per thread.
The GIL does not need to be held when calling these functions; they supply their own locking.
Note that Python.h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

Note

None of these API functions handle memory management on behalf of the void* values. You need to allocate
and deallocate them yourself. If the void* values happen to be PyObject*, these functions don’t do refcount
operations on them either.

9.11.1 Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses
a new type Py_tss_t instead of int to represent thread keys.
Added in version 3.7.

See also

“A New C-API for Thread-Local Storage in CPython” (PEP 539)

type Py_tss_t
This data structure represents the state of a thread key, the definition of which may depend on the underlying
TLS implementation, and it has an internal field representing the key’s initialization state. There are no public
members in this structure.
When Py_LIMITED_API is not defined, static allocation of this type by Py_tss_NEEDS_INIT is allowed.

9.10. Advanced Debugger Support 229

https://peps.python.org/pep-0539/


The Python/C API, Release 3.13.0

Py_tss_NEEDS_INIT

This macro expands to the initializer for Py_tss_t variables. Note that this macro won’t be defined with
Py_LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py_tss_t, required in extension modules built with Py_LIMITED_API, where static
allocation of this type is not possible due to its implementation being opaque at build time.
Py_tss_t *PyThread_tss_alloc()

Part of the Stable ABI since version 3.7. Return a value which is the same state as a value initialized with
Py_tss_NEEDS_INIT, or NULL in the case of dynamic allocation failure.

void PyThread_tss_free(Py_tss_t *key)
Part of the Stable ABI since version 3.7. Free the given key allocated by PyThread_tss_alloc(), after
first calling PyThread_tss_delete() to ensure any associated thread locals have been unassigned. This
is a no-op if the key argument is NULL.

Note

A freed key becomes a dangling pointer. You should reset the key to NULL.

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread_tss_set()
and PyThread_tss_get() are undefined if the given Py_tss_t has not been initialized by
PyThread_tss_create().
int PyThread_tss_is_created(Py_tss_t *key)

Part of the Stable ABI since version 3.7. Return a non-zero value if the given Py_tss_t has been initialized
by PyThread_tss_create().

int PyThread_tss_create(Py_tss_t *key)
Part of the Stable ABI since version 3.7. Return a zero value on successful initialization of a TSS key. The
behavior is undefined if the value pointed to by the key argument is not initialized by Py_tss_NEEDS_INIT.
This function can be called repeatedly on the same key – calling it on an already initialized key is a no-op and
immediately returns success.

void PyThread_tss_delete(Py_tss_t *key)
Part of the Stable ABI since version 3.7. Destroy a TSS key to forget the values associated with the key across
all threads, and change the key’s initialization state to uninitialized. A destroyed key is able to be initialized
again by PyThread_tss_create(). This function can be called repeatedly on the same key – calling it
on an already destroyed key is a no-op.

int PyThread_tss_set(Py_tss_t *key, void *value)
Part of the Stable ABI since version 3.7. Return a zero value to indicate successfully associating a void* value
with a TSS key in the current thread. Each thread has a distinct mapping of the key to a void* value.

void *PyThread_tss_get(Py_tss_t *key)
Part of the Stable ABI since version 3.7. Return the void* value associated with a TSS key in the current
thread. This returns NULL if no value is associated with the key in the current thread.

230 Chapter 9. Initialization, Finalization, and Threads



The Python/C API, Release 3.13.0

9.11.2 Thread Local Storage (TLS) API

Deprecated since version 3.7: This API is superseded by Thread Specific Storage (TSS) API.

Note

This version of the API does not support platforms where the native TLS key is defined in a way that cannot be
safely cast to int. On such platforms, PyThread_create_key() will return immediately with a failure
status, and the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.
int PyThread_create_key()

Part of the Stable ABI.
void PyThread_delete_key(int key)

Part of the Stable ABI.
int PyThread_set_key_value(int key, void *value)

Part of the Stable ABI.
void *PyThread_get_key_value(int key)

Part of the Stable ABI.
void PyThread_delete_key_value(int key)

Part of the Stable ABI.
void PyThread_ReInitTLS()

Part of the Stable ABI.

9.12 Synchronization Primitives

The C-API provides a basic mutual exclusion lock.
type PyMutex

A mutual exclusion lock. The PyMutex should be initialized to zero to represent the unlocked state. For
example:

PyMutex mutex = {0};

Instances of PyMutex should not be copied or moved. Both the contents and address of a PyMutex are
meaningful, and it must remain at a fixed, writable location in memory.

Note

A PyMutex currently occupies one byte, but the size should be considered unstable. The size may change
in future Python releases without a deprecation period.

Added in version 3.13.
void PyMutex_Lock(PyMutex *m)

Lock mutexm. If another thread has already locked it, the calling thread will block until the mutex is unlocked.
While blocked, the thread will temporarily release the GIL if it is held.
Added in version 3.13.

9.12. Synchronization Primitives 231



The Python/C API, Release 3.13.0

void PyMutex_Unlock(PyMutex *m)
Unlock mutex m. The mutex must be locked — otherwise, the function will issue a fatal error.
Added in version 3.13.

9.12.1 Python Critical Section API

The critical section API provides a deadlock avoidance layer on top of per-object locks for free-threaded CPython.
They are intended to replace reliance on the global interpreter lock, and are no-ops in versions of Python with the
global interpreter lock.
Critical sections avoid deadlocks by implicitly suspending active critical sections and releasing the locks during calls
to PyEval_SaveThread(). When PyEval_RestoreThread() is called, the most recent critical section
is resumed, and its locks reacquired. This means the critical section API provides weaker guarantees than traditional
locks – they are useful because their behavior is similar to the GIL.
The functions and structs used by the macros are exposed for cases where C macros are not available. They should
only be used as in the given macro expansions. Note that the sizes and contents of the structures may change in future
Python versions.

Note

Operations that need to lock two objects at once must use Py_BEGIN_CRITICAL_SECTION2. You cannot
use nested critical sections to lock more than one object at once, because the inner critical section may suspend
the outer critical sections. This API does not provide a way to lock more than two objects at once.

Example usage:

static PyObject *
set_field(MyObject *self, PyObject *value)
{

Py_BEGIN_CRITICAL_SECTION(self);
Py_SETREF(self->field, Py_XNewRef(value));
Py_END_CRITICAL_SECTION();
Py_RETURN_NONE;

}

In the above example, Py_SETREF calls Py_DECREF, which can call arbitrary code through an object’s dealloca-
tion function. The critical section API avoids potentital deadlocks due to reentrancy and lock ordering by allowing
the runtime to temporarily suspend the critical section if the code triggered by the finalizer blocks and calls PyE-
val_SaveThread().
Py_BEGIN_CRITICAL_SECTION(op)

Acquires the per-object lock for the object op and begins a critical section.
In the free-threaded build, this macro expands to:

{
PyCriticalSection _py_cs;
PyCriticalSection_Begin(&_py_cs, (PyObject*)(op))

In the default build, this macro expands to {.
Added in version 3.13.

Py_END_CRITICAL_SECTION()

Ends the critical section and releases the per-object lock.
In the free-threaded build, this macro expands to:

232 Chapter 9. Initialization, Finalization, and Threads



The Python/C API, Release 3.13.0

PyCriticalSection_End(&_py_cs);
}

In the default build, this macro expands to }.
Added in version 3.13.

Py_BEGIN_CRITICAL_SECTION2(a, b)
Acquires the per-objects locks for the objects a and b and begins a critical section. The locks are acquired in a
consistent order (lowest address first) to avoid lock ordering deadlocks.
In the free-threaded build, this macro expands to:

{
PyCriticalSection2 _py_cs2;
PyCriticalSection_Begin2(&_py_cs2, (PyObject*)(a), (PyObject*)(b))

In the default build, this macro expands to {.
Added in version 3.13.

Py_END_CRITICAL_SECTION2()

Ends the critical section and releases the per-object locks.
In the free-threaded build, this macro expands to:

PyCriticalSection_End2(&_py_cs2);
}

In the default build, this macro expands to }.
Added in version 3.13.

9.12. Synchronization Primitives 233



The Python/C API, Release 3.13.0

234 Chapter 9. Initialization, Finalization, and Threads



CHAPTER

TEN

PYTHON INITIALIZATION CONFIGURATION

Added in version 3.8.
Python can be initialized with Py_InitializeFromConfig() and the PyConfig structure. It can be preini-
tialized with Py_PreInitialize() and the PyPreConfig structure.
There are two kinds of configuration:

• The Python Configuration can be used to build a customized Python which behaves as the regular Python. For
example, environment variables and command line arguments are used to configure Python.

• The Isolated Configuration can be used to embed Python into an application. It isolates Python from the system.
For example, environment variables are ignored, the LC_CTYPE locale is left unchanged and no signal handler
is registered.

The Py_RunMain() function can be used to write a customized Python program.
See also Initialization, Finalization, and Threads.

See also

PEP 587 “Python Initialization Configuration”.

10.1 Example

Example of customized Python always running in isolated mode:

int main(int argc, char **argv)
{

PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);
config.isolated = 1;

/* Decode command line arguments.
Implicitly preinitialize Python (in isolated mode). */

status = PyConfig_SetBytesArgv(&config, argc, argv);
if (PyStatus_Exception(status)) {

goto exception;
}

status = Py_InitializeFromConfig(&config);
if (PyStatus_Exception(status)) {

goto exception;
}
PyConfig_Clear(&config);

(continues on next page)

235

https://peps.python.org/pep-0587/


The Python/C API, Release 3.13.0

(continued from previous page)

return Py_RunMain();

exception:
PyConfig_Clear(&config);
if (PyStatus_IsExit(status)) {

return status.exitcode;
}
/* Display the error message and exit the process with

non-zero exit code */
Py_ExitStatusException(status);

}

10.2 PyWideStringList

type PyWideStringList
List of wchar_t* strings.
If length is non-zero, items must be non-NULL and all strings must be non-NULL.
Methods:
PyStatus PyWideStringList_Append(PyWideStringList *list, const wchar_t *item)

Append item to list.
Python must be preinitialized to call this function.

PyStatus PyWideStringList_Insert(PyWideStringList *list, Py_ssize_t index, const wchar_t *item)
Insert item into list at index.
If index is greater than or equal to list length, append item to list.
index must be greater than or equal to 0.
Python must be preinitialized to call this function.

Structure fields:
Py_ssize_t length

List length.
wchar_t **items

List items.

10.3 PyStatus

type PyStatus
Structure to store an initialization function status: success, error or exit.
For an error, it can store the C function name which created the error.
Structure fields:
int exitcode

Exit code. Argument passed to exit().
const char *err_msg

Error message.

236 Chapter 10. Python Initialization Configuration



The Python/C API, Release 3.13.0

const char *func
Name of the function which created an error, can be NULL.

Functions to create a status:
PyStatus PyStatus_Ok(void)

Success.
PyStatus PyStatus_Error(const char *err_msg)

Initialization error with a message.
err_msg must not be NULL.

PyStatus PyStatus_NoMemory(void)
Memory allocation failure (out of memory).

PyStatus PyStatus_Exit(int exitcode)
Exit Python with the specified exit code.

Functions to handle a status:
int PyStatus_Exception(PyStatus status)

Is the status an error or an exit? If true, the exception must be handled; by calling
Py_ExitStatusException() for example.

int PyStatus_IsError(PyStatus status)
Is the result an error?

int PyStatus_IsExit(PyStatus status)
Is the result an exit?

void Py_ExitStatusException(PyStatus status)
Call exit(exitcode) if status is an exit. Print the error message and exit with a non-zero exit code
if status is an error. Must only be called if PyStatus_Exception(status) is non-zero.

Note

Internally, Python uses macros which set PyStatus.func, whereas functions to create a status set func to
NULL.

Example:

PyStatus alloc(void **ptr, size_t size)
{

*ptr = PyMem_RawMalloc(size);
if (*ptr == NULL) {

return PyStatus_NoMemory();
}
return PyStatus_Ok();

}

int main(int argc, char **argv)
{

void *ptr;
PyStatus status = alloc(&ptr, 16);
if (PyStatus_Exception(status)) {

Py_ExitStatusException(status);
}
PyMem_Free(ptr);
return 0;

}

10.3. PyStatus 237



The Python/C API, Release 3.13.0

10.4 PyPreConfig

type PyPreConfig
Structure used to preinitialize Python.
Function to initialize a preconfiguration:
void PyPreConfig_InitPythonConfig(PyPreConfig *preconfig)

Initialize the preconfiguration with Python Configuration.
void PyPreConfig_InitIsolatedConfig(PyPreConfig *preconfig)

Initialize the preconfiguration with Isolated Configuration.
Structure fields:
int allocator

Name of the Python memory allocators:
• PYMEM_ALLOCATOR_NOT_SET (0): don’t change memory allocators (use defaults).
• PYMEM_ALLOCATOR_DEFAULT (1): default memory allocators.
• PYMEM_ALLOCATOR_DEBUG (2): default memory allocators with debug hooks.
• PYMEM_ALLOCATOR_MALLOC (3): use malloc() of the C library.
• PYMEM_ALLOCATOR_MALLOC_DEBUG (4): force usage of malloc() with debug hooks.
• PYMEM_ALLOCATOR_PYMALLOC (5): Python pymalloc memory allocator.
• PYMEM_ALLOCATOR_PYMALLOC_DEBUG (6): Python pymalloc memory allocator with debug
hooks.

• PYMEM_ALLOCATOR_MIMALLOC (6): use mimalloc, a fast malloc replacement.
• PYMEM_ALLOCATOR_MIMALLOC_DEBUG (7): use mimalloc, a fast malloc replacement with
debug hooks.

PYMEM_ALLOCATOR_PYMALLOC and PYMEM_ALLOCATOR_PYMALLOC_DEBUG are not sup-
ported if Python is configured using --without-pymalloc.
PYMEM_ALLOCATOR_MIMALLOC and PYMEM_ALLOCATOR_MIMALLOC_DEBUG are not sup-
ported if Python is configured using --without-mimalloc or if the underlying atomic
support isn’t available.
See Memory Management.
Default: PYMEM_ALLOCATOR_NOT_SET.

int configure_locale
Set the LC_CTYPE locale to the user preferred locale.
If equals to 0, set coerce_c_locale and coerce_c_locale_warn members to 0.
See the locale encoding.
Default: 1 in Python config, 0 in isolated config.

int coerce_c_locale
If equals to 2, coerce the C locale.
If equals to 1, read the LC_CTYPE locale to decide if it should be coerced.
See the locale encoding.
Default: -1 in Python config, 0 in isolated config.

238 Chapter 10. Python Initialization Configuration



The Python/C API, Release 3.13.0

int coerce_c_locale_warn
If non-zero, emit a warning if the C locale is coerced.
Default: -1 in Python config, 0 in isolated config.

int dev_mode
Python Development Mode: see PyConfig.dev_mode.
Default: -1 in Python mode, 0 in isolated mode.

int isolated
Isolated mode: see PyConfig.isolated.
Default: 0 in Python mode, 1 in isolated mode.

int legacy_windows_fs_encoding
If non-zero:
• Set PyPreConfig.utf8_mode to 0,
• Set PyConfig.filesystem_encoding to "mbcs",
• Set PyConfig.filesystem_errors to "replace".

Initialized from the PYTHONLEGACYWINDOWSFSENCODING environment variable value.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.
Default: 0.

int parse_argv
If non-zero, Py_PreInitializeFromArgs() andPy_PreInitializeFromBytesArgs()
parse their argv argument the same way the regular Python parses command line arguments: see
Command Line Arguments.
Default: 1 in Python config, 0 in isolated config.

int use_environment
Use environment variables? See PyConfig.use_environment.
Default: 1 in Python config and 0 in isolated config.

int utf8_mode
If non-zero, enable the Python UTF-8 Mode.
Set to 0 or 1 by the -X utf8 command line option and the PYTHONUTF8 environment variable.
Also set to 1 if the LC_CTYPE locale is C or POSIX.
Default: -1 in Python config and 0 in isolated config.

10.5 Preinitialize Python with PyPreConfig

The preinitialization of Python:
• Set the Python memory allocators (PyPreConfig.allocator)
• Configure the LC_CTYPE locale (locale encoding)
• Set the Python UTF-8 Mode (PyPreConfig.utf8_mode)

The current preconfiguration (PyPreConfig type) is stored in _PyRuntime.preconfig.
Functions to preinitialize Python:

10.5. Preinitialize Python with PyPreConfig 239



The Python/C API, Release 3.13.0

PyStatus Py_PreInitialize(const PyPreConfig *preconfig)
Preinitialize Python from preconfig preconfiguration.
preconfig must not be NULL.

PyStatus Py_PreInitializeFromBytesArgs(const PyPreConfig *preconfig, int argc, char *const *argv)
Preinitialize Python from preconfig preconfiguration.
Parse argv command line arguments (bytes strings) if parse_argv of preconfig is non-zero.
preconfig must not be NULL.

PyStatus Py_PreInitializeFromArgs(const PyPreConfig *preconfig, int argc, wchar_t *const *argv)
Preinitialize Python from preconfig preconfiguration.
Parse argv command line arguments (wide strings) if parse_argv of preconfig is non-zero.
preconfig must not be NULL.

The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception() and
Py_ExitStatusException().
For Python Configuration (PyPreConfig_InitPythonConfig()), if Python is initialized with command line
arguments, the command line arguments must also be passed to preinitialize Python, since they have an effect on the
pre-configuration like encodings. For example, the -X utf8 command line option enables the Python UTF-8Mode.
PyMem_SetAllocator() can be called after Py_PreInitialize() and before
Py_InitializeFromConfig() to install a custom memory allocator. It can be called before
Py_PreInitialize() if PyPreConfig.allocator is set to PYMEM_ALLOCATOR_NOT_SET.
Python memory allocation functions like PyMem_RawMalloc()must not be used before the Python preinitializa-
tion, whereas calling directly malloc() and free() is always safe. Py_DecodeLocale() must not be called
before the Python preinitialization.
Example using the preinitialization to enable the Python UTF-8 Mode:

PyStatus status;
PyPreConfig preconfig;
PyPreConfig_InitPythonConfig(&preconfig);

preconfig.utf8_mode = 1;

status = Py_PreInitialize(&preconfig);
if (PyStatus_Exception(status)) {

Py_ExitStatusException(status);
}

/* at this point, Python speaks UTF-8 */

Py_Initialize();
/* ... use Python API here ... */
Py_Finalize();

10.6 PyConfig

type PyConfig
Structure containing most parameters to configure Python.
When done, the PyConfig_Clear() function must be used to release the configuration memory.
Structure methods:

240 Chapter 10. Python Initialization Configuration



The Python/C API, Release 3.13.0

void PyConfig_InitPythonConfig(PyConfig *config)
Initialize configuration with the Python Configuration.

void PyConfig_InitIsolatedConfig(PyConfig *config)
Initialize configuration with the Isolated Configuration.

PyStatus PyConfig_SetString(PyConfig *config, wchar_t *const *config_str, const wchar_t *str)
Copy the wide character string str into *config_str.
Preinitialize Python if needed.

PyStatus PyConfig_SetBytesString(PyConfig *config, wchar_t *const *config_str, const char *str)
Decode str using Py_DecodeLocale() and set the result into *config_str.
Preinitialize Python if needed.

PyStatus PyConfig_SetArgv(PyConfig *config, int argc, wchar_t *const *argv)
Set command line arguments (argv member of config) from the argv list of wide character strings.
Preinitialize Python if needed.

PyStatus PyConfig_SetBytesArgv(PyConfig *config, int argc, char *const *argv)
Set command line arguments (argv member of config) from the argv list of bytes strings. Decode bytes
using Py_DecodeLocale().
Preinitialize Python if needed.

PyStatus PyConfig_SetWideStringList(PyConfig *config, PyWideStringList *list, Py_ssize_t
length, wchar_t **items)

Set the list of wide strings list to length and items.
Preinitialize Python if needed.

PyStatus PyConfig_Read(PyConfig *config)
Read all Python configuration.
Fields which are already initialized are left unchanged.
Fields for path configuration are no longer calculated or modified when calling this function, as of Python
3.11.
The PyConfig_Read() function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are stripped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.
Preinitialize Python if needed.
Changed in version 3.10: The PyConfig.argv arguments are now only parsed once, PyConfig.
parse_argv is set to 2 after arguments are parsed, and arguments are only parsed if PyConfig.
parse_argv equals 1.
Changed in version 3.11: PyConfig_Read() no longer calculates all paths, and so fields listed un-
der Python Path Configuration may no longer be updated until Py_InitializeFromConfig() is
called.

void PyConfig_Clear(PyConfig *config)
Release configuration memory.

Most PyConfig methods preinitialize Python if needed. In that case, the Python preinitialization config-
uration (PyPreConfig) in based on the PyConfig. If configuration fields which are in common with
PyPreConfig are tuned, they must be set before calling a PyConfig method:

• PyConfig.dev_mode

• PyConfig.isolated

• PyConfig.parse_argv

10.6. PyConfig 241



The Python/C API, Release 3.13.0

• PyConfig.use_environment

Moreover, if PyConfig_SetArgv() or PyConfig_SetBytesArgv() is used, this method must be
called before other methods, since the preinitialization configuration depends on command line arguments (if
parse_argv is non-zero).
The caller of these methods is responsible to handle exceptions (error or exit) using PySta-
tus_Exception() and Py_ExitStatusException().
Structure fields:
PyWideStringList argv

Set sys.argv command line arguments based on argv. These parameters are similar to those passed
to the program’s main() function with the difference that the first entry should refer to the script file to
be executed rather than the executable hosting the Python interpreter. If there isn’t a script that will be
run, the first entry in argv can be an empty string.
Set parse_argv to 1 to parse argv the same way the regular Python parses Python command line
arguments and then to strip Python arguments from argv.
If argv is empty, an empty string is added to ensure that sys.argv always exists and is never empty.
Default: NULL.
See also the orig_argv member.

int safe_path
If equals to zero, Py_RunMain() prepends a potentially unsafe path to sys.path at startup:
• If argv[0] is equal to L"-m" (python -m module), prepend the current working directory.
• If running a script (python script.py), prepend the script’s directory. If it’s a symbolic link,
resolve symbolic links.

• Otherwise (python -c code and python), prepend an empty string, which means the current
working directory.

Set to 1 by the -P command line option and the PYTHONSAFEPATH environment variable.
Default: 0 in Python config, 1 in isolated config.
Added in version 3.11.

wchar_t *base_exec_prefix
sys.base_exec_prefix.
Default: NULL.
Part of the Python Path Configuration output.
See also PyConfig.exec_prefix.

wchar_t *base_executable
Python base executable: sys._base_executable.
Set by the __PYVENV_LAUNCHER__ environment variable.
Set from PyConfig.executable if NULL.
Default: NULL.
Part of the Python Path Configuration output.
See also PyConfig.executable.

wchar_t *base_prefix
sys.base_prefix.
Default: NULL.
Part of the Python Path Configuration output.

242 Chapter 10. Python Initialization Configuration



The Python/C API, Release 3.13.0

See also PyConfig.prefix.
int buffered_stdio

If equals to 0 and configure_c_stdio is non-zero, disable buffering on the C streams stdout and
stderr.
Set to 0 by the -u command line option and the PYTHONUNBUFFERED environment variable.
stdin is always opened in buffered mode.
Default: 1.

int bytes_warning
If equals to 1, issue a warning when comparing bytes or bytearraywith str, or comparing bytes
with int.
If equal or greater to 2, raise a BytesWarning exception in these cases.
Incremented by the -b command line option.
Default: 0.

int warn_default_encoding
If non-zero, emit a EncodingWarning warning when io.TextIOWrapper uses its default encod-
ing. See io-encoding-warning for details.
Default: 0.
Added in version 3.10.

int code_debug_ranges
If equals to 0, disables the inclusion of the end line and column mappings in code objects. Also disables
traceback printing carets to specific error locations.
Set to 0 by the PYTHONNODEBUGRANGES environment variable and by the -X no_debug_ranges
command line option.
Default: 1.
Added in version 3.11.

wchar_t *check_hash_pycs_mode
Control the validation behavior of hash-based .pyc files: value of the
--check-hash-based-pycs command line option.
Valid values:
• L"always": Hash the source file for invalidation regardless of value of the ‘check_source’ flag.
• L"never": Assume that hash-based pycs always are valid.
• L"default": The ‘check_source’ flag in hash-based pycs determines invalidation.

Default: L"default".
See also PEP 552 “Deterministic pycs”.

int configure_c_stdio
If non-zero, configure C standard streams:
• On Windows, set the binary mode (O_BINARY) on stdin, stdout and stderr.
• If buffered_stdio equals zero, disable buffering of stdin, stdout and stderr streams.
• If interactive is non-zero, enable stream buffering on stdin and stdout (only stdout on Win-
dows).

Default: 1 in Python config, 0 in isolated config.

10.6. PyConfig 243

https://peps.python.org/pep-0552/


The Python/C API, Release 3.13.0

int dev_mode
If non-zero, enable the Python Development Mode.
Set to 1 by the -X dev option and the PYTHONDEVMODE environment variable.
Default: -1 in Python mode, 0 in isolated mode.

int dump_refs
Dump Python references?
If non-zero, dump all objects which are still alive at exit.
Set to 1 by the PYTHONDUMPREFS environment variable.
Needs a special build of Python with the Py_TRACE_REFS macro defined: see the configure
--with-trace-refs option.
Default: 0.

wchar_t *exec_prefix
The site-specific directory prefix where the platform-dependent Python files are installed: sys.
exec_prefix.
Default: NULL.
Part of the Python Path Configuration output.
See also PyConfig.base_exec_prefix.

wchar_t *executable
The absolute path of the executable binary for the Python interpreter: sys.executable.
Default: NULL.
Part of the Python Path Configuration output.
See also PyConfig.base_executable.

int faulthandler
Enable faulthandler?
If non-zero, call faulthandler.enable() at startup.
Set to 1 by -X faulthandler and the PYTHONFAULTHANDLER environment variable.
Default: -1 in Python mode, 0 in isolated mode.

wchar_t *filesystem_encoding
Filesystem encoding: sys.getfilesystemencoding().
On macOS, Android and VxWorks: use "utf-8" by default.
On Windows: use "utf-8" by default, or "mbcs" if legacy_windows_fs_encoding of
PyPreConfig is non-zero.
Default encoding on other platforms:
• "utf-8" if PyPreConfig.utf8_mode is non-zero.
• "ascii" if Python detects that nl_langinfo(CODESET) announces the ASCII encoding,
whereas the mbstowcs() function decodes from a different encoding (usually Latin1).

• "utf-8" if nl_langinfo(CODESET) returns an empty string.
• Otherwise, use the locale encoding: nl_langinfo(CODESET) result.

At Python startup, the encoding name is normalized to the Python codec name. For example,
"ANSI_X3.4-1968" is replaced with "ascii".
See also the filesystem_errors member.

244 Chapter 10. Python Initialization Configuration



The Python/C API, Release 3.13.0

wchar_t *filesystem_errors
Filesystem error handler: sys.getfilesystemencodeerrors().
On Windows: use "surrogatepass" by default, or "replace" if
legacy_windows_fs_encoding of PyPreConfig is non-zero.
On other platforms: use "surrogateescape" by default.
Supported error handlers:
• "strict"

• "surrogateescape"

• "surrogatepass" (only supported with the UTF-8 encoding)
See also the filesystem_encoding member.

unsigned long hash_seed

int use_hash_seed
Randomized hash function seed.
If use_hash_seed is zero, a seed is chosen randomly at Python startup, and hash_seed is ignored.
Set by the PYTHONHASHSEED environment variable.
Default use_hash_seed value: -1 in Python mode, 0 in isolated mode.

wchar_t *home
Set the default Python “home” directory, that is, the location of the standard Python libraries (see
PYTHONHOME).
Set by the PYTHONHOME environment variable.
Default: NULL.
Part of the Python Path Configuration input.

int import_time
If non-zero, profile import time.
Set the 1 by the -X importtime option and the PYTHONPROFILEIMPORTTIME environment
variable.
Default: 0.

int inspect
Enter interactive mode after executing a script or a command.
If greater than 0, enable inspect: when a script is passed as first argument or the -c option is used, enter
interactive mode after executing the script or the command, even when sys.stdin does not appear to
be a terminal.
Incremented by the -i command line option. Set to 1 if the PYTHONINSPECT environment variable
is non-empty.
Default: 0.

int install_signal_handlers
Install Python signal handlers?
Default: 1 in Python mode, 0 in isolated mode.

int interactive
If greater than 0, enable the interactive mode (REPL).
Incremented by the -i command line option.
Default: 0.

10.6. PyConfig 245



The Python/C API, Release 3.13.0

int int_max_str_digits
Configures the integer string conversion length limitation. An initial value of -1 means the value will
be taken from the command line or environment or otherwise default to 4300 (sys.int_info.
default_max_str_digits). A value of 0 disables the limitation. Values greater than zero but less
than 640 (sys.int_info.str_digits_check_threshold) are unsupported andwill produce
an error.
Configured by the -X int_max_str_digits command line flag or the PYTHONINT-
MAXSTRDIGITS environment variable.
Default: -1 in Python mode. 4300 (sys.int_info.default_max_str_digits) in isolated
mode.
Added in version 3.12.

int cpu_count
If the value of cpu_count is not -1 then it will override the return values of os.cpu_count(),
os.process_cpu_count(), and multiprocessing.cpu_count().
Configured by the -X cpu_count=n|default command line flag or the PYTHON_CPU_COUNT
environment variable.
Default: -1.
Added in version 3.13.

int isolated
If greater than 0, enable isolated mode:
• Set safe_path to 1: don’t prepend a potentially unsafe path to sys.path at Python startup,
such as the current directory, the script’s directory or an empty string.

• Set use_environment to 0: ignore PYTHON environment variables.
• Set user_site_directory to 0: don’t add the user site directory to sys.path.
• Python REPL doesn’t import readline nor enable default readline configuration on interactive
prompts.

Set to 1 by the -I command line option.
Default: 0 in Python mode, 1 in isolated mode.
See also the Isolated Configuration and PyPreConfig.isolated.

int legacy_windows_stdio
If non-zero, use io.FileIO instead of io._WindowsConsoleIO for sys.stdin, sys.
stdout and sys.stderr.
Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.
Default: 0.
See also the PEP 528 (Change Windows console encoding to UTF-8).

int malloc_stats
If non-zero, dump statistics on Python pymalloc memory allocator at exit.
Set to 1 by the PYTHONMALLOCSTATS environment variable.
The option is ignored if Python is configured using the --without-pymalloc option.
Default: 0.

246 Chapter 10. Python Initialization Configuration

https://peps.python.org/pep-0528/


The Python/C API, Release 3.13.0

wchar_t *platlibdir
Platform library directory name: sys.platlibdir.
Set by the PYTHONPLATLIBDIR environment variable.
Default: value of the PLATLIBDIRmacro which is set by the configure --with-platlibdir
option (default: "lib", or "DLLs" on Windows).
Part of the Python Path Configuration input.
Added in version 3.9.
Changed in version 3.11: This macro is now used on Windows to locate the standard library extension
modules, typically under DLLs. However, for compatibility, note that this value is ignored for any non-
standard layouts, including in-tree builds and virtual environments.

wchar_t *pythonpath_env
Module search paths (sys.path) as a string separated by DELIM (os.pathsep).
Set by the PYTHONPATH environment variable.
Default: NULL.
Part of the Python Path Configuration input.

PyWideStringList module_search_paths

int module_search_paths_set
Module search paths: sys.path.
If module_search_paths_set is equal to 0, Py_InitializeFromConfig() will replace
module_search_paths and sets module_search_paths_set to 1.
Default: empty list (module_search_paths) and 0 (module_search_paths_set).
Part of the Python Path Configuration output.

int optimization_level
Compilation optimization level:
• 0: Peephole optimizer, set __debug__ to True.
• 1: Level 0, remove assertions, set __debug__ to False.
• 2: Level 1, strip docstrings.

Incremented by the -O command line option. Set to the PYTHONOPTIMIZE environment variable
value.
Default: 0.

PyWideStringList orig_argv
The list of the original command line arguments passed to the Python executable: sys.orig_argv.
If orig_argv list is empty and argv is not a list only containing an empty string, PyCon-
fig_Read() copies argv into orig_argv beforemodifying argv (if parse_argv is non-zero).
See also the argv member and the Py_GetArgcArgv() function.
Default: empty list.
Added in version 3.10.

int parse_argv
Parse command line arguments?
If equals to 1, parse argv the same way the regular Python parses command line arguments, and strip
Python arguments from argv.

10.6. PyConfig 247



The Python/C API, Release 3.13.0

The PyConfig_Read() function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are stripped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.
Default: 1 in Python mode, 0 in isolated mode.
Changed in version 3.10: The PyConfig.argv arguments are now only parsed if PyConfig.
parse_argv equals to 1.

int parser_debug
Parser debug mode. If greater than 0, turn on parser debugging output (for expert only, depending on
compilation options).
Incremented by the -d command line option. Set to the PYTHONDEBUG environment variable value.
Needs a debug build of Python (the Py_DEBUG macro must be defined).
Default: 0.

int pathconfig_warnings
If non-zero, calculation of path configuration is allowed to log warnings into stderr. If equals to 0,
suppress these warnings.
Default: 1 in Python mode, 0 in isolated mode.
Part of the Python Path Configuration input.
Changed in version 3.11: Now also applies on Windows.

wchar_t *prefix
The site-specific directory prefix where the platform independent Python files are installed: sys.
prefix.
Default: NULL.
Part of the Python Path Configuration output.
See also PyConfig.base_prefix.

wchar_t *program_name
Program name used to initialize executable and in early error messages during Python initialization.
• On macOS, use PYTHONEXECUTABLE environment variable if set.
• If the WITH_NEXT_FRAMEWORKmacro is defined, use __PYVENV_LAUNCHER__ environment
variable if set.

• Use argv[0] of argv if available and non-empty.
• Otherwise, use L"python" on Windows, or L"python3" on other platforms.

Default: NULL.
Part of the Python Path Configuration input.

wchar_t *pycache_prefix
Directory where cached .pyc files are written: sys.pycache_prefix.
Set by the -X pycache_prefix=PATH command line option and the PYTHONPYCACHEPREFIX
environment variable. The command-line option takes precedence.
If NULL, sys.pycache_prefix is set to None.
Default: NULL.

int quiet
Quiet mode. If greater than 0, don’t display the copyright and version at Python startup in interactive
mode.
Incremented by the -q command line option.

248 Chapter 10. Python Initialization Configuration



The Python/C API, Release 3.13.0

Default: 0.
wchar_t *run_command

Value of the -c command line option.
Used by Py_RunMain().
Default: NULL.

wchar_t *run_filename
Filename passed on the command line: trailing command line argument without -c or -m. It is used by
the Py_RunMain() function.
For example, it is set to script.py by the python3 script.py arg command line.
See also the PyConfig.skip_source_first_line option.
Default: NULL.

wchar_t *run_module
Value of the -m command line option.
Used by Py_RunMain().
Default: NULL.

wchar_t *run_presite
package.module path to module that should be imported before site.py is run.
Set by the -X presite=package.module command-line option and the PYTHON_PRESITE
environment variable. The command-line option takes precedence.
Needs a debug build of Python (the Py_DEBUG macro must be defined).
Default: NULL.

int show_ref_count
Show total reference count at exit (excluding immortal objects)?
Set to 1 by -X showrefcount command line option.
Needs a debug build of Python (the Py_REF_DEBUG macro must be defined).
Default: 0.

int site_import
Import the site module at startup?
If equal to zero, disable the import of the module site and the site-dependent manipulations of sys.
path that it entails.
Also disable these manipulations if the site module is explicitly imported later (call site.main()
if you want them to be triggered).
Set to 0 by the -S command line option.
sys.flags.no_site is set to the inverted value of site_import.
Default: 1.

int skip_source_first_line
If non-zero, skip the first line of the PyConfig.run_filename source.
It allows the usage of non-Unix forms of #!cmd. This is intended for a DOS specific hack only.
Set to 1 by the -x command line option.
Default: 0.

wchar_t *stdio_encoding

10.6. PyConfig 249



The Python/C API, Release 3.13.0

wchar_t *stdio_errors
Encoding and encoding errors of sys.stdin, sys.stdout and sys.stderr (but sys.stderr
always uses "backslashreplace" error handler).
Use the PYTHONIOENCODING environment variable if it is non-empty.
Default encoding:
• "UTF-8" if PyPreConfig.utf8_mode is non-zero.
• Otherwise, use the locale encoding.

Default error handler:
• On Windows: use "surrogateescape".
• "surrogateescape" if PyPreConfig.utf8_mode is non-zero, or if the LC_CTYPE lo-
cale is “C” or “POSIX”.

• "strict" otherwise.
See also PyConfig.legacy_windows_stdio.

int tracemalloc
Enable tracemalloc?
If non-zero, call tracemalloc.start() at startup.
Set by -X tracemalloc=N command line option and by the PYTHONTRACEMALLOC environment
variable.
Default: -1 in Python mode, 0 in isolated mode.

int perf_profiling
Enable compatibility mode with the perf profiler?
If non-zero, initialize the perf trampoline. See perf_profiling for more information.
Set by -X perf command-line option and by the PYTHON_PERF_JIT_SUPPORT environment
variable for perf support with stack pointers and -X perf_jit command-line option and by the
PYTHON_PERF_JIT_SUPPORT environment variable for perf support with DWARF JIT informa-
tion.
Default: -1.
Added in version 3.12.

int use_environment
Use environment variables?
If equals to zero, ignore the environment variables.
Set to 0 by the -E environment variable.
Default: 1 in Python config and 0 in isolated config.

int user_site_directory
If non-zero, add the user site directory to sys.path.
Set to 0 by the -s and -I command line options.
Set to 0 by the PYTHONNOUSERSITE environment variable.
Default: 1 in Python mode, 0 in isolated mode.

int verbose
Verbose mode. If greater than 0, print a message each time a module is imported, showing the place
(filename or built-in module) from which it is loaded.
If greater than or equal to 2, print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit.

250 Chapter 10. Python Initialization Configuration



The Python/C API, Release 3.13.0

Incremented by the -v command line option.
Set by the PYTHONVERBOSE environment variable value.
Default: 0.

PyWideStringList warnoptions
Options of the warnings module to build warnings filters, lowest to highest priority: sys.
warnoptions.
The warnings module adds sys.warnoptions in the reverse order: the last PyConfig.
warnoptions item becomes the first item of warnings.filters which is checked first (highest
priority).
The -W command line options adds its value to warnoptions, it can be used multiple times.
ThePYTHONWARNINGS environment variable can also be used to addwarning options. Multiple options
can be specified, separated by commas (,).
Default: empty list.

int write_bytecode
If equal to 0, Python won’t try to write .pyc files on the import of source modules.
Set to 0 by the -B command line option and the PYTHONDONTWRITEBYTECODE environment vari-
able.
sys.dont_write_bytecode is initialized to the inverted value of write_bytecode.
Default: 1.

PyWideStringList xoptions
Values of the -X command line options: sys._xoptions.
Default: empty list.

If parse_argv is non-zero, argv arguments are parsed the same way the regular Python parses command line
arguments, and Python arguments are stripped from argv.
The xoptions options are parsed to set other options: see the -X command line option.
Changed in version 3.9: The show_alloc_count field has been removed.

10.7 Initialization with PyConfig

Function to initialize Python:
PyStatus Py_InitializeFromConfig(const PyConfig *config)

Initialize Python from config configuration.
The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception() and
Py_ExitStatusException().
If PyImport_FrozenModules(), PyImport_AppendInittab() or PyIm-
port_ExtendInittab() are used, they must be set or called after Python preinitialization and before
the Python initialization. If Python is initialized multiple times, PyImport_AppendInittab() or PyIm-
port_ExtendInittab() must be called before each Python initialization.
The current configuration (PyConfig type) is stored in PyInterpreterState.config.
Example setting the program name:

void init_python(void)
{

PyStatus status;

(continues on next page)

10.7. Initialization with PyConfig 251



The Python/C API, Release 3.13.0

(continued from previous page)
PyConfig config;
PyConfig_InitPythonConfig(&config);

/* Set the program name. Implicitly preinitialize Python. */
status = PyConfig_SetString(&config, &config.program_name,

L"/path/to/my_program");
if (PyStatus_Exception(status)) {

goto exception;
}

status = Py_InitializeFromConfig(&config);
if (PyStatus_Exception(status)) {

goto exception;
}
PyConfig_Clear(&config);
return;

exception:
PyConfig_Clear(&config);
Py_ExitStatusException(status);

}

More complete example modifying the default configuration, read the configuration, and then override some param-
eters. Note that since 3.11, many parameters are not calculated until initialization, and so values cannot be read from
the configuration structure. Any values set before initialize is called will be left unchanged by initialization:

PyStatus init_python(const char *program_name)
{

PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);

/* Set the program name before reading the configuration
(decode byte string from the locale encoding).

Implicitly preinitialize Python. */
status = PyConfig_SetBytesString(&config, &config.program_name,

program_name);
if (PyStatus_Exception(status)) {

goto done;
}

/* Read all configuration at once */
status = PyConfig_Read(&config);
if (PyStatus_Exception(status)) {

goto done;
}

/* Specify sys.path explicitly */
/* If you want to modify the default set of paths, finish

initialization first and then use PySys_GetObject("path") */
config.module_search_paths_set = 1;
status = PyWideStringList_Append(&config.module_search_paths,

L"/path/to/stdlib");
if (PyStatus_Exception(status)) {

goto done;
}
status = PyWideStringList_Append(&config.module_search_paths,

L"/path/to/more/modules");
if (PyStatus_Exception(status)) {

(continues on next page)

252 Chapter 10. Python Initialization Configuration



The Python/C API, Release 3.13.0

(continued from previous page)
goto done;

}

/* Override executable computed by PyConfig_Read() */
status = PyConfig_SetString(&config, &config.executable,

L"/path/to/my_executable");
if (PyStatus_Exception(status)) {

goto done;
}

status = Py_InitializeFromConfig(&config);

done:
PyConfig_Clear(&config);
return status;

}

10.8 Isolated Configuration

PyPreConfig_InitIsolatedConfig() and PyConfig_InitIsolatedConfig() functions create
a configuration to isolate Python from the system. For example, to embed Python into an application.
This configuration ignores global configuration variables, environment variables, command line arguments
(PyConfig.argv is not parsed) and user site directory. The C standard streams (ex: stdout) and the
LC_CTYPE locale are left unchanged. Signal handlers are not installed.
Configuration files are still used with this configuration to determine paths that are unspecified. Ensure PyConfig.
home is specified to avoid computing the default path configuration.

10.9 Python Configuration

PyPreConfig_InitPythonConfig() and PyConfig_InitPythonConfig() functions create a con-
figuration to build a customized Python which behaves as the regular Python.
Environments variables and command line arguments are used to configure Python, whereas global configuration
variables are ignored.
This function enables C locale coercion (PEP 538) and Python UTF-8 Mode (PEP 540) depending on the
LC_CTYPE locale, PYTHONUTF8 and PYTHONCOERCECLOCALE environment variables.

10.10 Python Path Configuration

PyConfig contains multiple fields for the path configuration:
• Path configuration inputs:

– PyConfig.home

– PyConfig.platlibdir

– PyConfig.pathconfig_warnings

– PyConfig.program_name

– PyConfig.pythonpath_env

– current working directory: to get absolute paths

10.8. Isolated Configuration 253

https://peps.python.org/pep-0538/
https://peps.python.org/pep-0540/


The Python/C API, Release 3.13.0

– PATH environment variable to get the program full path (from PyConfig.program_name)
– __PYVENV_LAUNCHER__ environment variable
– (Windows only) Application paths in the registry under “SoftwarePythonPythonCoreX.YPythonPath” of
HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE (where X.Y is the Python version).

• Path configuration output fields:
– PyConfig.base_exec_prefix

– PyConfig.base_executable

– PyConfig.base_prefix

– PyConfig.exec_prefix

– PyConfig.executable

– PyConfig.module_search_paths_set, PyConfig.module_search_paths
– PyConfig.prefix

If at least one “output field” is not set, Python calculates the path configuration to fill unset fields.
If module_search_paths_set is equal to 0, module_search_paths is overridden and mod-
ule_search_paths_set is set to 1.
It is possible to completely ignore the function calculating the default path configuration by setting explicitly
all path configuration output fields listed above. A string is considered as set even if it is non-empty. mod-
ule_search_paths is considered as set if module_search_paths_set is set to 1. In this case, mod-
ule_search_paths will be used without modification.
Set pathconfig_warnings to 0 to suppress warnings when calculating the path configuration (Unix only, Win-
dows does not log any warning).
If base_prefix or base_exec_prefix fields are not set, they inherit their value from prefix and
exec_prefix respectively.
Py_RunMain() and Py_Main() modify sys.path:

• If run_filename is set and is a directory which contains a __main__.py script, prepend
run_filename to sys.path.

• If isolated is zero:
– If run_module is set, prepend the current directory to sys.path. Do nothing if the current directory
cannot be read.

– If run_filename is set, prepend the directory of the filename to sys.path.
– Otherwise, prepend an empty string to sys.path.

If site_import is non-zero, sys.path can be modified by the site module. If user_site_directory
is non-zero and the user’s site-package directory exists, the site module appends the user’s site-package directory
to sys.path.
The following configuration files are used by the path configuration:

• pyvenv.cfg

• ._pth file (ex: python._pth)
• pybuilddir.txt (Unix only)

If a ._pth file is present:
• Set isolated to 1.
• Set use_environment to 0.
• Set site_import to 0.
• Set safe_path to 1.

254 Chapter 10. Python Initialization Configuration



The Python/C API, Release 3.13.0

The __PYVENV_LAUNCHER__ environment variable is used to set PyConfig.base_executable.

10.11 Py_RunMain()

int Py_RunMain(void)
Execute the command (PyConfig.run_command), the script (PyConfig.run_filename) or the
module (PyConfig.run_module) specified on the command line or in the configuration.
By default and when if -i option is used, run the REPL.
Finally, finalizes Python and returns an exit status that can be passed to the exit() function.

See Python Configuration for an example of customized Python always running in isolated mode using
Py_RunMain().

10.12 Py_GetArgcArgv()

void Py_GetArgcArgv(int *argc, wchar_t ***argv)
Get the original command line arguments, before Python modified them.
See also PyConfig.orig_argv member.

10.13 Multi-Phase Initialization Private Provisional API

This section is a private provisional API introducing multi-phase initialization, the core feature of PEP 432:
• “Core” initialization phase, “bare minimum Python”:

– Builtin types;
– Builtin exceptions;
– Builtin and frozen modules;
– The sys module is only partially initialized (ex: sys.path doesn’t exist yet).

• “Main” initialization phase, Python is fully initialized:
– Install and configure importlib;
– Apply the Path Configuration;
– Install signal handlers;
– Finish sys module initialization (ex: create sys.stdout and sys.path);
– Enable optional features like faulthandler and tracemalloc;
– Import the site module;
– etc.

Private provisional API:
• PyConfig._init_main: if set to 0, Py_InitializeFromConfig() stops at the “Core” initializa-
tion phase.

PyStatus _Py_InitializeMain(void)
Move to the “Main” initialization phase, finish the Python initialization.

10.11. Py_RunMain() 255

https://peps.python.org/pep-0432/


The Python/C API, Release 3.13.0

No module is imported during the “Core” phase and the importlib module is not configured: the Path Configu-
ration is only applied during the “Main” phase. It may allow to customize Python in Python to override or tune the
Path Configuration, maybe install a custom sys.meta_path importer or an import hook, etc.
It may become possible to calculate the Path Configuration in Python, after the Core phase and before theMain phase,
which is one of the PEP 432 motivation.
The “Core” phase is not properly defined: what should be and what should not be available at this phase is not specified
yet. The API is marked as private and provisional: the API can be modified or even be removed anytime until a proper
public API is designed.
Example running Python code between “Core” and “Main” initialization phases:

void init_python(void)
{

PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);
config._init_main = 0;

/* ... customize 'config' configuration ... */

status = Py_InitializeFromConfig(&config);
PyConfig_Clear(&config);
if (PyStatus_Exception(status)) {

Py_ExitStatusException(status);
}

/* Use sys.stderr because sys.stdout is only created
by _Py_InitializeMain() */

int res = PyRun_SimpleString(
"import sys; "
"print('Run Python code before _Py_InitializeMain', "

"file=sys.stderr)");
if (res < 0) {

exit(1);
}

/* ... put more configuration code here ... */

status = _Py_InitializeMain();
if (PyStatus_Exception(status)) {

Py_ExitStatusException(status);
}

}

256 Chapter 10. Python Initialization Configuration

https://peps.python.org/pep-0432/


CHAPTER

ELEVEN

MEMORY MANAGEMENT

11.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The man-
agement of this private heap is ensured internally by the Python memory manager. The Python memory manager
has different components which deal with various dynamic storage management aspects, like sharing, segmentation,
preallocation or caching.
At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all
Python-related data by interacting with the memory manager of the operating system. On top of the raw memory
allocator, several object-specific allocators operate on the same heap and implement distinct memory management
policies adapted to the peculiarities of every object type. For example, integer objects are managed differently within
the heap than strings, tuples or dictionaries because integers imply different storage requirements and speed/space
tradeoffs. The Python memory manager thus delegates some of the work to the object-specific allocators, but ensures
that the latter operate within the bounds of the private heap.
It is important to understand that the management of the Python heap is performed by the interpreter itself and that
the user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap.
The allocation of heap space for Python objects and other internal buffers is performed on demand by the Python
memory manager through the Python/C API functions listed in this document.
To avoid memory corruption, extension writers should never try to operate on Python objects with the functions
exported by the C library: malloc(), calloc(), realloc() and free(). This will result in mixed calls
between the C allocator and the Python memory manager with fatal consequences, because they implement different
algorithms and operate on different heaps. However, one may safely allocate and release memory blocks with the C
library allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

...Do some I/O operation involving buf...
res = PyBytes_FromString(buf);
free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the bytes object returned as a result.
In most situations, however, it is recommended to allocate memory from the Python heap specifically because the
latter is under control of the Python memory manager. For example, this is required when the interpreter is extended
with new object types written in C. Another reason for using the Python heap is the desire to inform the Python
memory manager about the memory needs of the extension module. Even when the requested memory is used
exclusively for internal, highly specific purposes, delegating all memory requests to the Python memory manager
causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently, under certain
circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage collection,

257



The Python/C API, Release 3.13.0

memory compaction or other preventive procedures. Note that by using the C library allocator as shown in the
previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

See also

The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.
The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allo-
cator every time a new pymalloc object arena is created, and on shutdown.

11.2 Allocator Domains

All allocating functions belong to one of three different “domains” (see also PyMemAllocatorDomain). These
domains represent different allocation strategies and are optimized for different purposes. The specific details on how
every domain allocates memory or what internal functions each domain calls is considered an implementation detail,
but for debugging purposes a simplified table can be found at here. The APIs used to allocate and free a block of
memory must be from the same domain. For example, PyMem_Free() must be used to free memory allocated
using PyMem_Malloc().
The three allocation domains are:

• Raw domain: intended for allocating memory for general-purpose memory buffers where the allocation must
go to the system allocator or where the allocator can operate without theGIL. The memory is requested directly
from the system. See Raw Memory Interface.

• “Mem” domain: intended for allocatingmemory for Python buffers and general-purposememory buffers where
the allocation must be performed with the GIL held. The memory is taken from the Python private heap. See
Memory Interface.

• Object domain: intended for allocating memory for Python objects. The memory is taken from the Python
private heap. See Object allocators.

Note

The free-threaded build requires that only Python objects are allocated using the “object” domain and that all
Python objects are allocated using that domain. This differs from the prior Python versions, where this was only
a best practice and not a hard requirement.
For example, buffers (non-Python objects) should be allocated using PyMem_Malloc(),
PyMem_RawMalloc(), or malloc(), but not PyObject_Malloc().
See Memory Allocation APIs.

11.3 Raw Memory Interface

The following function sets are wrappers to the system allocator. These functions are thread-safe, the GIL does not
need to be held.
The default raw memory allocator uses the following functions: malloc(), calloc(), realloc() and
free(); call malloc(1) (or calloc(1, 1)) when requesting zero bytes.
Added in version 3.4.
void *PyMem_RawMalloc(size_t n)

Part of the Stable ABI since version 3.13. Allocates n bytes and returns a pointer of type void* to the allocated
memory, or NULL if the request fails.

258 Chapter 11. Memory Management



The Python/C API, Release 3.13.0

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc(1) had
been called instead. The memory will not have been initialized in any way.

void *PyMem_RawCalloc(size_t nelem, size_t elsize)
Part of the Stable ABI since version 3.13. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to
zeros.
Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc(1, 1) had been called instead.
Added in version 3.5.

void *PyMem_RawRealloc(void *p, size_t n)
Part of the Stable ABI since version 3.13. Resizes the memory block pointed to by p to n bytes. The contents
will be unchanged to the minimum of the old and the new sizes.
If p is NULL, the call is equivalent to PyMem_RawMalloc(n); else if n is equal to zero, the memory block
is resized but is not freed, and the returned pointer is non-NULL.
Unless p is NULL, it must have been returned by a previous call to PyMem_RawMalloc(),
PyMem_RawRealloc() or PyMem_RawCalloc().
If the request fails, PyMem_RawRealloc() returns NULL and p remains a valid pointer to the previous
memory area.

void PyMem_RawFree(void *p)
Part of the Stable ABI since version 3.13. Frees the memory block pointed to by p, which
must have been returned by a previous call to PyMem_RawMalloc(), PyMem_RawRealloc() or
PyMem_RawCalloc(). Otherwise, or if PyMem_RawFree(p) has been called before, undefined be-
havior occurs.
If p is NULL, no operation is performed.

11.4 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.
The default memory allocator uses the pymalloc memory allocator.

Warning

The GIL must be held when using these functions.

Changed in version 3.6: The default allocator is now pymalloc instead of system malloc().
void *PyMem_Malloc(size_t n)

Part of the Stable ABI. Allocates n bytes and returns a pointer of type void* to the allocated memory, or
NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc(1) had been
called instead. The memory will not have been initialized in any way.

void *PyMem_Calloc(size_t nelem, size_t elsize)
Part of the Stable ABI since version 3.7. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to
zeros.
Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc(1, 1) had been called instead.

11.4. Memory Interface 259



The Python/C API, Release 3.13.0

Added in version 3.5.
void *PyMem_Realloc(void *p, size_t n)

Part of the Stable ABI. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged
to the minimum of the old and the new sizes.
If p is NULL, the call is equivalent to PyMem_Malloc(n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.
Unless p isNULL, it must have been returned by a previous call toPyMem_Malloc(), PyMem_Realloc()
or PyMem_Calloc().
If the request fails, PyMem_Realloc() returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free(void *p)
Part of the Stable ABI. Frees the memory block pointed to by p, which must have been returned by a
previous call to PyMem_Malloc(), PyMem_Realloc() or PyMem_Calloc(). Otherwise, or if
PyMem_Free(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.
PyMem_New(TYPE, n)

Same as PyMem_Malloc(), but allocates (n * sizeof(TYPE)) bytes of memory. Returns a pointer
cast to TYPE*. The memory will not have been initialized in any way.

PyMem_Resize(p, TYPE, n)
Same as PyMem_Realloc(), but the memory block is resized to (n * sizeof(TYPE)) bytes. Returns
a pointer cast to TYPE*. On return, pwill be a pointer to the newmemory area, or NULL in the event of failure.
This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory
when handling errors.

void PyMem_Del(void *p)
Same as PyMem_Free().

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving
the C API functions listed above. However, note that their use does not preserve binary compatibility across Python
versions and is therefore deprecated in extension modules.

• PyMem_MALLOC(size)

• PyMem_NEW(type, size)

• PyMem_REALLOC(ptr, size)

• PyMem_RESIZE(ptr, type, size)

• PyMem_FREE(ptr)

• PyMem_DEL(ptr)

11.5 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

Note

There is no guarantee that the memory returned by these allocators can be successfully cast to a Python object
when intercepting the allocating functions in this domain by the methods described in the Customize Memory
Allocators section.

260 Chapter 11. Memory Management



The Python/C API, Release 3.13.0

The default object allocator uses the pymalloc memory allocator.

Warning

The GIL must be held when using these functions.

void *PyObject_Malloc(size_t n)
Part of the Stable ABI. Allocates n bytes and returns a pointer of type void* to the allocated memory, or
NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc(1) had
been called instead. The memory will not have been initialized in any way.

void *PyObject_Calloc(size_t nelem, size_t elsize)
Part of the Stable ABI since version 3.7. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to
zeros.
Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc(1, 1) had been called instead.
Added in version 3.5.

void *PyObject_Realloc(void *p, size_t n)
Part of the Stable ABI. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged
to the minimum of the old and the new sizes.
If p is NULL, the call is equivalent to PyObject_Malloc(n); else if n is equal to zero, the memory block
is resized but is not freed, and the returned pointer is non-NULL.
Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(), PyOb-
ject_Realloc() or PyObject_Calloc().
If the request fails, PyObject_Realloc() returns NULL and p remains a valid pointer to the previous
memory area.

void PyObject_Free(void *p)
Part of the Stable ABI. Frees the memory block pointed to by p, which must have been returned by a previous
call to PyObject_Malloc(), PyObject_Realloc() or PyObject_Calloc(). Otherwise, or if
PyObject_Free(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

11.6 Default Memory Allocators

Default memory allocators:

Configuration Name PyMem_RawMallocPyMem_Malloc PyOb-
ject_Malloc

Release build "pymalloc" malloc pymalloc pymalloc
Debug build "pymal-

loc_debug"
malloc + debug pymalloc +

debug
pymalloc +
debug

Release build, without py-
malloc

"malloc" malloc malloc malloc

Debug build, without py-
malloc

"mal-
loc_debug"

malloc + debug malloc + de-
bug

malloc + de-
bug

Legend:

11.6. Default Memory Allocators 261



The Python/C API, Release 3.13.0

• Name: value for PYTHONMALLOC environment variable.
• malloc: system allocators from the standard C library, C functions: malloc(), calloc(), realloc()
and free().

• pymalloc: pymalloc memory allocator.
• mimalloc: mimalloc memory allocator. The pymalloc allocator will be used if mimalloc support isn’t avail-
able.

• “+ debug”: with debug hooks on the Python memory allocators.
• “Debug build”: Python build in debug mode.

11.7 Customize Memory Allocators

Added in version 3.4.
type PyMemAllocatorEx

Structure used to describe a memory block allocator. The structure has the following fields:

Field Meaning
void *ctx user context passed as first argument
void* malloc(void *ctx, size_t size) allocate a memory block
void* calloc(void *ctx, size_t nelem, size_t
elsize)

allocate a memory block initialized
with zeros

void* realloc(void *ctx, void *ptr, size_t
new_size)

allocate or resize a memory block

void free(void *ctx, void *ptr) free a memory block

Changed in version 3.5: The PyMemAllocator structure was renamed to PyMemAllocatorEx and a
new calloc field was added.

type PyMemAllocatorDomain
Enum used to identify an allocator domain. Domains:
PYMEM_DOMAIN_RAW

Functions:
• PyMem_RawMalloc()

• PyMem_RawRealloc()

• PyMem_RawCalloc()

• PyMem_RawFree()

PYMEM_DOMAIN_MEM

Functions:
• PyMem_Malloc(),
• PyMem_Realloc()

• PyMem_Calloc()

• PyMem_Free()

PYMEM_DOMAIN_OBJ

Functions:
• PyObject_Malloc()

• PyObject_Realloc()

262 Chapter 11. Memory Management



The Python/C API, Release 3.13.0

• PyObject_Calloc()

• PyObject_Free()

void PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Get the memory block allocator of the specified domain.

void PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Set the memory block allocator of the specified domain.
The new allocator must return a distinct non-NULL pointer when requesting zero bytes.
For the PYMEM_DOMAIN_RAW domain, the allocator must be thread-safe: the GIL is not held when the
allocator is called.
For the remaining domains, the allocator must also be thread-safe: the allocator may be called in different
interpreters that do not share a GIL.
If the new allocator is not a hook (does not call the previous allocator), the PyMem_SetupDebugHooks()
function must be called to reinstall the debug hooks on top on the new allocator.
See also PyPreConfig.allocator and Preinitialize Python with PyPreConfig.

Warning

PyMem_SetAllocator() does have the following contract:
• It can be called after Py_PreInitialize() and before Py_InitializeFromConfig()
to install a custom memory allocator. There are no restrictions over the installed allocator other than
the ones imposed by the domain (for instance, the Raw Domain allows the allocator to be called
without the GIL held). See the section on allocator domains for more information.

• If called after Python has finish initializing (after Py_InitializeFromConfig() has been
called) the allocator must wrap the existing allocator. Substituting the current allocator for some
other arbitrary one is not supported.

Changed in version 3.12: All allocators must be thread-safe.
void PyMem_SetupDebugHooks(void)

Setup debug hooks in the Python memory allocators to detect memory errors.

11.8 Debug hooks on the Python memory allocators

When Python is built in debug mode, the PyMem_SetupDebugHooks() function is called at the Python preini-
tialization to setup debug hooks on Python memory allocators to detect memory errors.
The PYTHONMALLOC environment variable can be used to install debug hooks on a Python compiled in release
mode (ex: PYTHONMALLOC=debug).
The PyMem_SetupDebugHooks() function can be used to set debug hooks after calling
PyMem_SetAllocator().
These debug hooks fill dynamically allocated memory blocks with special, recognizable bit patterns. Newly al-
located memory is filled with the byte 0xCD (PYMEM_CLEANBYTE), freed memory is filled with the byte
0xDD (PYMEM_DEADBYTE). Memory blocks are surrounded by “forbidden bytes” filled with the byte 0xFD
(PYMEM_FORBIDDENBYTE). Strings of these bytes are unlikely to be valid addresses, floats, or ASCII strings.
Runtime checks:

• Detect API violations. For example, detect if PyObject_Free() is called on a memory block allocated by
PyMem_Malloc().

• Detect write before the start of the buffer (buffer underflow).

11.8. Debug hooks on the Python memory allocators 263



The Python/C API, Release 3.13.0

• Detect write after the end of the buffer (buffer overflow).
• Check that theGIL is held when allocator functions ofPYMEM_DOMAIN_OBJ (ex: PyObject_Malloc())
and PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are called.

On error, the debug hooks use the tracemallocmodule to get the traceback where a memory block was allocated.
The traceback is only displayed if tracemalloc is tracing Python memory allocations and the memory block was
traced.
Let S = sizeof(size_t). 2*S bytes are added at each end of each block of N bytes requested. The memory
layout is like so, where p represents the address returned by a malloc-like or realloc-like function (p[i:j] means
the slice of bytes from *(p+i) inclusive up to *(p+j) exclusive; note that the treatment of negative indices differs
from a Python slice):
p[-2*S:-S]

Number of bytes originally asked for. This is a size_t, big-endian (easier to read in a memory dump).
p[-S]

API identifier (ASCII character):
• 'r' for PYMEM_DOMAIN_RAW .
• 'm' for PYMEM_DOMAIN_MEM .
• 'o' for PYMEM_DOMAIN_OBJ .

p[-S+1:0]
Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads.

p[0:N]
The requested memory, filled with copies of PYMEM_CLEANBYTE, used to catch reference to uninitial-
ized memory. When a realloc-like function is called requesting a larger memory block, the new excess bytes
are also filled with PYMEM_CLEANBYTE. When a free-like function is called, these are overwritten with
PYMEM_DEADBYTE, to catch reference to freed memory. When a realloc- like function is called requesting
a smaller memory block, the excess old bytes are also filled with PYMEM_DEADBYTE.

p[N:N+S]
Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads.

p[N+S:N+2*S]
Only used if the PYMEM_DEBUG_SERIALNO macro is defined (not defined by default).
A serial number, incremented by 1 on each call to a malloc-like or realloc-like function. Big-endian size_t.
If “bad memory” is detected later, the serial number gives an excellent way to set a breakpoint on the next run,
to capture the instant at which this block was passed out. The static function bumpserialno() in obmalloc.c is
the only place the serial number is incremented, and exists so you can set such a breakpoint easily.

A realloc-like or free-like function first checks that the PYMEM_FORBIDDENBYTE bytes at each end are intact.
If they’ve been altered, diagnostic output is written to stderr, and the program is aborted via Py_FatalError(). The
other main failure mode is provoking a memory error when a program reads up one of the special bit patterns and
tries to use it as an address. If you get in a debugger then and look at the object, you’re likely to see that it’s entirely
filled with PYMEM_DEADBYTE (meaning freed memory is getting used) or PYMEM_CLEANBYTE (meaning
uninitialized memory is getting used).
Changed in version 3.6: The PyMem_SetupDebugHooks() function now also works on Python compiled in
release mode. On error, the debug hooks now use tracemalloc to get the traceback where a memory block
was allocated. The debug hooks now also check if the GIL is held when functions of PYMEM_DOMAIN_OBJ and
PYMEM_DOMAIN_MEM domains are called.
Changed in version 3.8: Byte patterns 0xCB (PYMEM_CLEANBYTE), 0xDB (PYMEM_DEADBYTE) and 0xFB
(PYMEM_FORBIDDENBYTE) have been replacedwith0xCD,0xDD and0xFD to use the same values thanWindows
CRT debug malloc() and free().

264 Chapter 11. Memory Management



The Python/C API, Release 3.13.0

11.9 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called “arenas” with a fixed size of either 256 KiB on 32-bit platforms or 1 MiB on 64-bit
platforms. It falls back to PyMem_RawMalloc() and PyMem_RawRealloc() for allocations larger than 512
bytes.
pymalloc is the default allocator of the PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) and
PYMEM_DOMAIN_OBJ (ex: PyObject_Malloc()) domains.
The arena allocator uses the following functions:

• VirtualAlloc() and VirtualFree() on Windows,
• mmap() and munmap() if available,
• malloc() and free() otherwise.

This allocator is disabled if Python is configured with the --without-pymalloc option. It can also be disabled
at runtime using the PYTHONMALLOC environment variable (ex: PYTHONMALLOC=malloc).

11.9.1 Customize pymalloc Arena Allocator

Added in version 3.4.
type PyObjectArenaAllocator

Structure used to describe an arena allocator. The structure has three fields:

Field Meaning
void *ctx user context passed as first argument
void* alloc(void *ctx, size_t size) allocate an arena of size bytes
void free(void *ctx, void *ptr, size_t size) free an arena

void PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)
Get the arena allocator.

void PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)
Set the arena allocator.

11.10 The mimalloc allocator

Added in version 3.13.
Python supports the mimalloc allocator when the underlying platform support is available. mimalloc “is a general
purpose allocator with excellent performance characteristics. Initially developed by Daan Leijen for the runtime
systems of the Koka and Lean languages.”

11.9. The pymalloc allocator 265



The Python/C API, Release 3.13.0

11.11 tracemalloc C API

Added in version 3.7.
int PyTraceMalloc_Track(unsigned int domain, uintptr_t ptr, size_t size)

Track an allocated memory block in the tracemalloc module.
Return 0 on success, return -1 on error (failed to allocate memory to store the trace). Return -2 if tracemalloc
is disabled.
If memory block is already tracked, update the existing trace.

int PyTraceMalloc_Untrack(unsigned int domain, uintptr_t ptr)
Untrack an allocated memory block in the tracemalloc module. Do nothing if the block was not tracked.
Return -2 if tracemalloc is disabled, otherwise return 0.

11.12 Examples

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python heap by
using the first function set:

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New(char, BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed,
it is required to use the same memory API family for a given memory block, so that the risk of mixing different
allocators is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as
fatal because it mixes two different allocators operating on different heaps.

char *buf1 = PyMem_New(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
...
PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); /* Right -- allocated via malloc() */
free(buf1); /* Fatal -- should be PyMem_Del() */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released with PyObject_New, PyObject_NewVar and PyObject_Del().
These will be explained in the next chapter on defining and implementing new object types in C.

266 Chapter 11. Memory Management



CHAPTER

TWELVE

OBJECT IMPLEMENTATION SUPPORT

This chapter describes the functions, types, and macros used when defining new object types.

12.1 Allocating Objects on the Heap

PyObject *_PyObject_New(PyTypeObject *type)
Return value: New reference.

PyVarObject *_PyObject_NewVar(PyTypeObject *type, Py_ssize_t size)
Return value: New reference.

PyObject *PyObject_Init(PyObject *op, PyTypeObject *type)
Return value: Borrowed reference. Part of the Stable ABI. Initialize a newly allocated object op with its type
and initial reference. Returns the initialized object. If type indicates that the object participates in the cyclic
garbage detector, it is added to the detector’s set of observed objects. Other fields of the object are not affected.

PyVarObject *PyObject_InitVar(PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. Part of the Stable ABI. This does everything PyObject_Init() does,
and also initializes the length information for a variable-size object.

PyObject_New(TYPE, typeobj)
Allocate a new Python object using the C structure type TYPE and the Python type object typeobj
(PyTypeObject*). Fields not defined by the Python object header are not initialized. The caller will
own the only reference to the object (i.e. its reference count will be one). The size of the memory allocation
is determined from the tp_basicsize field of the type object.

PyObject_NewVar(TYPE, typeobj, size)
Allocate a new Python object using the C structure type TYPE and the Python type object typeobj
(PyTypeObject*). Fields not defined by the Python object header are not initialized. The allocated mem-
ory allows for the TYPE structure plus size (Py_ssize_t) fields of the size given by the tp_itemsize
field of typeobj. This is useful for implementing objects like tuples, which are able to determine their size at
construction time. Embedding the array of fields into the same allocation decreases the number of allocations,
improving the memory management efficiency.

void PyObject_Del(void *op)
Releases memory allocated to an object using PyObject_New or PyObject_NewVar. This is normally
called from the tp_dealloc handler specified in the object’s type. The fields of the object should not be
accessed after this call as the memory is no longer a valid Python object.

PyObject _Py_NoneStruct

Object which is visible in Python as None. This should only be accessed using the Py_None macro, which
evaluates to a pointer to this object.

See also

267



The Python/C API, Release 3.13.0

PyModule_Create()
To allocate and create extension modules.

12.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

12.2.1 Base object types and macros

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions
of some macros also used, whether directly or indirectly, in the definition of all other Python objects. Additional
macros can be found under reference counting.
type PyObject

Part of the Limited API. (Only some members are part of the stable ABI.)All object types are extensions of this
type. This is a type which contains the information Python needs to treat a pointer to an object as an object. In
a normal “release” build, it contains only the object’s reference count and a pointer to the corresponding type
object. Nothing is actually declared to be a PyObject, but every pointer to a Python object can be cast to a
PyObject*. Access to the members must be done by using the macros Py_REFCNT and Py_TYPE.

type PyVarObject
Part of the Limited API. (Only some members are part of the stable ABI.) This is an extension of PyObject
that adds the ob_size field. This is only used for objects that have some notion of length. This type does not
often appear in the Python/C API. Access to the members must be done by using the macros Py_REFCNT,
Py_TYPE, and Py_SIZE.

PyObject_HEAD

This is a macro used when declaring new types which represent objects without a varying length. The PyOb-
ject_HEAD macro expands to:

PyObject ob_base;

See documentation of PyObject above.
PyObject_VAR_HEAD

This is a macro used when declaring new types which represent objects with a length that varies from instance
to instance. The PyObject_VAR_HEAD macro expands to:

PyVarObject ob_base;

See documentation of PyVarObject above.
int Py_Is(PyObject *x, PyObject *y)

Part of the Stable ABI since version 3.10. Test if the x object is the y object, the same as x is y in Python.
Added in version 3.10.

int Py_IsNone(PyObject *x)
Part of the Stable ABI since version 3.10. Test if an object is the None singleton, the same as x is None in
Python.
Added in version 3.10.

268 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

int Py_IsTrue(PyObject *x)
Part of the Stable ABI since version 3.10. Test if an object is the True singleton, the same as x is True in
Python.
Added in version 3.10.

int Py_IsFalse(PyObject *x)
Part of the Stable ABI since version 3.10. Test if an object is the False singleton, the same as x is False
in Python.
Added in version 3.10.

PyTypeObject *Py_TYPE(PyObject *o)
Return value: Borrowed reference. Get the type of the Python object o.
Return a borrowed reference.
Use the Py_SET_TYPE() function to set an object type.
Changed in version 3.11: Py_TYPE() is changed to an inline static function. The parameter type is no longer
const PyObject*.

int Py_IS_TYPE(PyObject *o, PyTypeObject *type)
Return non-zero if the object o type is type. Return zero otherwise. Equivalent to: Py_TYPE(o) == type.
Added in version 3.9.

void Py_SET_TYPE(PyObject *o, PyTypeObject *type)
Set the object o type to type.
Added in version 3.9.

Py_ssize_t Py_SIZE(PyVarObject *o)
Get the size of the Python object o.
Use the Py_SET_SIZE() function to set an object size.
Changed in version 3.11: Py_SIZE() is changed to an inline static function. The parameter type is no longer
const PyVarObject*.

void Py_SET_SIZE(PyVarObject *o, Py_ssize_t size)
Set the object o size to size.
Added in version 3.9.

PyObject_HEAD_INIT(type)
This is a macro which expands to initialization values for a new PyObject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT(type, size)
This is a macro which expands to initialization values for a new PyVarObject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

12.2. Common Object Structures 269



The Python/C API, Release 3.13.0

12.2.2 Implementing functions and methods

type PyCFunction
Part of the Stable ABI. Type of the functions used to implement most Python callables in C. Functions of this
type take two PyObject* parameters and return one such value. If the return value is NULL, an exception
shall have been set. If not NULL, the return value is interpreted as the return value of the function as exposed
in Python. The function must return a new reference.
The function signature is:

PyObject *PyCFunction(PyObject *self,
PyObject *args);

type PyCFunctionWithKeywords
Part of the Stable ABI. Type of the functions used to implement Python callables in C with signature
METH_VARARGS | METH_KEYWORDS. The function signature is:

PyObject *PyCFunctionWithKeywords(PyObject *self,
PyObject *args,
PyObject *kwargs);

type PyCFunctionFast
Part of the Stable ABI since version 3.13. Type of the functions used to implement Python callables in C with
signature METH_FASTCALL. The function signature is:

PyObject *PyCFunctionFast(PyObject *self,
PyObject *const *args,
Py_ssize_t nargs);

type PyCFunctionFastWithKeywords
Part of the Stable ABI since version 3.13. Type of the functions used to implement Python callables in C with
signature METH_FASTCALL | METH_KEYWORDS. The function signature is:

PyObject *PyCFunctionFastWithKeywords(PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames);

type PyCMethod
Type of the functions used to implement Python callables in C with signature METH_METHOD |
METH_FASTCALL | METH_KEYWORDS. The function signature is:

PyObject *PyCMethod(PyObject *self,
PyTypeObject *defining_class,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames)

Added in version 3.9.
type PyMethodDef

Part of the Stable ABI (including all members). Structure used to describe a method of an extension type. This
structure has four fields:
const char *ml_name

Name of the method.
PyCFunction ml_meth

Pointer to the C implementation.

270 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

int ml_flags
Flags bits indicating how the call should be constructed.

const char *ml_doc
Points to the contents of the docstring.

The ml_meth is a C function pointer. The functions may be of different types, but they always return PyObject*.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyObject*, it is common that the method implementation uses the
specific C type of the self object.
The ml_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.
There are these calling conventions:
METH_VARARGS

This is the typical calling convention, where the methods have the type PyCFunction. The function expects
two PyObject* values. The first one is the self object for methods; for module functions, it is the module
object. The second parameter (often called args) is a tuple object representing all arguments. This parameter
is typically processed using PyArg_ParseTuple() or PyArg_UnpackTuple().

METH_KEYWORDS

Can only be used in certain combinations with other flags: METH_VARARGS | METH_KEYWORDS,
METH_FASTCALL | METH_KEYWORDS andMETH_METHOD | METH_FASTCALL | METH_KEYWORDS.

METH_VARARGS | METH_KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects
three parameters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or
possibly NULL if there are no keyword arguments. The parameters are typically processed using
PyArg_ParseTupleAndKeywords().

METH_FASTCALL

Fast calling convention supporting only positional arguments. The methods have the type PyCFunction-
Fast. The first parameter is self, the second parameter is a C array of PyObject* values indicating the
arguments and the third parameter is the number of arguments (the length of the array).
Added in version 3.7.
Changed in version 3.10: METH_FASTCALL is now part of the stable ABI.

METH_FASTCALL | METH_KEYWORDS
Extension of METH_FASTCALL supporting also keyword arguments, with methods of type PyCFunction-
FastWithKeywords. Keyword arguments are passed the same way as in the vectorcall protocol: there is an
additional fourth PyObject* parameter which is a tuple representing the names of the keyword arguments
(which are guaranteed to be strings) or possibly NULL if there are no keywords. The values of the keyword
arguments are stored in the args array, after the positional arguments.
Added in version 3.7.

METH_METHOD

Can only be used in the combination with other flags: METH_METHOD | METH_FASTCALL |
METH_KEYWORDS.

METH_METHOD | METH_FASTCALL | METH_KEYWORDS
Extension of METH_FASTCALL | METH_KEYWORDS supporting the defining class, that is, the class that
contains the method in question. The defining class might be a superclass of Py_TYPE(self).
The method needs to be of type PyCMethod, the same as for METH_FASTCALL | METH_KEYWORDS
with defining_class argument added after self.
Added in version 3.9.

12.2. Common Object Structures 271



The Python/C API, Release 3.13.0

METH_NOARGS

Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.
The function must have 2 parameters. Since the second parameter is unused, Py_UNUSED can be used to
prevent a compiler warning.

METH_O

Methods with a single object argument can be listed with the METH_O flag, instead of invoking
PyArg_ParseTuple() with a "O" argument. They have the type PyCFunction, with the self pa-
rameter, and a PyObject* parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH_CLASS

The method will be passed the type object as the first parameter rather than an instance of the type. This is
used to create class methods, similar to what is created when using the classmethod() built-in function.

METH_STATIC

The method will be passed NULL as the first parameter rather than an instance of the type. This is used to
create static methods, similar to what is created when using the staticmethod() built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.
METH_COEXIST

The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains
slot, for example, would generate a wrapped method named __contains__() and preclude the loading of
a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in
place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are
optimized more than wrapper object calls.

PyObject *PyCMethod_New(PyMethodDef *ml, PyObject *self, PyObject *module, PyTypeObject *cls)
Return value: New reference. Part of the Stable ABI since version 3.9. Turn ml into a Python callable object.
The caller must ensure that ml outlives the callable. Typically, ml is defined as a static variable.
The self parameter will be passed as the self argument to the C function in ml->ml_meth when invoked.
self can be NULL.
The callable object’s __module__ attribute can be set from the given module argument. module should be
a Python string, which will be used as name of the module the function is defined in. If unavailable, it can be
set to None or NULL.

See also

function.__module__

The cls parameter will be passed as the defining_class argument to the C function. Must be set if
METH_METHOD is set on ml->ml_flags.
Added in version 3.9.

PyObject *PyCFunction_NewEx(PyMethodDef *ml, PyObject *self, PyObject *module)
Return value: New reference. Part of the Stable ABI. Equivalent to PyCMethod_New(ml, self,
module, NULL).

PyObject *PyCFunction_New(PyMethodDef *ml, PyObject *self)
Return value: New reference. Part of the Stable ABI since version 3.4. Equivalent to PyCMethod_New(ml,
self, NULL, NULL).

272 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

12.2.3 Accessing attributes of extension types

type PyMemberDef
Part of the Stable ABI (including all members). Structure which describes an attribute of a type which corre-
sponds to a C struct member. When defining a class, put a NULL-terminated array of these structures in the
tp_members slot.
Its fields are, in order:
const char *name

Name of the member. A NULL value marks the end of a PyMemberDef[] array.
The string should be static, no copy is made of it.

int type
The type of the member in the C struct. See Member types for the possible values.

Py_ssize_t offset
The offset in bytes that the member is located on the type’s object struct.

int flags
Zero or more of the Member flags, combined using bitwise OR.

const char *doc
The docstring, or NULL. The string should be static, no copy is made of it. Typically, it is defined using
PyDoc_STR.

By default (when flags is 0), members allow both read and write access. Use the Py_READONLY flag for
read-only access. Certain types, like Py_T_STRING, imply Py_READONLY. Only Py_T_OBJECT_EX
(and legacy T_OBJECT) members can be deleted.
For heap-allocated types (created using PyType_FromSpec() or similar), PyMemberDef may
contain a definition for the special member "__vectorcalloffset__", corresponding to
tp_vectorcall_offset in type objects. These must be defined with Py_T_PYSSIZET and
Py_READONLY, for example:

static PyMemberDef spam_type_members[] = {
{"__vectorcalloffset__", Py_T_PYSSIZET,
offsetof(Spam_object, vectorcall), Py_READONLY},

{NULL} /* Sentinel */
};

(You may need to #include <stddef.h> for offsetof().)
The legacy offsets tp_dictoffset and tp_weaklistoffset can be defined similarly using
"__dictoffset__" and "__weaklistoffset__"members, but extensions are strongly encouraged
to use Py_TPFLAGS_MANAGED_DICT and Py_TPFLAGS_MANAGED_WEAKREF instead.
Changed in version 3.12: PyMemberDef is always available. Previously, it required including
"structmember.h".

PyObject *PyMember_GetOne(const char *obj_addr, struct PyMemberDef *m)
Part of the Stable ABI. Get an attribute belonging to the object at address obj_addr. The attribute is described
by PyMemberDef m. Returns NULL on error.
Changed in version 3.12: PyMember_GetOne is always available. Previously, it required including
"structmember.h".

int PyMember_SetOne(char *obj_addr, struct PyMemberDef *m, PyObject *o)
Part of the Stable ABI. Set an attribute belonging to the object at address obj_addr to object o. The attribute
to set is described by PyMemberDef m. Returns 0 if successful and a negative value on failure.
Changed in version 3.12: PyMember_SetOne is always available. Previously, it required including
"structmember.h".

12.2. Common Object Structures 273



The Python/C API, Release 3.13.0

Member flags

The following flags can be used with PyMemberDef.flags:
Py_READONLY

Not writable.
Py_AUDIT_READ

Emit an object.__getattr__ audit event before reading.
Py_RELATIVE_OFFSET

Indicates that the offset of this PyMemberDef entry indicates an offset from the subclass-specific data,
rather than from PyObject.
Can only be used as part of Py_tp_members slot when creating a class using negative basicsize. It
is mandatory in that case.
This flag is only used in PyType_Slot. When setting tp_members during class creation, Python clears it
and sets PyMemberDef.offset to the offset from the PyObject struct.

Changed in version 3.10: The RESTRICTED, READ_RESTRICTED and WRITE_RESTRICTEDmacros available
with #include "structmember.h" are deprecated. READ_RESTRICTED and RESTRICTED are equiva-
lent to Py_AUDIT_READ; WRITE_RESTRICTED does nothing.
Changed in version 3.12: The READONLYmacro was renamed to Py_READONLY. The PY_AUDIT_READmacro
was renamed with the Py_ prefix. The new names are now always available. Previously, these required #include
"structmember.h". The header is still available and it provides the old names.

Member types

PyMemberDef.type can be one of the following macros corresponding to various C types. When the member is
accessed in Python, it will be converted to the equivalent Python type. When it is set from Python, it will be converted
back to the C type. If that is not possible, an exception such as TypeError or ValueError is raised.
Unless marked (D), attributes defined this way cannot be deleted using e.g. del or delattr().

274 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

Macro name C type Python type

Py_T_BYTE
char int

Py_T_SHORT
short int

Py_T_INT
int int

Py_T_LONG
long int

Py_T_LONGLONG
long long int

Py_T_UBYTE
unsigned char int

Py_T_UINT
unsigned int int

Py_T_USHORT
unsigned short int

Py_T_ULONG
unsigned long int

Py_T_ULONGLONG
unsigned long long int

Py_T_PYSSIZET
Py_ssize_t int

Py_T_FLOAT
float float

Py_T_DOUBLE
double float

Py_T_BOOL
char (written as 0 or 1) bool

Py_T_STRING
const char* (*) str (RO)

Py_T_STRING_INPLACE
const char[] (*) str (RO)

Py_T_CHAR
char (0-127) str (**)

Py_T_OBJECT_EX
PyObject* object (D)

(*): Zero-terminated, UTF8-encoded C string. With Py_T_STRING the C representation is a pointer;
with Py_T_STRING_INPLACE the string is stored directly in the structure.

12.2. Common Object Structures 275



The Python/C API, Release 3.13.0

(**): String of length 1. Only ASCII is accepted.
(RO): Implies Py_READONLY.
(D): Can be deleted, in which case the pointer is set to NULL. Reading a NULL pointer raises At-
tributeError.

Added in version 3.12: In previous versions, the macros were only available with #include "structmember.
h" and were named without the Py_ prefix (e.g. as T_INT). The header is still available and contains the old names,
along with the following deprecated types:
T_OBJECT

Like Py_T_OBJECT_EX, but NULL is converted to None. This results in surprising behavior in Python:
deleting the attribute effectively sets it to None.

T_NONE

Always None. Must be used with Py_READONLY.

Defining Getters and Setters

type PyGetSetDef
Part of the Stable ABI (including all members). Structure to define property-like access for a type. See also
description of the PyTypeObject.tp_getset slot.
const char *name

attribute name
getter get

C function to get the attribute.
setter set

Optional C function to set or delete the attribute. If NULL, the attribute is read-only.
const char *doc

optional docstring
void *closure

Optional user data pointer, providing additional data for getter and setter.
typedef PyObject *(*getter)(PyObject*, void*)

Part of the Stable ABI. The get function takes one PyObject* parameter (the instance) and a user data
pointer (the associated closure):
It should return a new reference on success or NULL with a set exception on failure.

typedef int (*setter)(PyObject*, PyObject*, void*)
Part of the Stable ABI. set functions take two PyObject* parameters (the instance and the value to be set)
and a user data pointer (the associated closure):
In case the attribute should be deleted the second parameter is NULL. Should return 0 on success or -1 with
a set exception on failure.

276 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

12.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of the PyObject_* or PyType_* functions,
but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects
behave, so they are very important to the interpreter itself and to any extension module that implements new types.
Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object
stores a large number of values, mostly C function pointers, each of which implements a small part of the type’s
functionality. The fields of the type object are examined in detail in this section. The fields will be described in the
order in which they occur in the structure.
In addition to the following quick reference, the Examples section provides at-a-glance insight into the meaning and
use of PyTypeObject.

12.3.1 Quick Reference

“tp slots”

PyTypeObject SlotPage 278, 1 Type special methods/attrs InfoPage 278, 2
O T D I

<R> tp_name const char * __name__ X X
tp_basicsize Py_ssize_t X X X
tp_itemsize Py_ssize_t X X
tp_dealloc destructor X X X
tp_vectorcall_offset Py_ssize_t X X
(tp_getattr) getattrfunc __getattribute__, __getattr__ G
(tp_setattr) setattrfunc __setattr__, __delattr__ G
tp_as_async PyAsyncMethods * sub-slots %
tp_repr reprfunc __repr__ X X X
tp_as_number PyNumberMethods * sub-slots %
tp_as_sequence PySequenceMethods * sub-slots %
tp_as_mapping PyMappingMethods * sub-slots %
tp_hash hashfunc __hash__ X G
tp_call ternaryfunc __call__ X X
tp_str reprfunc __str__ X X
tp_getattro getattrofunc __getattribute__, __getattr__ X X G
tp_setattro setattrofunc __setattr__, __delattr__ X X G
tp_as_buffer PyBufferProcs * %
tp_flags unsigned long X X ?
tp_doc const char * __doc__ X X
tp_traverse traverseproc X G
tp_clear inquiry X G
tp_richcompare richcmpfunc __lt__, __le__, __eq__, __ne__,

__gt__, __ge__
X G

(tp_weaklistoffset) Py_ssize_t X ?
tp_iter getiterfunc __iter__ X
tp_iternext iternextfunc __next__ X
tp_methods PyMethodDef [] X X
tp_members PyMemberDef [] X
tp_getset PyGetSetDef [] X X
tp_base PyTypeObject * __base__ X
tp_dict PyObject * __dict__ ?
tp_descr_get descrgetfunc __get__ X
tp_descr_set descrsetfunc __set__, __delete__ X

continues on next page

12.3. Type Objects 277



The Python/C API, Release 3.13.0

Table 1 – continued from previous page
PyTypeObject Slot1 Type special methods/attrs Info2

O T D I
(tp_dictoffset) Py_ssize_t X ?
tp_init initproc __init__ X X X
tp_alloc allocfunc X ? ?
tp_new newfunc __new__ X X ? ?
tp_free freefunc X X ? ?
tp_is_gc inquiry X X
<tp_bases> PyObject * __bases__ ~
<tp_mro> PyObject * __mro__ ~
[tp_cache] PyObject *
[tp_subclasses] void * __subclasses__
[tp_weaklist] PyObject *
(tp_del) destructor
[tp_version_tag] unsigned int
tp_finalize destructor __del__ X
tp_vectorcall vectorcallfunc
[tp_watched] unsigned char

sub-slots

Slot Type special methods
am_await unaryfunc __await__
am_aiter unaryfunc __aiter__
am_anext unaryfunc __anext__
am_send sendfunc

nb_add binaryfunc __add__ __radd__
nb_inplace_add binaryfunc __iadd__
nb_subtract binaryfunc __sub__ __rsub__
nb_inplace_subtract binaryfunc __isub__
nb_multiply binaryfunc __mul__ __rmul__
nb_inplace_multiply binaryfunc __imul__
nb_remainder binaryfunc __mod__ __rmod__

continues on next page
1 (): A slot name in parentheses indicates it is (effectively) deprecated.
<>: Names in angle brackets should be initially set to NULL and treated as read-only.
[]: Names in square brackets are for internal use only.
<R> (as a prefix) means the field is required (must be non-NULL).
2 Columns:
“O”: set on PyBaseObject_Type
“T”: set on PyType_Type
“D”: default (if slot is set to NULL)

X - PyType_Ready sets this value if it is NULL
~ - PyType_Ready always sets this value (it should be NULL)
? - PyType_Ready may set this value depending on other slots

Also see the inheritance column ("I").

“I”: inheritance
X - type slot is inherited via *PyType_Ready* if defined with a *NULL* value
% - the slots of the sub-struct are inherited individually
G - inherited, but only in combination with other slots; see the slot's description
? - it's complicated; see the slot's description

Note that some slots are effectively inherited through the normal attribute lookup chain.

278 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

Table 2 – continued from previous page
Slot Type special methods
nb_inplace_remainder binaryfunc __imod__
nb_divmod binaryfunc __divmod__ __rdiv-

mod__
nb_power ternaryfunc __pow__ __rpow__
nb_inplace_power ternaryfunc __ipow__
nb_negative unaryfunc __neg__
nb_positive unaryfunc __pos__
nb_absolute unaryfunc __abs__
nb_bool inquiry __bool__
nb_invert unaryfunc __invert__
nb_lshift binaryfunc __lshift__ __rlshift__
nb_inplace_lshift binaryfunc __ilshift__
nb_rshift binaryfunc __rshift__ __rrshift__
nb_inplace_rshift binaryfunc __irshift__
nb_and binaryfunc __and__ __rand__
nb_inplace_and binaryfunc __iand__
nb_xor binaryfunc __xor__ __rxor__
nb_inplace_xor binaryfunc __ixor__
nb_or binaryfunc __or__ __ror__
nb_inplace_or binaryfunc __ior__
nb_int unaryfunc __int__
nb_reserved void *
nb_float unaryfunc __float__
nb_floor_divide binaryfunc __floordiv__
nb_inplace_floor_divide binaryfunc __ifloordiv__
nb_true_divide binaryfunc __truediv__
nb_inplace_true_divide binaryfunc __itruediv__
nb_index unaryfunc __index__
nb_matrix_multiply binaryfunc __matmul__ __rmat-

mul__
nb_inplace_matrix_multiply binaryfunc __imatmul__

mp_length lenfunc __len__
mp_subscript binaryfunc __getitem__
mp_ass_subscript objobjargproc __setitem__,

__delitem__

sq_length lenfunc __len__
sq_concat binaryfunc __add__
sq_repeat ssizeargfunc __mul__
sq_item ssizeargfunc __getitem__
sq_ass_item ssizeobjargproc __setitem__

__delitem__
sq_contains objobjproc __contains__
sq_inplace_concat binaryfunc __iadd__
sq_inplace_repeat ssizeargfunc __imul__

bf_getbuffer getbufferproc()
bf_releasebuffer releasebufferproc()

12.3. Type Objects 279



The Python/C API, Release 3.13.0

280 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

slot typedefs

typedef Parameter Types Return Type
allocfunc

PyTypeObject *
Py_ssize_t

PyObject *

destructor PyObject * void
freefunc void * void
traverseproc

PyObject *
visitproc

void *

int

newfunc

PyObject *
PyObject *
PyObject *

PyObject *

initproc

PyObject *
PyObject *
PyObject *

int

reprfunc PyObject * PyObject *
getattrfunc

PyObject *
const char *

PyObject *

setattrfunc

PyObject *
const char *
PyObject *

int

getattrofunc

PyObject *
PyObject *

PyObject *

setattrofunc

PyObject *
PyObject *
PyObject *

int

descrgetfunc

PyObject *
PyObject *
PyObject *

PyObject *

descrsetfunc

PyObject *
PyObject *
PyObject *

int

hashfunc PyObject * Py_hash_t
richcmpfunc

PyObject *
PyObject *
int

PyObject *

getiterfunc PyObject * PyObject *
iternextfunc PyObject * PyObject *
lenfunc PyObject * Py_ssize_t
getbufferproc

PyObject *
Py_buffer *
int

int

releasebufferproc

PyObject *
Py_buffer *

void

inquiry PyObject * int
unaryfunc

PyObject *

PyObject *

binaryfunc

PyObject *
PyObject *

PyObject *

ternaryfunc

PyObject *
PyObject *
PyObject *

PyObject *

ssizeargfunc

PyObject *
Py_ssize_t

PyObject *

ssizeobjargproc

PyObject *
Py_ssize_t

PyObject *

int

objobjproc

PyObject *
PyObject *

int

objobjargproc

PyObject *
PyObject *
PyObject *

int

12.3. Type Objects 281



The Python/C API, Release 3.13.0

See Slot Type typedefs below for more detail.

12.3.2 PyTypeObject Definition

The structure definition for PyTypeObject can be found in Include/object.h. For convenience of refer-
ence, this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
Py_ssize_t tp_vectorcall_offset;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)

or tp_reserved (Python 3) */
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

(continues on next page)

282 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

(continued from previous page)

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
// Strong reference on a heap type, borrowed reference on a static type
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
Py_ssize_t tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;
destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;
vectorcallfunc tp_vectorcall;

/* bitset of which type-watchers care about this type */
unsigned char tp_watched;

} PyTypeObject;

12.3.3 PyObject Slots

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (cre-
ated by type_new(), usually called from a class statement). Note that PyType_Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.
Py_ssize_t PyObject.ob_refcnt

Part of the Stable ABI. This is the type object’s reference count, initialized to 1 by the PyOb-
ject_HEAD_INIT macro. Note that for statically allocated type objects, the type’s instances (objects whose
ob_type points back to the type) do not count as references. But for dynamically allocated type objects, the
instances do count as references.
Inheritance:
This field is not inherited by subtypes.

PyTypeObject *PyObject.ob_type
Part of the Stable ABI. This is the type’s type, in other words its metatype. It is initialized by the argument
to the PyObject_HEAD_INIT macro, and its value should normally be &PyType_Type. However, for
dynamically loadable extension modules that must be usable on Windows (at least), the compiler complains
that this is not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT
macro and to initialize this field explicitly at the start of the module’s initialization function, before doing
anything else. This is typically done like this:

Foo_Type.ob_type = &PyType_Type;

12.3. Type Objects 283



The Python/C API, Release 3.13.0

This should be done before any instances of the type are created. PyType_Ready() checks if ob_type
is NULL, and if so, initializes it to the ob_type field of the base class. PyType_Ready() will not change
this field if it is non-zero.
Inheritance:
This field is inherited by subtypes.

12.3.4 PyVarObject Slots

Py_ssize_t PyVarObject.ob_size

Part of the Stable ABI. For statically allocated type objects, this should be initialized to zero. For dynamically
allocated type objects, this field has a special internal meaning.
Inheritance:
This field is not inherited by subtypes.

12.3.5 PyTypeObject Slots

Each slot has a section describing inheritance. If PyType_Ready() may set a value when the field is set to
NULL then there will also be a “Default” section. (Note that many fields set on PyBaseObject_Type and Py-
Type_Type effectively act as defaults.)
const char *PyTypeObject.tp_name

Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type named T defined in module M in subpackage Q in package
P should have the tp_name initializer "P.Q.M.T".
For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored
in the type dict as the value for key '__module__'.
For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is
made accessible as the __module__ attribute, and everything after the last dot is made accessible as the
__name__ attribute.
If no dot is present, the entire tp_name field is made accessible as the __name__ attribute, and the __mod-
ule__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means your type
will be impossible to pickle. Additionally, it will not be listed in module documentations created with pydoc.
This field must not be NULL. It is the only required field in PyTypeObject() (other than potentially
tp_itemsize).
Inheritance:
This field is not inherited by subtypes.

Py_ssize_t PyTypeObject.tp_basicsize

Py_ssize_t PyTypeObject.tp_itemsize
These fields allow calculating the size in bytes of instances of the type.
There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instances, all
instances have the same size, given in tp_basicsize.
For a type with variable-length instances, the instances must have an ob_size field, and the instance size
is tp_basicsize plus N times tp_itemsize, where N is the “length” of the object. The value of
N is typically stored in the instance’s ob_size field. There are exceptions: for example, ints use a negative
ob_size to indicate a negative number, andN isabs(ob_size) there. Also, the presence of anob_size

284 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

field in the instance layout doesn’t mean that the instance structure is variable-length (for example, the structure
for the list type has fixed-length instances, yet those instances have a meaningful ob_size field).
The basic size includes the fields in the instance declared by the macro PyObject_HEAD or PyOb-
ject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the _ob_prev
and _ob_next fields if they are present. This means that the only correct way to get an initializer for the
tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout. The basic
size does not include the GC header size.
A note about alignment: if the variable items require a particular alignment, this should be taken care of by the
value of tp_basicsize. Example: suppose a type implements an array of double. tp_itemsize
is sizeof(double). It is the programmer’s responsibility that tp_basicsize is a multiple of
sizeof(double) (assuming this is the alignment requirement for double).
For any type with variable-length instances, this field must not be NULL.
Inheritance:
These fields are inherited separately by subtypes. If the base type has a non-zero tp_itemsize, it is gen-
erally not safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the
implementation of the base type).

destructor PyTypeObject.tp_dealloc

A pointer to the instance destructor function. This function must be defined unless the type guarantees that
its instances will never be deallocated (as is the case for the singletons None and Ellipsis). The function
signature is:

void tp_dealloc(PyObject *self);

The destructor function is called by thePy_DECREF() andPy_XDECREF()macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor
function should free all references which the instance owns, free all memory buffers owned by the instance
(using the freeing function corresponding to the allocation function used to allocate the buffer), and call the
type’s tp_free function. If the type is not subtypable (doesn’t have the Py_TPFLAGS_BASETYPE flag bit
set), it is permissible to call the object deallocator directly instead of via tp_free. The object deallocator
should be the one used to allocate the instance; this is normally PyObject_Del() if the instance was
allocated using PyObject_New or PyObject_NewVar, or PyObject_GC_Del() if the instance was
allocated using PyObject_GC_New or PyObject_GC_NewVar.
If the type supports garbage collection (has the Py_TPFLAGS_HAVE_GC flag bit set), the destructor should
call PyObject_GC_UnTrack() before clearing any member fields.

static void foo_dealloc(foo_object *self) {
PyObject_GC_UnTrack(self);
Py_CLEAR(self->ref);
Py_TYPE(self)->tp_free((PyObject *)self);

}

Finally, if the type is heap allocated (Py_TPFLAGS_HEAPTYPE), the deallocator should release the owned
reference to its type object (via Py_DECREF()) after calling the type deallocator. In order to avoid dangling
pointers, the recommended way to achieve this is:

static void foo_dealloc(foo_object *self) {
PyTypeObject *tp = Py_TYPE(self);
// free references and buffers here
tp->tp_free(self);
Py_DECREF(tp);

}

Inheritance:
This field is inherited by subtypes.

12.3. Type Objects 285



The Python/C API, Release 3.13.0

Py_ssize_t PyTypeObject.tp_vectorcall_offset
An optional offset to a per-instance function that implements calling the object using the vectorcall protocol, a
more efficient alternative of the simpler tp_call.
This field is only used if the flag Py_TPFLAGS_HAVE_VECTORCALL is set. If so, this must be a positive
integer containing the offset in the instance of a vectorcallfunc pointer.
The vectorcallfunc pointer may be NULL, in which case the instance behaves as if
Py_TPFLAGS_HAVE_VECTORCALL was not set: calling the instance falls back to tp_call.
Any class that sets Py_TPFLAGS_HAVE_VECTORCALL must also set tp_call and make sure its be-
haviour is consistent with the vectorcallfunc function. This can be done by setting tp_call to PyVector-
call_Call().
Changed in version 3.8: Before version 3.8, this slot was named tp_print. In Python 2.x, it was used for
printing to a file. In Python 3.0 to 3.7, it was unused.
Changed in version 3.12: Before version 3.12, it was not recommended for mutable heap types to implement
the vectorcall protocol. When a user sets __call__ in Python code, only tp_call is updated, likely making it
inconsistent with the vectorcall function. Since 3.12, setting __call__ will disable vectorcall optimization
by clearing the Py_TPFLAGS_HAVE_VECTORCALL flag.
Inheritance:
This field is always inherited. However, thePy_TPFLAGS_HAVE_VECTORCALL flag is not always inherited.
If it’s not set, then the subclass won’t use vectorcall, except when PyVectorcall_Call() is explicitly
called.

getattrfunc PyTypeObject.tp_getattr
An optional pointer to the get-attribute-string function.
This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_getattro function, but taking a C string instead of a Python string object to give the attribute name.
Inheritance:
Group: tp_getattr, tp_getattro
This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.

setattrfunc PyTypeObject.tp_setattr
An optional pointer to the function for setting and deleting attributes.
This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_setattro function, but taking a C string instead of a Python string object to give the attribute name.
Inheritance:
Group: tp_setattr, tp_setattro
This field is inherited by subtypes together with tp_setattro: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattr and tp_setattro are both NULL.

PyAsyncMethods *PyTypeObject.tp_as_async
Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and
asynchronous iterator protocols at the C-level. See Async Object Structures for details.
Added in version 3.5: Formerly known as tp_compare and tp_reserved.
Inheritance:
The tp_as_async field is not inherited, but the contained fields are inherited individually.

reprfunc PyTypeObject.tp_repr

An optional pointer to a function that implements the built-in function repr().
The signature is the same as for PyObject_Repr():

286 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

PyObject *tp_repr(PyObject *self);

The function must return a string or a Unicode object. Ideally, this function should return a string that, when
passed to eval(), given a suitable environment, returns an object with the same value. If this is not feasible,
it should return a string starting with '<' and ending with '>' from which both the type and the value of the
object can be deduced.
Inheritance:
This field is inherited by subtypes.
Default:
When this field is not set, a string of the form <%s object at %p> is returned, where %s is replaced by
the type name, and %p by the object’s memory address.

PyNumberMethods *PyTypeObject.tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documented in Number Object Structures.
Inheritance:
The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods *PyTypeObject.tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documented in Sequence Object Structures.
Inheritance:
The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods *PyTypeObject.tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented in Mapping Object Structures.
Inheritance:
The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject.tp_hash
An optional pointer to a function that implements the built-in function hash().
The signature is the same as for PyObject_Hash():

Py_hash_t tp_hash(PyObject *);

The value -1 should not be returned as a normal return value; when an error occurs during the computation
of the hash value, the function should set an exception and return -1.
When this field is not set (and tp_richcompare is not set), an attempt to take the hash of the object raises
TypeError. This is the same as setting it to PyObject_HashNotImplemented().
This field can be set explicitly to PyObject_HashNotImplemented() to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash__ = None at the Python
level, causing isinstance(o, collections.Hashable) to correctly return False. Note that the
converse is also true - setting __hash__ = None on a class at the Python level will result in the tp_hash
slot being set to PyObject_HashNotImplemented().
Inheritance:
Group: tp_hash, tp_richcompare
This field is inherited by subtypes together with tp_richcompare: a subtype inherits both of
tp_richcompare andtp_hash, when the subtype’stp_richcompare andtp_hash are both NULL.
Default:

12.3. Type Objects 287



The Python/C API, Release 3.13.0

PyBaseObject_Type uses PyObject_GenericHash().
ternaryfunc PyTypeObject.tp_call

An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call():

PyObject *tp_call(PyObject *self, PyObject *args, PyObject *kwargs);

Inheritance:
This field is inherited by subtypes.

reprfunc PyTypeObject.tp_str

An optional pointer to a function that implements the built-in operation str(). (Note that str is a type now,
and str() calls the constructor for that type. This constructor calls PyObject_Str() to do the actual
work, and PyObject_Str() will call this handler.)
The signature is the same as for PyObject_Str():

PyObject *tp_str(PyObject *self);

The function must return a string or a Unicode object. It should be a “friendly” string representation of the
object, as this is the representation that will be used, among other things, by the print() function.
Inheritance:
This field is inherited by subtypes.
Default:
When this field is not set, PyObject_Repr() is called to return a string representation.

getattrofunc PyTypeObject.tp_getattro
An optional pointer to the get-attribute function.
The signature is the same as for PyObject_GetAttr():

PyObject *tp_getattro(PyObject *self, PyObject *attr);

It is usually convenient to set this field to PyObject_GenericGetAttr(), which implements the normal
way of looking for object attributes.
Inheritance:
Group: tp_getattr, tp_getattro
This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.
Default:
PyBaseObject_Type uses PyObject_GenericGetAttr().

setattrofunc PyTypeObject.tp_setattro

An optional pointer to the function for setting and deleting attributes.
The signature is the same as for PyObject_SetAttr():

int tp_setattro(PyObject *self, PyObject *attr, PyObject *value);

In addition, setting value to NULL to delete an attribute must be supported. It is usually convenient to set this
field to PyObject_GenericSetAttr(), which implements the normal way of setting object attributes.
Inheritance:
Group: tp_setattr, tp_setattro

288 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattr and tp_setattro are both NULL.
Default:
PyBaseObject_Type uses PyObject_GenericSetAttr().

PyBufferProcs *PyTypeObject.tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer in-
terface. These fields are documented in Buffer Object Structures.
Inheritance:
The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

unsigned long PyTypeObject.tp_flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; oth-
ers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number, tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically
not always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must
be considered to have a zero or NULL value instead.
Inheritance:
Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py_TPFLAGS_HAVE_GC flag bit is inherited together with the
tp_traverse and tp_clear fields, i.e. if the Py_TPFLAGS_HAVE_GC flag bit is clear in the subtype
and the tp_traverse and tp_clear fields in the subtype exist and have NULL values. .. XXX are most
flag bits really inherited individually?
Default:
PyBaseObject_Type uses Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE.
Bit Masks:
The following bit masks are currently defined; these can be ORed together using the | operator to form the
value of the tp_flags field. The macro PyType_HasFeature() takes a type and a flags value, tp and
f, and checks whether tp->tp_flags & f is non-zero.
Py_TPFLAGS_HEAPTYPE

This bit is set when the type object itself is allocated on the heap, for example, types created dynamically
usingPyType_FromSpec(). In this case, theob_type field of its instances is considered a reference
to the type, and the type object is INCREF’ed when a new instance is created, and DECREF’ed when
an instance is destroyed (this does not apply to instances of subtypes; only the type referenced by the
instance’s ob_type gets INCREF’ed or DECREF’ed). Heap types should also support garbage collection
as they can form a reference cycle with their own module object.
Inheritance:
???

Py_TPFLAGS_BASETYPE

This bit is set when the type can be used as the base type of another type. If this bit is clear, the type
cannot be subtyped (similar to a “final” class in Java).
Inheritance:
???

Py_TPFLAGS_READY

This bit is set when the type object has been fully initialized by PyType_Ready().
Inheritance:
???

12.3. Type Objects 289



The Python/C API, Release 3.13.0

Py_TPFLAGS_READYING

This bit is set while PyType_Ready() is in the process of initializing the type object.
Inheritance:
???

Py_TPFLAGS_HAVE_GC

This bit is set when the object supports garbage collection. If this bit is set, instances must be created us-
ing PyObject_GC_New and destroyed using PyObject_GC_Del(). More information in section
Supporting Cyclic Garbage Collection. This bit also implies that the GC-related fields tp_traverse
and tp_clear are present in the type object.
Inheritance:
Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear
The Py_TPFLAGS_HAVE_GC flag bit is inherited together with the tp_traverse and tp_clear
fields, i.e. if the Py_TPFLAGS_HAVE_GC flag bit is clear in the subtype and the tp_traverse and
tp_clear fields in the subtype exist and have NULL values.

Py_TPFLAGS_DEFAULT

This is a bitmask of all the bits that pertain to the existence of certain fields in the
type object and its extension structures. Currently, it includes the following bits:
Py_TPFLAGS_HAVE_STACKLESS_EXTENSION.
Inheritance:
???

Py_TPFLAGS_METHOD_DESCRIPTOR

This bit indicates that objects behave like unbound methods.
If this flag is set for type(meth), then:
• meth.__get__(obj, cls)(*args, **kwds) (with obj not None) must be equivalent
to meth(obj, *args, **kwds).

• meth.__get__(None, cls)(*args, **kwds) must be equivalent to meth(*args,
**kwds).

This flag enables an optimization for typical method calls like obj.meth(): it avoids creating a tem-
porary “bound method” object for obj.meth.
Added in version 3.8.
Inheritance:
This flag is never inherited by types without the Py_TPFLAGS_IMMUTABLETYPE flag set. For exten-
sion types, it is inherited whenever tp_descr_get is inherited.

Py_TPFLAGS_MANAGED_DICT

This bit indicates that instances of the class have a ~object.__dict__ attribute, and that the space for the
dictionary is managed by the VM.
If this flag is set, Py_TPFLAGS_HAVE_GC should also be set.
The type traverse function must call PyObject_VisitManagedDict() and its clear function must
call PyObject_ClearManagedDict().
Added in version 3.12.
Inheritance:
This flag is inherited unless the tp_dictoffset field is set in a superclass.

290 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

Py_TPFLAGS_MANAGED_WEAKREF

This bit indicates that instances of the class should be weakly referenceable.
Added in version 3.12.
Inheritance:
This flag is inherited unless the tp_weaklistoffset field is set in a superclass.

Py_TPFLAGS_ITEMS_AT_END

Only usable with variable-size types, i.e. ones with non-zero tp_itemsize.
Indicates that the variable-sized portion of an instance of this type is at the end of the instance’s memory
area, at an offset of Py_TYPE(obj)->tp_basicsize (which may be different in each subclass).
When setting this flag, be sure that all superclasses either use this memory layout, or are not variable-sized.
Python does not check this.
Added in version 3.12.
Inheritance:
This flag is inherited.

Py_TPFLAGS_LONG_SUBCLASS

Py_TPFLAGS_LIST_SUBCLASS

Py_TPFLAGS_TUPLE_SUBCLASS

Py_TPFLAGS_BYTES_SUBCLASS

Py_TPFLAGS_UNICODE_SUBCLASS

Py_TPFLAGS_DICT_SUBCLASS

Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS

These flags are used by functions such as PyLong_Check() to quickly determine if a type is
a subclass of a built-in type; such specific checks are faster than a generic check, like PyOb-
ject_IsInstance(). Custom types that inherit from built-ins should have their tp_flags set
appropriately, or the code that interacts with such types will behave differently depending on what kind
of check is used.

Py_TPFLAGS_HAVE_FINALIZE

This bit is set when the tp_finalize slot is present in the type structure.
Added in version 3.4.
Deprecated since version 3.8: This flag isn’t necessary anymore, as the interpreter assumes the
tp_finalize slot is always present in the type structure.

Py_TPFLAGS_HAVE_VECTORCALL

This bit is set when the class implements the vectorcall protocol. See tp_vectorcall_offset for
details.
Inheritance:
This bit is inherited if tp_call is also inherited.
Added in version 3.9.
Changed in version 3.12: This flag is now removed from a class when the class’s __call__() method
is reassigned.
This flag can now be inherited by mutable classes.

12.3. Type Objects 291



The Python/C API, Release 3.13.0

Py_TPFLAGS_IMMUTABLETYPE

This bit is set for type objects that are immutable: type attributes cannot be set nor deleted.
PyType_Ready() automatically applies this flag to static types.
Inheritance:
This flag is not inherited.
Added in version 3.10.

Py_TPFLAGS_DISALLOW_INSTANTIATION

Disallow creating instances of the type: set tp_new to NULL and don’t create the __new__ key in the
type dictionary.
The flag must be set before creating the type, not after. For example, it must be set before Py-
Type_Ready() is called on the type.
The flag is set automatically on static types if tp_base is NULL or &PyBaseObject_Type and
tp_new is NULL.
Inheritance:
This flag is not inherited. However, subclasses will not be instantiable unless they provide a non-NULL
tp_new (which is only possible via the C API).

Note

To disallow instantiating a class directly but allow instantiating its subclasses (e.g. for an abstract base
class), do not use this flag. Instead, make tp_new only succeed for subclasses.

Added in version 3.10.
Py_TPFLAGS_MAPPING

This bit indicates that instances of the class may match mapping patterns when used as the subject of a
match block. It is automatically set when registering or subclassing collections.abc.Mapping,
and unset when registering collections.abc.Sequence.

Note

Py_TPFLAGS_MAPPING and Py_TPFLAGS_SEQUENCE are mutually exclusive; it is an error to
enable both flags simultaneously.

Inheritance:
This flag is inherited by types that do not already set Py_TPFLAGS_SEQUENCE.

See also

PEP 634 – Structural Pattern Matching: Specification

Added in version 3.10.
Py_TPFLAGS_SEQUENCE

This bit indicates that instances of the class may match sequence patterns when used as the subject
of a match block. It is automatically set when registering or subclassing collections.abc.
Sequence, and unset when registering collections.abc.Mapping.

292 Chapter 12. Object Implementation Support

https://peps.python.org/pep-0634/


The Python/C API, Release 3.13.0

Note

Py_TPFLAGS_MAPPING and Py_TPFLAGS_SEQUENCE are mutually exclusive; it is an error to
enable both flags simultaneously.

Inheritance:
This flag is inherited by types that do not already set Py_TPFLAGS_MAPPING.

See also

PEP 634 – Structural Pattern Matching: Specification

Added in version 3.10.
Py_TPFLAGS_VALID_VERSION_TAG

Internal. Do not set or unset this flag. To indicate that a class has changed call PyType_Modified()

Warning

This flag is present in header files, but is not be used. It will be removed in a future version of CPython

const char *PyTypeObject.tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as
the __doc__ attribute on the type and instances of the type.
Inheritance:
This field is not inherited by subtypes.

traverseproc PyTypeObject.tp_traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. The signature is:

int tp_traverse(PyObject *self, visitproc visit, void *arg);

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.
The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical imple-
mentation of a tp_traverse function simply calls Py_VISIT() on each of the instance’s members that
are Python objects that the instance owns. For example, this is function local_traverse() from the
_thread extension module:

static int
local_traverse(localobject *self, visitproc visit, void *arg)
{

Py_VISIT(self->args);
Py_VISIT(self->kw);
Py_VISIT(self->dict);
return 0;

}

Note that Py_VISIT() is called only on those members that can participate in reference cycles. Although
there is also a self->key member, it can only be NULL or a Python string and therefore cannot be part of
a reference cycle.
On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want
to visit it anyway just so the gc module’s get_referents() function will include it.

12.3. Type Objects 293

https://peps.python.org/pep-0634/


The Python/C API, Release 3.13.0

Heap types (Py_TPFLAGS_HEAPTYPE) must visit their type with:

Py_VISIT(Py_TYPE(self));

It is only needed since Python 3.9. To support Python 3.8 and older, this line must be conditional:

#if PY_VERSION_HEX >= 0x03090000
Py_VISIT(Py_TYPE(self));

#endif

If the Py_TPFLAGS_MANAGED_DICT bit is set in the tp_flags field, the traverse function must call
PyObject_VisitManagedDict() like this:

PyObject_VisitManagedDict((PyObject*)self, visit, arg);

Warning

When implementingtp_traverse, only themembers that the instance owns (by having strong references
to them) must be visited. For instance, if an object supports weak references via the tp_weaklist slot,
the pointer supporting the linked list (what tp_weaklist points to) must not be visited as the instance does
not directly own the weak references to itself (the weakreference list is there to support the weak reference
machinery, but the instance has no strong reference to the elements inside it, as they are allowed to be
removed even if the instance is still alive).

Note thatPy_VISIT() requires the visit and arg parameters tolocal_traverse() to have these specific
names; don’t name them just anything.
Instances of heap-allocated types hold a reference to their type. Their traversal function must therefore either
visit Py_TYPE(self), or delegate this responsibility by calling tp_traverse of another heap-allocated
type (such as a heap-allocated superclass). If they do not, the type object may not be garbage-collected.
Changed in version 3.9: Heap-allocated types are expected to visit Py_TYPE(self) in tp_traverse.
In earlier versions of Python, due to bug 40217, doing this may lead to crashes in subclasses.
Inheritance:
Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear
This field is inherited by subtypes together with tp_clear and the Py_TPFLAGS_HAVE_GC flag bit: the
flag bit, tp_traverse, andtp_clear are all inherited from the base type if they are all zero in the subtype.

inquiry PyTypeObject.tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. The signature is:

int tp_clear(PyObject *);

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_clear functions in the system must combine to break all reference cycles.
This is subtle, and if in any doubt supply a tp_clear function. For example, the tuple type does not imple-
ment a tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely
of tuples. Therefore the tp_clear functions of other types must be sufficient to break any cycle containing
a tuple. This isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.
Implementations of tp_clear should drop the instance’s references to those of its members that may be
Python objects, and set its pointers to those members to NULL, as in the following example:

static int
local_clear(localobject *self)
{

Py_CLEAR(self->key);

(continues on next page)

294 Chapter 12. Object Implementation Support

https://bugs.python.org/issue40217


The Python/C API, Release 3.13.0

(continued from previous page)
Py_CLEAR(self->args);
Py_CLEAR(self->kw);
Py_CLEAR(self->dict);
return 0;

}

The Py_CLEAR() macro should be used, because clearing references is delicate: the reference to the con-
tained object must not be released (via Py_DECREF()) until after the pointer to the contained object is set
to NULL. This is because releasing the reference may cause the contained object to become trash, triggering
a chain of reclamation activity that may include invoking arbitrary Python code (due to finalizers, or weakref
callbacks, associated with the contained object). If it’s possible for such code to reference self again, it’s im-
portant that the pointer to the contained object be NULL at that time, so that self knows the contained object
can no longer be used. The Py_CLEAR() macro performs the operations in a safe order.
If the Py_TPFLAGS_MANAGED_DICT bit is set in the tp_flags field, the traverse function must call
PyObject_ClearManagedDict() like this:

PyObject_ClearManagedDict((PyObject*)self);

Note that tp_clear is not always called before an instance is deallocated. For example, when reference
counting is enough to determine that an object is no longer used, the cyclic garbage collector is not involved
and tp_dealloc is called directly.
Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained
objects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’s tp_dealloc function to invoke
tp_clear.
More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.
Inheritance:
Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear
This field is inherited by subtypes together with tp_traverse and the Py_TPFLAGS_HAVE_GC flag bit:
the flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the
subtype.

richcmpfunc PyTypeObject.tp_richcompare
An optional pointer to the rich comparison function, whose signature is:

PyObject *tp_richcompare(PyObject *self, PyObject *other, int op);

The first parameter is guaranteed to be an instance of the type that is defined by PyTypeObject.
The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_NotImplemented, if another error occurred it must return NULL and set
an exception condition.
The following constants are defined to be used as the third argument for tp_richcompare and for PyOb-
ject_RichCompare():

12.3. Type Objects 295



The Python/C API, Release 3.13.0

Constant Comparison

Py_LT
<

Py_LE
<=

Py_EQ
==

Py_NE
!=

Py_GT
>

Py_GE
>=

The following macro is defined to ease writing rich comparison functions:
Py_RETURN_RICHCOMPARE(VAL_A, VAL_B, op)

Return Py_True or Py_False from the function, depending on the result of a comparison. VAL_A
and VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats).
The third argument specifies the requested operation, as for PyObject_RichCompare().
The returned value is a new strong reference.
On error, sets an exception and returns NULL from the function.
Added in version 3.7.

Inheritance:
Group: tp_hash, tp_richcompare
This field is inherited by subtypes together with tp_hash: a subtype inherits tp_richcompare and
tp_hash when the subtype’s tp_richcompare and tp_hash are both NULL.
Default:
PyBaseObject_Type provides a tp_richcompare implementation, which may be inherited. How-
ever, if only tp_hash is defined, not even the inherited function is used and instances of the type will not be
able to participate in any comparisons.

Py_ssize_t PyTypeObject.tp_weaklistoffset
While this field is still supported, Py_TPFLAGS_MANAGED_WEAKREF should be used instead, if at all
possible.
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used
by PyObject_ClearWeakRefs() and the PyWeakref_* functions. The instance structure needs to
include a field of type PyObject* which is initialized to NULL.
Do not confuse this field with tp_weaklist; that is the list head for weak references to the type object itself.
It is an error to set both the Py_TPFLAGS_MANAGED_WEAKREF bit and tp_weaklistoffset.
Inheritance:
This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found
via tp_weaklistoffset, this should not be a problem.

296 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

Default:
If thePy_TPFLAGS_MANAGED_WEAKREF bit is set in thetp_flags field, thentp_weaklistoffset
will be set to a negative value, to indicate that it is unsafe to use this field.

getiterfunc PyTypeObject.tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function).
This function has the same signature as PyObject_GetIter():

PyObject *tp_iter(PyObject *self);

Inheritance:
This field is inherited by subtypes.

iternextfunc PyTypeObject.tp_iternext
An optional pointer to a function that returns the next item in an iterator. The signature is:

PyObject *tp_iternext(PyObject *self);

When the iterator is exhausted, it must return NULL; a StopIteration exception may or may not be set.
When another error occurs, it must return NULL too. Its presence signals that the instances of this type are
iterators.
Iterator types should also define the tp_iter function, and that function should return the iterator instance
itself (not a new iterator instance).
This function has the same signature as PyIter_Next().
Inheritance:
This field is inherited by subtypes.

struct PyMethodDef *PyTypeObject.tp_methods
An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular meth-
ods of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a
method descriptor.
Inheritance:
This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef *PyTypeObject.tp_members
An optional pointer to a static NULL-terminated array of PyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a
member descriptor.
Inheritance:
This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef *PyTypeObject.tp_getset
An optional pointer to a static NULL-terminated array of PyGetSetDef structures, declaring computed
attributes of instances of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.
Inheritance:
This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

12.3. Type Objects 297



The Python/C API, Release 3.13.0

PyTypeObject *PyTypeObject.tp_base
An optional pointer to a base type fromwhich type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

Note

Slot initialization is subject to the rules of initializing globals. C99 requires the initializers to be “address
constants”. Function designators like PyType_GenericNew(), with implicit conversion to a pointer,
are valid C99 address constants.
However, the unary ‘&’ operator applied to a non-static variable like PyBaseObject_Type is not re-
quired to produce an address constant. Compilers may support this (gcc does), MSVC does not. Both
compilers are strictly standard conforming in this particular behavior.
Consequently, tp_base should be set in the extension module’s init function.

Inheritance:
This field is not inherited by subtypes (obviously).
Default:
This field defaults to &PyBaseObject_Type (which to Python programmers is known as the type ob-
ject).

PyObject *PyTypeObject.tp_dict
The type’s dictionary is stored here by PyType_Ready().
This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once PyType_Ready() has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations
(like __add__()). Once initialization for the type has finished, this field should be treated as read-only.
Some types may not store their dictionary in this slot. Use PyType_GetDict() to retrieve the dictionary
for an arbitrary type.
Changed in version 3.12: Internals detail: For static builtin types, this is always NULL. Instead, the dict for
such types is stored on PyInterpreterState. Use PyType_GetDict() to get the dict for an arbitrary
type.
Inheritance:
This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).
Default:
If this field is NULL, PyType_Ready() will assign a new dictionary to it.

Warning

It is not safe to use PyDict_SetItem() on or otherwise modify tp_dict with the dictionary C-API.

descrgetfunc PyTypeObject.tp_descr_get
An optional pointer to a “descriptor get” function.
The function signature is:

PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);

Inheritance:
This field is inherited by subtypes.

298 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

descrsetfunc PyTypeObject.tp_descr_set
An optional pointer to a function for setting and deleting a descriptor’s value.
The function signature is:

int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value.
Inheritance:
This field is inherited by subtypes.

Py_ssize_t PyTypeObject.tp_dictoffset
While this field is still supported, Py_TPFLAGS_MANAGED_DICT should be used instead, if at all possible.
If the instances of this type have a dictionary containing instance variables, this field is non-zero and con-
tains the offset in the instances of the type of the instance variable dictionary; this offset is used by PyOb-
ject_GenericGetAttr().
Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.
The value specifies the offset of the dictionary from the start of the instance structure.
The tp_dictoffset should be regarded as write-only. To get the pointer to the dictionary call PyOb-
ject_GenericGetDict(). Calling PyObject_GenericGetDict()may need to allocate memory
for the dictionary, so it is may be more efficient to call PyObject_GetAttr() when accessing an attribute
on the object.
It is an error to set both the Py_TPFLAGS_MANAGED_WEAKREF bit and tp_dictoffset.
Inheritance:
This field is inherited by subtypes. A subtype should not override this offset; doing so could be un-
safe, if C code tries to access the dictionary at the previous offset. To properly support inheritance, use
Py_TPFLAGS_MANAGED_DICT.
Default:
This slot has no default. For static types, if the field is NULL then no __dict__ gets created for instances.
If the Py_TPFLAGS_MANAGED_DICT bit is set in the tp_flags field, then tp_dictoffset will be
set to -1, to indicate that it is unsafe to use this field.

initproc PyTypeObject.tp_init

An optional pointer to an instance initialization function.
This function corresponds to the __init__() method of classes. Like __init__(), it is possible to
create an instance without calling __init__(), and it is possible to reinitialize an instance by calling its
__init__() method again.
The function signature is:

int tp_init(PyObject *self, PyObject *args, PyObject *kwds);

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the call to __init__().
The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after
the type’s tp_new function has returned an instance of the type. If the tp_new function returns an instance
of some other type that is not a subtype of the original type, no tp_init function is called; if tp_new
returns an instance of a subtype of the original type, the subtype’s tp_init is called.
Returns 0 on success, -1 and sets an exception on error.
Inheritance:
This field is inherited by subtypes.

12.3. Type Objects 299



The Python/C API, Release 3.13.0

Default:
For static types this field does not have a default.

allocfunc PyTypeObject.tp_alloc
An optional pointer to an instance allocation function.
The function signature is:

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems);

Inheritance:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement).
Default:
For dynamic subtypes, this field is always set to PyType_GenericAlloc(), to force a standard heap
allocation strategy.
For static subtypes, PyBaseObject_Type uses PyType_GenericAlloc(). That is the recommended
value for all statically defined types.

newfunc PyTypeObject.tp_new

An optional pointer to an instance creation function.
The function signature is:

PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds);

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).
The tp_new function should call subtype->tp_alloc(subtype, nitems) to allocate space for
the object, and then do only as much further initialization as is absolutely necessary. Initialization that can
safely be ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for
immutable types, all initialization should take place in tp_new, while for mutable types, most initialization
should be deferred to tp_init.
Set the Py_TPFLAGS_DISALLOW_INSTANTIATION flag to disallow creating instances of the type in
Python.
Inheritance:
This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or &Py-
BaseObject_Type.
Default:
For static types this field has no default. This means if the slot is defined as NULL, the type cannot be called to
create new instances; presumably there is some other way to create instances, like a factory function.

freefunc PyTypeObject.tp_free

An optional pointer to an instance deallocation function. Its signature is:

void tp_free(void *self);

An initializer that is compatible with this signature is PyObject_Free().
Inheritance:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement)
Default:
In dynamic subtypes, this field is set to a deallocator suitable to match PyType_GenericAlloc() and the
value of the Py_TPFLAGS_HAVE_GC flag bit.

300 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

For static subtypes, PyBaseObject_Type uses PyObject_Del().
inquiry PyTypeObject.tp_is_gc

An optional pointer to a function called by the garbage collector.
The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’s type’s tp_flags field, and check the Py_TPFLAGS_HAVE_GC flag bit. But some
types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are
not collectible. Such types should define this function; it should return 1 for a collectible instance, and 0 for a
non-collectible instance. The signature is:

int tp_is_gc(PyObject *self);

(The only example of this are types themselves. The metatype, PyType_Type, defines this function to
distinguish between statically and dynamically allocated types.)
Inheritance:
This field is inherited by subtypes.
Default:
This slot has no default. If this field is NULL, Py_TPFLAGS_HAVE_GC is used as the functional equivalent.

PyObject *PyTypeObject.tp_bases
Tuple of base types.
This field should be set toNULL and treated as read-only. Python will fill it in when the type isinitialized.
For dynamically created classes, the Py_tp_bases slot can be used instead of the bases argument of
PyType_FromSpecWithBases(). The argument form is preferred.

Warning

Multiple inheritance does not work well for statically defined types. If you set tp_bases to a tuple,
Python will not raise an error, but some slots will only be inherited from the first base.

Inheritance:
This field is not inherited.

PyObject *PyTypeObject.tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object, in
Method Resolution Order.
This field should be set toNULL and treated as read-only. Python will fill it in when the type isinitialized.
Inheritance:
This field is not inherited; it is calculated fresh by PyType_Ready().

PyObject *PyTypeObject.tp_cache
Unused. Internal use only.
Inheritance:
This field is not inherited.

void *PyTypeObject.tp_subclasses
A collection of subclasses. Internal use only. May be an invalid pointer.
To get a list of subclasses, call the Python method __subclasses__().
Changed in version 3.12: For some types, this field does not hold a valid PyObject*. The type was changed
to void* to indicate this.
Inheritance:

12.3. Type Objects 301



The Python/C API, Release 3.13.0

This field is not inherited.
PyObject *PyTypeObject.tp_weaklist

Weak reference list head, for weak references to this type object. Not inherited. Internal use only.
Changed in version 3.12: Internals detail: For the static builtin types this is always NULL, even if weakrefs are
added. Instead, the weakrefs for each are stored on PyInterpreterState. Use the public C-API or the
internal _PyObject_GET_WEAKREFS_LISTPTR() macro to avoid the distinction.
Inheritance:
This field is not inherited.

destructor PyTypeObject.tp_del
This field is deprecated. Use tp_finalize instead.

unsigned int PyTypeObject.tp_version_tag
Used to index into the method cache. Internal use only.
Inheritance:
This field is not inherited.

destructor PyTypeObject.tp_finalize
An optional pointer to an instance finalization function. Its signature is:

void tp_finalize(PyObject *self);

If tp_finalize is set, the interpreter calls it once when finalizing an instance. It is called either from the
garbage collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated.
Either way, it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the
object in a sane state.
tp_finalize should not mutate the current exception status; therefore, a recommended way to write a
non-trivial finalizer is:

static void
local_finalize(PyObject *self)
{

PyObject *error_type, *error_value, *error_traceback;

/* Save the current exception, if any. */
PyErr_Fetch(&error_type, &error_value, &error_traceback);

/* ... */

/* Restore the saved exception. */
PyErr_Restore(error_type, error_value, error_traceback);

}

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just
the thread which created the object (if the object becomes part of a refcount cycle, that cycle might be collected
by a garbage collection on any thread). This is not a problem for Python API calls, since the thread on which
tp_dealloc is called will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn
destroys objects from some other C or C++ library, care should be taken to ensure that destroying those objects
on the thread which called tp_dealloc will not violate any assumptions of the library.
Inheritance:
This field is inherited by subtypes.
Added in version 3.4.
Changed in version 3.8: Before version 3.8 it was necessary to set the Py_TPFLAGS_HAVE_FINALIZE
flags bit in order for this field to be used. This is no longer required.

302 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

See also

“Safe object finalization” (PEP 442)

vectorcallfunc PyTypeObject.tp_vectorcall
Vectorcall function to use for calls of this type object. In other words, it is used to implement vectorcall for
type.__call__. If tp_vectorcall is NULL, the default call implementation using __new__() and
__init__() is used.
Inheritance:
This field is never inherited.
Added in version 3.9: (the field exists since 3.8 but it’s only used since 3.9)

unsigned char PyTypeObject.tp_watched
Internal. Do not use.
Added in version 3.12.

12.3.6 Static Types

Traditionally, types defined in C code are static, that is, a static PyTypeObject structure is defined directly in code
and initialized using PyType_Ready().
This results in types that are limited relative to types defined in Python:

• Static types are limited to one base, i.e. they cannot use multiple inheritance.
• Static type objects (but not necessarily their instances) are immutable. It is not possible to add or modify the
type object’s attributes from Python.

• Static type objects are shared across sub-interpreters, so they should not include any subinterpreter-specific
state.

Also, since PyTypeObject is only part of the Limited API as an opaque struct, any extension modules using static
types must be compiled for a specific Python minor version.

12.3.7 Heap Types

An alternative to static types is heap-allocated types, or heap types for short, which correspond closely to classes
created by Python’s class statement. Heap types have the Py_TPFLAGS_HEAPTYPE flag set.
This is done by filling a PyType_Spec structure and calling PyType_FromSpec(),
PyType_FromSpecWithBases(), PyType_FromModuleAndSpec(), or Py-
Type_FromMetaclass().

12.4 Number Object Structures

type PyNumberMethods
This structure holds pointers to the functions which an object uses to implement the number protocol. Each
function is used by the function of similar name documented in the Number Protocol section.
Here is the structure definition:

12.4. Number Object Structures 303

https://peps.python.org/pep-0442/


The Python/C API, Release 3.13.0

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;

binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

unaryfunc nb_index;

binaryfunc nb_matrix_multiply;
binaryfunc nb_inplace_matrix_multiply;

} PyNumberMethods;

Note

Binary and ternary functions must check the type of all their operands, and implement the necessary con-
versions (at least one of the operands is an instance of the defined type). If the operation is not defined for
the given operands, binary and ternary functions must return Py_NotImplemented, if another error
occurred they must return NULL and set an exception.

Note

The nb_reserved field should always be NULL. It was previously called nb_long, and was renamed
in Python 3.0.1.

binaryfunc PyNumberMethods.nb_add

binaryfunc PyNumberMethods.nb_subtract

304 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

binaryfunc PyNumberMethods.nb_multiply

binaryfunc PyNumberMethods.nb_remainder

binaryfunc PyNumberMethods.nb_divmod

ternaryfunc PyNumberMethods.nb_power

unaryfunc PyNumberMethods.nb_negative

unaryfunc PyNumberMethods.nb_positive

unaryfunc PyNumberMethods.nb_absolute

inquiry PyNumberMethods.nb_bool

unaryfunc PyNumberMethods.nb_invert

binaryfunc PyNumberMethods.nb_lshift

binaryfunc PyNumberMethods.nb_rshift

binaryfunc PyNumberMethods.nb_and

binaryfunc PyNumberMethods.nb_xor

binaryfunc PyNumberMethods.nb_or

unaryfunc PyNumberMethods.nb_int

void *PyNumberMethods.nb_reserved

unaryfunc PyNumberMethods.nb_float

binaryfunc PyNumberMethods.nb_inplace_add

binaryfunc PyNumberMethods.nb_inplace_subtract

binaryfunc PyNumberMethods.nb_inplace_multiply

binaryfunc PyNumberMethods.nb_inplace_remainder

ternaryfunc PyNumberMethods.nb_inplace_power

binaryfunc PyNumberMethods.nb_inplace_lshift

binaryfunc PyNumberMethods.nb_inplace_rshift

binaryfunc PyNumberMethods.nb_inplace_and

binaryfunc PyNumberMethods.nb_inplace_xor

binaryfunc PyNumberMethods.nb_inplace_or

binaryfunc PyNumberMethods.nb_floor_divide

binaryfunc PyNumberMethods.nb_true_divide

binaryfunc PyNumberMethods.nb_inplace_floor_divide

binaryfunc PyNumberMethods.nb_inplace_true_divide

unaryfunc PyNumberMethods.nb_index

binaryfunc PyNumberMethods.nb_matrix_multiply

binaryfunc PyNumberMethods.nb_inplace_matrix_multiply

12.4. Number Object Structures 305



The Python/C API, Release 3.13.0

12.5 Mapping Object Structures

type PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has
three members:

lenfunc PyMappingMethods.mp_length

This function is used by PyMapping_Size() and PyObject_Size(), and has the same signature. This
slot may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods.mp_subscript
This function is used by PyObject_GetItem() and PySequence_GetSlice(), and has the same
signature as PyObject_GetItem(). This slot must be filled for the PyMapping_Check() function to
return 1, it can be NULL otherwise.

objobjargproc PyMappingMethods.mp_ass_subscript

This function is used by PyObject_SetItem(), PyObject_DelItem(), PySe-
quence_SetSlice() and PySequence_DelSlice(). It has the same signature as PyOb-
ject_SetItem(), but v can also be set to NULL to delete an item. If this slot is NULL, the object does
not support item assignment and deletion.

12.6 Sequence Object Structures

type PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence_Size() and PyObject_Size(), and has the same signature. It
is also used for handling negative indices via the sq_item and the sq_ass_item slots.

binaryfunc PySequenceMethods.sq_concat
This function is used by PySequence_Concat() and has the same signature. It is also used by the +
operator, after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by PySequence_Repeat() and has the same signature. It is also used by the *
operator, after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq_item
This function is used by PySequence_GetItem() and has the same signature. It is also used by PyOb-
ject_GetItem(), after trying the subscription via the mp_subscript slot. This slot must be filled for
the PySequence_Check() function to return 1, it can be NULL otherwise.
Negative indexes are handled as follows: if the sq_length slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sq_item. If sq_length is NULL, the index is passed
as is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence_SetItem() and has the same signature. It is also used by PyOb-
ject_SetItem() and PyObject_DelItem(), after trying the item assignment and deletion via the
mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment
and deletion.

objobjproc PySequenceMethods.sq_contains

This function may be used by PySequence_Contains() and has the same signature. This slot may be
left to NULL, in this case PySequence_Contains() simply traverses the sequence until it finds a match.

306 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

binaryfunc PySequenceMethods.sq_inplace_concat
This function is used by PySequence_InPlaceConcat() and has the same signature. It should
modify its first operand, and return it. This slot may be left to NULL, in this case PySe-
quence_InPlaceConcat() will fall back to PySequence_Concat(). It is also used by the aug-
mented assignment +=, after trying numeric in-place addition via the nb_inplace_add slot.

ssizeargfunc PySequenceMethods.sq_inplace_repeat
This function is used by PySequence_InPlaceRepeat() and has the same signature. It should
modify its first operand, and return it. This slot may be left to NULL, in this case PySe-
quence_InPlaceRepeat() will fall back to PySequence_Repeat(). It is also used by the aug-
mented assignment *=, after trying numeric in-place multiplication via the nb_inplace_multiply slot.

12.7 Buffer Object Structures

type PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an
exporter object can expose its internal data to consumer objects.

getbufferproc PyBufferProcs.bf_getbuffer
The signature of this function is:

int (PyObject *exporter, Py_buffer *view, int flags);

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:
(1) Check if the request can be met. If not, raise BufferError, set view->obj to NULL and return

-1.
(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view->obj to exporter and increment view->obj.
(5) Return 0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

• Re-export: Eachmember of the tree acts as the exporting object and sets view->obj to a new reference
to itself.

• Redirect: The buffer request is redirected to the root object of the tree. Here, view->obj will be a
new reference to the root object.

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to
specific requests are in section Buffer request types.
All memory pointed to in the Py_buffer structure belongs to the exporter and must remain valid until there
are no consumers left. format, shape, strides, suboffsets and internal are read-only for the
consumer.
PyBuffer_FillInfo() provides an easy way of exposing a simple bytes buffer while dealing correctly
with all request types.
PyObject_GetBuffer() is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs.bf_releasebuffer
The signature of this function is:

void (PyObject *exporter, Py_buffer *view);

12.7. Buffer Object Structures 307



The Python/C API, Release 3.13.0

Handle a request to release the resources of the buffer. If no resources need to be released,
PyBufferProcs.bf_releasebuffer may be NULL. Otherwise, a standard implementation of this
function will take these optional steps:
(1) Decrement an internal counter for the number of exports.
(2) If the counter is 0, free all memory associated with view.
The exporterMUST use theinternal field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.
This function MUST NOT decrement view->obj, since that is done automatically in Py-
Buffer_Release() (this scheme is useful for breaking reference cycles).
PyBuffer_Release() is the interface for the consumer that wraps this function.

12.8 Async Object Structures

Added in version 3.5.
type PyAsyncMethods

This structure holds pointers to the functions required to implement awaitable and asynchronous iterator ob-
jects.
Here is the structure definition:

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;
sendfunc am_send;

} PyAsyncMethods;

unaryfunc PyAsyncMethods.am_await
The signature of this function is:

PyObject *am_await(PyObject *self);

The returned object must be an iterator, i.e. PyIter_Check() must return 1 for it.
This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter
The signature of this function is:

PyObject *am_aiter(PyObject *self);

Must return an asynchronous iterator object. See __anext__() for details.
This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods.am_anext

The signature of this function is:

PyObject *am_anext(PyObject *self);

Must return an awaitable object. See __anext__() for details. This slot may be set to NULL.
sendfunc PyAsyncMethods.am_send

The signature of this function is:

PySendResult am_send(PyObject *self, PyObject *arg, PyObject **result);

308 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

See PyIter_Send() for details. This slot may be set to NULL.
Added in version 3.10.

12.9 Slot Type typedefs

typedef PyObject *(*allocfunc)(PyTypeObject *cls, Py_ssize_t nitems)
Part of the Stable ABI. The purpose of this function is to separate memory allocation from memory initial-
ization. It should return a pointer to a block of memory of adequate length for the instance, suitably aligned,
and initialized to zeros, but with ob_refcnt set to 1 and ob_type set to the type argument. If the type’s
tp_itemsize is non-zero, the object’s ob_size field should be initialized to nitems and the length of the
allocated memory block should be tp_basicsize + nitems*tp_itemsize, rounded up to a multiple
of sizeof(void*); otherwise, nitems is not used and the length of the block should be tp_basicsize.
This function should not do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.

typedef void (*destructor)(PyObject*)
Part of the Stable ABI.

typedef void (*freefunc)(void*)
See tp_free.

typedef PyObject *(*newfunc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI. See tp_new.

typedef int (*initproc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI. See tp_init.

typedef PyObject *(*reprfunc)(PyObject*)
Part of the Stable ABI. See tp_repr.

typedef PyObject *(*getattrfunc)(PyObject *self, char *attr)
Part of the Stable ABI. Return the value of the named attribute for the object.

typedef int (*setattrfunc)(PyObject *self, char *attr, PyObject *value)
Part of the Stable ABI. Set the value of the named attribute for the object. The value argument is set to NULL
to delete the attribute.

typedef PyObject *(*getattrofunc)(PyObject *self, PyObject *attr)
Part of the Stable ABI. Return the value of the named attribute for the object.
See tp_getattro.

typedef int (*setattrofunc)(PyObject *self, PyObject *attr, PyObject *value)
Part of the Stable ABI. Set the value of the named attribute for the object. The value argument is set to NULL
to delete the attribute.
See tp_setattro.

typedef PyObject *(*descrgetfunc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI. See tp_descr_get.

typedef int (*descrsetfunc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI. See tp_descr_set.

typedef Py_hash_t (*hashfunc)(PyObject*)
Part of the Stable ABI. See tp_hash.

typedef PyObject *(*richcmpfunc)(PyObject*, PyObject*, int)
Part of the Stable ABI. See tp_richcompare.

12.9. Slot Type typedefs 309



The Python/C API, Release 3.13.0

typedef PyObject *(*getiterfunc)(PyObject*)
Part of the Stable ABI. See tp_iter.

typedef PyObject *(*iternextfunc)(PyObject*)
Part of the Stable ABI. See tp_iternext.

typedef Py_ssize_t (*lenfunc)(PyObject*)
Part of the Stable ABI.

typedef int (*getbufferproc)(PyObject*, Py_buffer*, int)
Part of the Stable ABI since version 3.12.

typedef void (*releasebufferproc)(PyObject*, Py_buffer*)
Part of the Stable ABI since version 3.12.

typedef PyObject *(*unaryfunc)(PyObject*)
Part of the Stable ABI.

typedef PyObject *(*binaryfunc)(PyObject*, PyObject*)
Part of the Stable ABI.

typedef PySendResult (*sendfunc)(PyObject*, PyObject*, PyObject**)
See am_send.

typedef PyObject *(*ternaryfunc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI.

typedef PyObject *(*ssizeargfunc)(PyObject*, Py_ssize_t)
Part of the Stable ABI.

typedef int (*ssizeobjargproc)(PyObject*, Py_ssize_t, PyObject*)
Part of the Stable ABI.

typedef int (*objobjproc)(PyObject*, PyObject*)
Part of the Stable ABI.

typedef int (*objobjargproc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI.

12.10 Examples

The following are simple examples of Python type definitions. They include common usage you may encounter.
Some demonstrate tricky corner cases. For more examples, practical info, and a tutorial, see defining-new-types and
new-types-topics.
A basic static type:

typedef struct {
PyObject_HEAD
const char *data;

} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof(MyObject),
.tp_doc = PyDoc_STR("My objects"),
.tp_new = myobj_new,
.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,

};

310 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

You may also find older code (especially in the CPython code base) with a more verbose initializer:

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"mymod.MyObject", /* tp_name */
sizeof(MyObject), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)myobj_dealloc, /* tp_dealloc */
0, /* tp_vectorcall_offset */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
(reprfunc)myobj_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
0, /* tp_flags */
PyDoc_STR("My objects"), /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
myobj_new, /* tp_new */

};

A type that supports weakrefs, instance dicts, and hashing:

typedef struct {
PyObject_HEAD
const char *data;

} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof(MyObject),
.tp_doc = PyDoc_STR("My objects"),
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |

Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_MANAGED_DICT |
Py_TPFLAGS_MANAGED_WEAKREF,

.tp_new = myobj_new,

.tp_traverse = (traverseproc)myobj_traverse,

.tp_clear = (inquiry)myobj_clear,

.tp_alloc = PyType_GenericNew,

.tp_dealloc = (destructor)myobj_dealloc,
(continues on next page)

12.10. Examples 311



The Python/C API, Release 3.13.0

(continued from previous page)
.tp_repr = (reprfunc)myobj_repr,
.tp_hash = (hashfunc)myobj_hash,
.tp_richcompare = PyBaseObject_Type.tp_richcompare,

};

A str subclass that cannot be subclassed and cannot be called to create instances (e.g. uses a separate factory func)
using Py_TPFLAGS_DISALLOW_INSTANTIATION flag:

typedef struct {
PyUnicodeObject raw;
char *extra;

} MyStr;

static PyTypeObject MyStr_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyStr",
.tp_basicsize = sizeof(MyStr),
.tp_base = NULL, // set to &PyUnicode_Type in module init
.tp_doc = PyDoc_STR("my custom str"),
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION,
.tp_repr = (reprfunc)myobj_repr,

};

The simplest static type with fixed-length instances:

typedef struct {
PyObject_HEAD

} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",

};

The simplest static type with variable-length instances:

typedef struct {
PyObject_VAR_HEAD
const char *data[1];

} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof(MyObject) - sizeof(char *),
.tp_itemsize = sizeof(char *),

};

12.11 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are “containers” for other objects which may also be containers. Types which do not store references to
other objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any
explicit support for garbage collection.
To create a container type, the tp_flags field of the type object must include the Py_TPFLAGS_HAVE_GC
and provide an implementation of the tp_traverse handler. If instances of the type are mutable, a tp_clear
implementation must also be provided.

312 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

Py_TPFLAGS_HAVE_GC
Objects with a type with this flag set must conform with the rules documented here. For convenience these
objects will be referred to as container objects.

Constructors for container types must conform to two rules:
1. The memory for the object must be allocated using PyObject_GC_New or PyObject_GC_NewVar.
2. Once all the fields which may contain references to other containers are initialized, it must call PyOb-

ject_GC_Track().
Similarly, the deallocator for the object must conform to a similar pair of rules:

1. Before fields which refer to other containers are invalidated, PyObject_GC_UnTrack() must be called.
2. The object’s memory must be deallocated using PyObject_GC_Del().

Warning

If a type adds the Py_TPFLAGS_HAVE_GC, then it must implement at least a tp_traverse handler
or explicitly use one from its subclass or subclasses.
When calling PyType_Ready() or some of the APIs that indirectly call it like Py-
Type_FromSpecWithBases() or PyType_FromSpec() the interpreter will automatically
populate the tp_flags, tp_traverse and tp_clear fields if the type inherits from a class that im-
plements the garbage collector protocol and the child class does not include the Py_TPFLAGS_HAVE_GC
flag.

PyObject_GC_New(TYPE, typeobj)
Analogous to PyObject_New but for container objects with the Py_TPFLAGS_HAVE_GC flag set.

PyObject_GC_NewVar(TYPE, typeobj, size)
Analogous to PyObject_NewVar but for container objects with the Py_TPFLAGS_HAVE_GC flag set.

PyObject *PyUnstable_Object_GC_NewWithExtraData(PyTypeObject *type, size_t extra_size)

This is Unstable API. It may change without warning in minor releases.

Analogous to PyObject_GC_New but allocates extra_size bytes at the end of the object (at offset
tp_basicsize). The allocated memory is initialized to zeros, except for the Python object header.
The extra data will be deallocated with the object, but otherwise it is not managed by Python.

Warning

The function is marked as unstable because the final mechanism for reserving extra data after an in-
stance is not yet decided. For allocating a variable number of fields, prefer using PyVarObject and
tp_itemsize instead.

Added in version 3.12.
PyObject_GC_Resize(TYPE, op, newsize)

Resize an object allocated by PyObject_NewVar. Returns the resized object of type TYPE* (refers to any
C type) or NULL on failure.
op must be of type PyVarObject* and must not be tracked by the collector yet. newsize must be of type
Py_ssize_t.

12.11. Supporting Cyclic Garbage Collection 313



The Python/C API, Release 3.13.0

void PyObject_GC_Track(PyObject *op)
Part of the Stable ABI.Adds the object op to the set of container objects tracked by the collector. The collector
can run at unexpected times so objects must be valid while being tracked. This should be called once all the
fields followed by the tp_traverse handler become valid, usually near the end of the constructor.

int PyObject_IS_GC(PyObject *obj)
Returns non-zero if the object implements the garbage collector protocol, otherwise returns 0.
The object cannot be tracked by the garbage collector if this function returns 0.

int PyObject_GC_IsTracked(PyObject *op)
Part of the Stable ABI since version 3.9. Returns 1 if the object type of op implements the GC protocol and op
is being currently tracked by the garbage collector and 0 otherwise.
This is analogous to the Python function gc.is_tracked().
Added in version 3.9.

int PyObject_GC_IsFinalized(PyObject *op)
Part of the Stable ABI since version 3.9. Returns 1 if the object type of op implements the GC protocol and op
has been already finalized by the garbage collector and 0 otherwise.
This is analogous to the Python function gc.is_finalized().
Added in version 3.9.

void PyObject_GC_Del(void *op)
Part of the Stable ABI. Releases memory allocated to an object using PyObject_GC_New or PyOb-
ject_GC_NewVar.

void PyObject_GC_UnTrack(void *op)
Part of the Stable ABI. Remove the object op from the set of container objects tracked by the collector. Note
that PyObject_GC_Track() can be called again on this object to add it back to the set of tracked objects.
The deallocator (tp_dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

Changed in version 3.8: The _PyObject_GC_TRACK() and _PyObject_GC_UNTRACK()macros have been
removed from the public C API.
The tp_traverse handler accepts a function parameter of this type:
typedef int (*visitproc)(PyObject *object, void *arg)

Part of the Stable ABI. Type of the visitor function passed to the tp_traverse handler. The function should
be called with an object to traverse as object and the third parameter to the tp_traverse handler as arg.
The Python core uses several visitor functions to implement cyclic garbage detection; it’s not expected that
users will need to write their own visitor functions.

The tp_traverse handler must have the following type:
typedef int (*traverseproc)(PyObject *self, visitproc visit, void *arg)

Part of the Stable ABI. Traversal function for a container object. Implementations must call the visit function
for each object directly contained by self, with the parameters to visit being the contained object and the arg
value passed to the handler. The visit function must not be called with a NULL object argument. If visit returns
a non-zero value that value should be returned immediately.

To simplify writing tp_traverse handlers, a Py_VISIT() macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:
void Py_VISIT(PyObject *o)

If o is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return
it. Using this macro, tp_traverse handlers look like:

314 Chapter 12. Object Implementation Support



The Python/C API, Release 3.13.0

static int
my_traverse(Noddy *self, visitproc visit, void *arg)
{

Py_VISIT(self->foo);
Py_VISIT(self->bar);
return 0;

}

The tp_clear handler must be of the inquiry type, or NULL if the object is immutable.
typedef int (*inquiry)(PyObject *self)

Part of the Stable ABI. Drop references that may have created reference cycles. Immutable objects do not
have to define this method since they can never directly create reference cycles. Note that the object must still
be valid after calling this method (don’t just call Py_DECREF() on a reference). The collector will call this
method if it detects that this object is involved in a reference cycle.

12.11.1 Controlling the Garbage Collector State

The C-API provides the following functions for controlling garbage collection runs.
Py_ssize_t PyGC_Collect(void)

Part of the Stable ABI. Perform a full garbage collection, if the garbage collector is enabled. (Note that gc.
collect() runs it unconditionally.)
Returns the number of collected + unreachable objects which cannot be collected. If the garbage collector is
disabled or already collecting, returns 0 immediately. Errors during garbage collection are passed to sys.
unraisablehook. This function does not raise exceptions.

int PyGC_Enable(void)
Part of the Stable ABI since version 3.10. Enable the garbage collector: similar to gc.enable(). Returns
the previous state, 0 for disabled and 1 for enabled.
Added in version 3.10.

int PyGC_Disable(void)
Part of the Stable ABI since version 3.10. Disable the garbage collector: similar to gc.disable(). Returns
the previous state, 0 for disabled and 1 for enabled.
Added in version 3.10.

int PyGC_IsEnabled(void)
Part of the Stable ABI since version 3.10. Query the state of the garbage collector: similar to gc.
isenabled(). Returns the current state, 0 for disabled and 1 for enabled.
Added in version 3.10.

12.11.2 Querying Garbage Collector State

The C-API provides the following interface for querying information about the garbage collector.
void PyUnstable_GC_VisitObjects(gcvisitobjects_t callback, void *arg)

This is Unstable API. It may change without warning in minor releases.

Run supplied callback on all live GC-capable objects. arg is passed through to all invocations of callback.

12.11. Supporting Cyclic Garbage Collection 315



The Python/C API, Release 3.13.0

Warning

If new objects are (de)allocated by the callback it is undefined if they will be visited.
Garbage collection is disabled during operation. Explicitly running a collection in the callback may lead to
undefined behaviour e.g. visiting the same objects multiple times or not at all.

Added in version 3.12.
typedef int (*gcvisitobjects_t)(PyObject *object, void *arg)

Type of the visitor function to be passed to PyUnstable_GC_VisitObjects(). arg is the same as
the arg passed to PyUnstable_GC_VisitObjects. Return 0 to continue iteration, return 1 to stop
iteration. Other return values are reserved for now so behavior on returning anything else is undefined.
Added in version 3.12.

316 Chapter 12. Object Implementation Support



CHAPTER

THIRTEEN

API AND ABI VERSIONING

CPython exposes its version number in the following macros. Note that these correspond to the version code is built
with, not necessarily the version used at run time.
See C API Stability for a discussion of API and ABI stability across versions.
PY_MAJOR_VERSION

The 3 in 3.4.1a2.
PY_MINOR_VERSION

The 4 in 3.4.1a2.
PY_MICRO_VERSION

The 1 in 3.4.1a2.
PY_RELEASE_LEVEL

The a in 3.4.1a2. This can be 0xA for alpha, 0xB for beta, 0xC for release candidate or 0xF for final.
PY_RELEASE_SERIAL

The 2 in 3.4.1a2. Zero for final releases.
PY_VERSION_HEX

The Python version number encoded in a single integer.
The underlying version information can be found by treating it as a 32 bit number in the following manner:

Bytes Bits (big endian order) Meaning Value for 3.4.1a2
1 1-8 PY_MAJOR_VERSION 0x03
2 9-16 PY_MINOR_VERSION 0x04
3 17-24 PY_MICRO_VERSION 0x01
4 25-28 PY_RELEASE_LEVEL 0xA

29-32 PY_RELEASE_SERIAL 0x2

Thus 3.4.1a2 is hexversion 0x030401a2 and 3.10.0 is hexversion 0x030a00f0.
Use this for numeric comparisons, e.g. #if PY_VERSION_HEX >= ....
This version is also available via the symbol Py_Version.

const unsigned long Py_Version
Part of the Stable ABI since version 3.11. The Python runtime version number encoded in a single constant
integer, with the same format as the PY_VERSION_HEX macro. This contains the Python version used at
run time.
Added in version 3.11.

All the given macros are defined in Include/patchlevel.h.

317

https://github.com/python/cpython/tree/3.13/Include/patchlevel.h


The Python/C API, Release 3.13.0

318 Chapter 13. API and ABI Versioning



CHAPTER

FOURTEEN

MONITORING C API

Added in version 3.13.
An extension may need to interact with the event monitoring system. Subscribing to events and registering callbacks
can be done via the Python API exposed in sys.monitoring.

319



The Python/C API, Release 3.13.0

320 Chapter 14. Monitoring C API



CHAPTER

FIFTEEN

GENERATING EXECUTION EVENTS

The functions below make it possible for an extension to fire monitoring events as it emulates the execution of Python
code. Each of these functions accepts a PyMonitoringState struct which contains concise information about
the activation state of events, as well as the event arguments, which include a PyObject* representing the code
object, the instruction offset and sometimes additional, event-specific arguments (see sys.monitoring for details
about the signatures of the different event callbacks). The codelike argument should be an instance of types.
CodeType or of a type that emulates it.
The VM disables tracing when firing an event, so there is no need for user code to do that.
Monitoring functions should not be called with an exception set, except those listed below as working with the current
exception.
type PyMonitoringState

Representation of the state of an event type. It is allocated by the user while its contents are maintained by the
monitoring API functions described below.

All of the functions below return 0 on success and -1 (with an exception set) on error.
See sys.monitoring for descriptions of the events.
int PyMonitoring_FirePyStartEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset)

Fire a PY_START event.
int PyMonitoring_FirePyResumeEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset)

Fire a PY_RESUME event.
int PyMonitoring_FirePyReturnEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset,

PyObject *retval)
Fire a PY_RETURN event.

int PyMonitoring_FirePyYieldEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset,
PyObject *retval)

Fire a PY_YIELD event.
int PyMonitoring_FireCallEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset, PyObject

*callable, PyObject *arg0)
Fire a CALL event.

int PyMonitoring_FireLineEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset, int
lineno)

Fire a LINE event.
int PyMonitoring_FireJumpEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset, PyObject

*target_offset)
Fire a JUMP event.

int PyMonitoring_FireBranchEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset,
PyObject *target_offset)

Fire a BRANCH event.

321



The Python/C API, Release 3.13.0

int PyMonitoring_FireCReturnEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset,
PyObject *retval)

Fire a C_RETURN event.
int PyMonitoring_FirePyThrowEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset)

Fire a PY_THROW event with the current exception (as returned by PyErr_GetRaisedException()).
int PyMonitoring_FireRaiseEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset)

Fire a RAISE event with the current exception (as returned by PyErr_GetRaisedException()).
int PyMonitoring_FireCRaiseEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset)

Fire a C_RAISE event with the current exception (as returned by PyErr_GetRaisedException()).
int PyMonitoring_FireReraiseEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset)

Fire a RERAISE event with the current exception (as returned by PyErr_GetRaisedException()).
int PyMonitoring_FireExceptionHandledEvent(PyMonitoringState *state, PyObject *codelike,

int32_t offset)
Fire an EXCEPTION_HANDLED event with the current exception (as returned by Py-
Err_GetRaisedException()).

int PyMonitoring_FirePyUnwindEvent(PyMonitoringState *state, PyObject *codelike, int32_t offset)
Fire a PY_UNWIND event with the current exception (as returned by PyErr_GetRaisedException()).

int PyMonitoring_FireStopIterationEvent(PyMonitoringState *state, PyObject *codelike, int32_t
offset, PyObject *value)

Fire a STOP_ITERATION event. If value is an instance of StopIteration, it is used. Otherwise, a
new StopIteration instance is created with value as its argument.

15.1 Managing the Monitoring State

Monitoring states can be managed with the help of monitoring scopes. A scope would typically correspond to a
python function.
int PyMonitoring_EnterScope(PyMonitoringState *state_array, uint64_t *version, const uint8_t

*event_types, Py_ssize_t length)
Enter a monitored scope. event_types is an array of the event IDs for events that may be fired from the
scope. For example, the ID of a PY_START event is the value PY_MONITORING_EVENT_PY_START,
which is numerically equal to the base-2 logarithm of sys.monitoring.events.PY_START.
state_array is an array with a monitoring state entry for each event in event_types, it is allocated
by the user but populated by PyMonitoring_EnterScope() with information about the activation state
of the event. The size of event_types (and hence also of state_array) is given in length.
The version argument is a pointer to a value which should be allocated by the user together with
state_array and initialized to 0, and then set only by PyMonitoring_EnterScope() itelf. It allows
this function to determine whether event states have changed since the previous call, and to return quickly if
they have not.
The scopes referred to here are lexical scopes: a function, class or method. PyMonitor-
ing_EnterScope() should be called whenever the lexical scope is entered. Scopes can be reentered,
reusing the same state_array and version, in situations like when emulating a recursive Python function. When
a code-like’s execution is paused, such as when emulating a generator, the scope needs to be exited and re-
entered.
The macros for event_types are:

322 Chapter 15. Generating Execution Events



The Python/C API, Release 3.13.0

Macro Event

PY_MONITORING_EVENT_BRANCH
BRANCH

PY_MONITORING_EVENT_CALL
CALL

PY_MONITORING_EVENT_C_RAISE
C_RAISE

PY_MONITORING_EVENT_C_RETURN
C_RETURN

PY_MONITORING_EVENT_EXCEPTION_HANDLED
EXCEPTION_HANDLED

PY_MONITORING_EVENT_INSTRUCTION
INSTRUCTION

PY_MONITORING_EVENT_JUMP
JUMP

PY_MONITORING_EVENT_LINE
LINE

PY_MONITORING_EVENT_PY_RESUME
PY_RESUME

PY_MONITORING_EVENT_PY_RETURN
PY_RETURN

PY_MONITORING_EVENT_PY_START
PY_START

PY_MONITORING_EVENT_PY_THROW
PY_THROW

PY_MONITORING_EVENT_PY_UNWIND
PY_UNWIND

PY_MONITORING_EVENT_PY_YIELD
PY_YIELD

PY_MONITORING_EVENT_RAISE
RAISE

PY_MONITORING_EVENT_RERAISE
RERAISE

PY_MONITORING_EVENT_STOP_ITERATION
STOP_ITERATION

int PyMonitoring_ExitScope(void)
Exit the last scope that was entered with PyMonitoring_EnterScope().

15.1. Managing the Monitoring State 323



The Python/C API, Release 3.13.0

324 Chapter 15. Generating Execution Events



APPENDIX

A

GLOSSARY

>>>
The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

...
Can refer to:

• The default Python prompt of the interactive shell when entering the code for an indented code block,
when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

• The Ellipsis built-in constant.
abstract base class

Abstract base classes complement duck-typing by providing a way to define interfaces when other techniques
like hasattr()would be clumsy or subtly wrong (for example with magic methods). ABCs introduce virtual
subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abc module documentation. Python comes with many built-in ABCs for data
structures (in the collections.abc module), numbers (in the numbers module), streams (in the io
module), import finders and loaders (in the importlib.abcmodule). You can create your own ABCs with
the abc module.

annotation
A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.
Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class at-
tributes, and functions are stored in the __annotations__ special attribute of modules, classes, and func-
tions, respectively.
See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality. Also
see annotations-howto for best practices on working with annotations.

argument
A value passed to a function (or method) when calling the function. There are two kinds of argument:

• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following
calls to complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3
and 5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

325

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/


The Python/C API, Release 3.13.0

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.
See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asynchronous context manager
An object which controls the environment seen in an async with statement by defining __aenter__()
and __aexit__() methods. Introduced by PEP 492.

asynchronous generator
A function which returns an asynchronous generator iterator. It looks like a coroutine function defined with
async def except that it contains yield expressions for producing a series of values usable in an async
for loop.
Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in
some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.
An asynchronous generator function may contain await expressions as well as async for, and async
with statements.

asynchronous generator iterator
An object created by a asynchronous generator function.
This is an asynchronous iterator which when called using the __anext__() method returns an awaitable
object which will execute the body of the asynchronous generator function until the next yield expression.
Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the asynchronous generator iterator effectively resumes with another
awaitable returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__() method. Introduced by PEP 492.

asynchronous iterator
An object that implements the __aiter__() and __anext__() methods. __anext__() must re-
turn an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__() method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute
A value associated with an object which is usually referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.
It is possible to give an object an attribute whose name is not an identifier as defined by identifiers, for example
using setattr(), if the object allows it. Such an attribute will not be accessible using a dotted expression,
and would instead need to be retrieved with getattr().

awaitable
An object that can be used in an await expression. Can be a coroutine or an object with an __await__()
method. See also PEP 492.

BDFL
Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary
mode ('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.
BytesIO and gzip.GzipFile.
See also text file for a file object able to read and write str objects.

borrowed reference
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

326 Appendix A. Glossary

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://gvanrossum.github.io/


The Python/C API, Release 3.13.0

Calling Py_INCREF() on the borrowed reference is recommended to convert it to a strong reference in-
place, except when the object cannot be destroyed before the last usage of the borrowed reference. The
Py_NewRef() function can be used to create a new strong reference.

bytes-like object
An object that supports the Buffer Protocol and can export a C-contiguous buffer. This includes all bytes,
bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like
objects can be used for various operations that work with binary data; these include compression, saving to a
binary file, and sending over a socket.
Some operations need the binary data to be mutable. The documentation often refers to these as “read-
write bytes-like objects”. Example mutable buffer objects include bytearray and a memoryview of a
bytearray. Other operations require the binary data to be stored in immutable objects (“read-only bytes-
like objects”); examples of these include bytes and a memoryview of a bytes object.

bytecode
Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a
virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are
not expected to work between different Python virtual machines, nor to be stable between Python releases.
A list of bytecode instructions can be found in the documentation for the dis module.

callable
A callable is an object that can be called, possibly with a set of arguments (see argument), with the following
syntax:

callable(argument1, argument2, argumentN)

A function, and by extension amethod, is a callable. An instance of a class that implements the __call__()
method is also a callable.

callback
A subroutine function which is passed as an argument to be executed at some point in the future.

class
A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

class variable
A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the class).

complex number
An extension of the familiar real number system in which all numbers are expressed as a sum of a real part
and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which
are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access
to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager
An object which controls the environment seen in a with statement by defining __enter__() and
__exit__() methods. See PEP 343.

context variable
A variable which can have different values depending on its context. This is similar to Thread-Local Storage in
which each execution thread may have a different value for a variable. However, with context variables, there
may be several contexts in one execution thread and the main usage for context variables is to keep track of
variables in concurrent asynchronous tasks. See contextvars.

contiguous
A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next

327

https://peps.python.org/pep-0343/


The Python/C API, Release 3.13.0

to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the
last index varies the fastest when visiting items in order of memory address. However, in Fortran contiguous
arrays, the first index varies the fastest.

coroutine
Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be imple-
mented with the async def statement. See also PEP 492.

coroutine function
A function which returns a coroutine object. A coroutine function may be defined with the async def
statement, and may contain await, async for, and async with keywords. These were introduced by
PEP 492.

CPython
The canonical implementation of the Python programming language, as distributed on python.org. The term
“CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator
A function returning another function, usually applied as a function transformation using the @wrapper syn-
tax. Common examples for decorators are classmethod() and staticmethod().
The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiv-
alent:

def f(arg):
...

f = staticmethod(f)

@staticmethod
def f(arg):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor
Any object which defines the methods __get__(), __set__(), or __delete__(). When a class at-
tribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.
For more information about descriptors’ methods, see descriptors or the Descriptor How To Guide.

dictionary
An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

dictionary comprehension
A compact way to process all or part of the elements in an iterable and return a dictionary with the results.
results = {n: n ** 2 for n in range(10)} generates a dictionary containing key n mapped
to value n ** 2. See comprehensions.

dictionary view
The objects returned from dict.keys(), dict.values(), and dict.items() are called dictionary
views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes,
the view reflects these changes. To force the dictionary view to become a full list use list(dictview).
See dict-views.

docstring
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,

328 Appendix A. Glossary

https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org


The Python/C API, Release 3.13.0

function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing
Aprogramming style which does not look at an object’s type to determine if it has the right interface; instead, the
method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must be a duck.”)
By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by allowing
polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note, however,
that duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr()
tests or EAFP programming.

EAFP
Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common
to many other languages such as C.

expression
A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation of
expression elements like literals, names, attribute access, operators or function calls which all return a value. In
contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module
A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string
String literals prefixed with 'f' or 'F' are commonly called “f-strings” which is short for formatted string
literals. See also PEP 498.

file object
An object exposing a file-oriented API (with methods such as read() or write()) to an underlying re-
source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to
another type of storage or communication device (for example standard input/output, in-memory buffers,
sockets, pipes, etc.). File objects are also called file-like objects or streams.
There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open()
function.

file-like object
A synonym for file object.

filesystem encoding and error handler
Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to
the operating system.
The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.
The sys.getfilesystemencoding() and sys.getfilesystemencodeerrors() functions
can be used to get the filesystem encoding and error handler.
The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read() func-
tion: see filesystem_encoding and filesystem_errors members of PyConfig.
See also the locale encoding.

finder
An object that tries to find the loader for a module that is being imported.
There are two types of finder: meta path finders for use with sys.meta_path, and path entry finders for
use with sys.path_hooks.
See importsystem and importlib for much more detail.

329

https://peps.python.org/pep-0498/


The Python/C API, Release 3.13.0

floor division
Mathematical division that rounds down to nearest integer. The floor division operator is //. For example, the
expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

free threading
A threading model where multiple threads can run Python bytecode simultaneously within the same interpreter.
This is in contrast to the global interpreter lock which allows only one thread to execute Python bytecode at a
time. See PEP 703.

function
A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation
An annotation of a function parameter or return value.
Function annotations are usually used for type hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

__future__
A future statement, from __future__ import <feature>, directs the compiler to compile the
current module using syntax or semantics that will become standard in a future release of Python. The __fu-
ture__ module documents the possible values of feature. By importing this module and evaluating its vari-
ables, you can see when a new feature was first added to the language and when it will (or did) become the
default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection
The process of freeing memory when it is not used anymore. Python performs garbage collection via reference
counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage collector
can be controlled using the gc module.

generator
A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function.
Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator
An object created by a generator function.
Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast
to functions which start fresh on every invocation).

generator expression
An expression that returns an iterator. It looks like a normal expression followed by a for clause defining a
loop variable, range, and an optional if clause. The combined expression generates values for an enclosing
function:

330 Appendix A. Glossary

https://peps.python.org/pep-0238/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0484/


The Python/C API, Release 3.13.0

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

generic function
A function composed of multiple functions implementing the same operation for different types. Which im-
plementation should be used during a call is determined by the dispatch algorithm.
See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP
443.

generic type
A type that can be parameterized; typically a container class such as list or dict. Used for type hints and
annotations.
For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the typing module.

GIL
See global interpreter lock.

global interpreter lock
The mechanism used by the CPython interpreter to assure that only one thread executes Python bytecode at
a time. This simplifies the CPython implementation by making the object model (including critical built-in
types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.
However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.
As of Python 3.13, the GIL can be disabled using the --disable-gil build configuration. After building
Python with this option, code must be run with -X gil 0 or after setting the PYTHON_GIL=0 environment
variable. This feature enables improved performance for multi-threaded applications and makes it easier to use
multi-core CPUs efficiently. For more details, see PEP 703.

hash-based pyc
A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source file to
determine its validity. See pyc-invalidation.

hashable
An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() method). Hashable objects which
compare equal must have the same hash value.
Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.
Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries)
are not; immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except
with themselves), and their hash value is derived from their id().

IDLE
An Integrated Development and Learning Environment for Python. idle is a basic editor and interpreter envi-
ronment which ships with the standard distribution of Python.

immortal
Immortal objects are a CPython implementation detail introduced in PEP 683.
If an object is immortal, its reference count is never modified, and therefore it is never deallocated while the
interpreter is running. For example, True and None are immortal in CPython.

immutable
An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot

331

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0683/


The Python/C API, Release 3.13.0

be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path
A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the
parent package’s __path__ attribute.

importing
The process by which Python code in one module is made available to Python code in another module.

importer
An object that both finds and loads a module; both a finder and loader object.

interactive
Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly
by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect
modules and packages (remember help(x)). For more on interactive mode, see tut-interac.

interpreted
Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown
When asked to shut down, the Python interpreter enters a special phase where it gradually releases all allocated
resources, such as modules and various critical internal structures. It also makes several calls to the garbage
collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code exe-
cuted during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).
The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes
you define with an __iter__() method or with a __getitem__() method that implements sequence
semantics.
Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(),
…). When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter() or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator
An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing
it to the built-in function next()) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any fur-
ther calls to its __next__() method just raise StopIteration again. Iterators are required to have an
__iter__() method that returns the iterator object itself so every iterator is also iterable and may be used
in most places where other iterables are accepted. One notable exception is code which attempts multiple
iteration passes. A container object (such as a list) produces a fresh new iterator each time you pass it to the
iter() function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.
More information can be found in typeiter.
CPython implementation detail: CPython does not consistently apply the requirement that an iterator define
__iter__(). And also please note that the free-threading CPython does not guarantee the thread-safety of

332 Appendix A. Glossary



The Python/C API, Release 3.13.0

iterator operations.
key function

A key function or collation function is a callable that returns a value used for sorting or ordering. For example,
locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.
A number of tools in Python accept key functions to control how elements are ordered or grouped. They include
min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such as
lambda r: (r[0], r[2]). Also, operator.attrgetter(), operator.itemgetter(),
and operator.methodcaller() are three key function constructors. See the Sorting HOW TO for
examples of how to create and use key functions.

keyword argument
See argument.

lambda
An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is lambda [parameters]: expression

LBYL
Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.
In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the
looking” and “the leaping”. For example, the code, if key in mapping: return mapping[key]
can fail if another thread removes key from mapping after the test, but before the lookup. This issue can be
solved with locks or by using the EAFP approach.

list
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension
A compact way to process all or part of the elements in a sequence and return a list with the results. result
= ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list of
strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted,
all elements in range(256) are processed.

loader
An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

locale encoding
On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.setlocale(locale.
LC_CTYPE, new_locale).
On Windows, it is the ANSI code page (ex: "cp1252").
On Android and VxWorks, Python uses "utf-8" as the locale encoding.
locale.getencoding() can be used to get the locale encoding.
See also the filesystem encoding and error handler.

magic method
An informal synonym for special method.

mapping
A container object that supports arbitrary key lookups and implements the methods specified
in the collections.abc.Mapping or collections.abc.MutableMapping abstract base
classes. Examples include dict, collections.defaultdict, collections.OrderedDict and
collections.Counter.

333

https://peps.python.org/pep-0302/


The Python/C API, Release 3.13.0

meta path finder
A finder returned by a search of sys.meta_path. Meta path finders are related to, but different from path
entry finders.
See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass
The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented pro-
gramming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.
More information can be found in metaclasses.

method
A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order
Method Resolution Order is the order in which base classes are searched for a member during lookup. See
python_2.3_mro for details of the algorithm used by the Python interpreter since the 2.3 release.

module
An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.
See also package.

module spec
A namespace containing the import-related information used to load a module. An instance of importlib.
machinery.ModuleSpec.

MRO
See method resolution order.

mutable
Mutable objects can change their value but keep their id(). See also immutable.

named tuple
The term “named tuple” applies to any type or class that inherits from tuple and whose indexable elements are
also accessible using named attributes. The type or class may have other features as well.
Several built-in types are named tuples, including the values returned by time.localtime() and os.
stat(). Another example is sys.float_info:

>>> sys.float_info[1] # indexed access
1024
>>> sys.float_info.max_exp # named field access
1024
>>> isinstance(sys.float_info, tuple) # kind of tuple
True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be
created from a regular class definition that inherits from tuple and that defines named fields. Such a class can
be written by hand, or it can be created by inheriting typing.NamedTuple, or with the factory function
collections.namedtuple(). The latter techniques also add some extra methods that may not be found
in hand-written or built-in named tuples.

namespace
The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity
by preventing naming conflicts. For instance, the functions builtins.open and os.open() are distin-
guished by their namespaces. Namespaces also aid readability and maintainability by making it clear which

334 Appendix A. Glossary



The Python/C API, Release 3.13.0

module implements a function. For instance, writingrandom.seed() oritertools.islice()makes
it clear that those functions are implemented by the random and itertools modules, respectively.

namespace package
A PEP 420 package which serves only as a container for subpackages. Namespace packages may have no
physical representation, and specifically are not like a regular package because they have no __init__.py
file.
See also module.

nested scope
The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference
and not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables
read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only new-style
classes could use Python’s newer, versatile features like __slots__, descriptors, properties, __getat-
tribute__(), class methods, and static methods.

object
Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

optimized scope
A scope where target local variable names are reliably known to the compiler when the code is compiled,
allowing optimization of read and write access to these names. The local namespaces for functions, generators,
coroutines, comprehensions, and generator expressions are optimized in this fashion. Note: most interpreter
optimizations are applied to all scopes, only those relying on a known set of local and nonlocal variable names
are restricted to optimized scopes.

package
A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with a __path__ attribute.
See also regular package and namespace package.

parameter
A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Positional-only parameters
can be defined by including a / character in the parameter list of the function definition after them, for
example posonly1 and posonly2 in the following:

def func(posonly1, posonly2, /, positional_or_keyword): ...

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can
be defined by including a single var-positional parameter or bare * in the parameter list of the function
definition before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

335

https://peps.python.org/pep-0420/


The Python/C API, Release 3.13.0

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional
arguments.
See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
the inspect.Parameter class, the function section, and PEP 362.

path entry
A single location on the import path which the path based finder consults to find modules for importing.

path entry finder
A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to locate
modules given a path entry.
See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules
on a specific path entry.

path based finder
One of the default meta path finders which searches an import path for modules.

path-like object
An object representing a file system path. A path-like object is either a str or bytes object representing a
path, or an object implementing the os.PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a str or bytes file system path by calling the os.fspath() function; os.
fsdecode() and os.fsencode() can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP
Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.
PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community
input on an issue, and for documenting the design decisions that have gone into Python. The PEP author is
responsible for building consensus within the community and documenting dissenting opinions.
See PEP 1.

portion
A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as
defined in PEP 420.

positional argument
See argument.

provisional API
A provisional API is one which has been deliberately excluded from the standard library’s backwards com-
patibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if
deemed necessary by core developers. Such changes will not be made gratuitously – they will occur only if
serious fundamental flaws are uncovered that were missed prior to the inclusion of the API.
Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every
attempt will still be made to find a backwards compatible resolution to any identified problems.
This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

336 Appendix A. Glossary

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/


The Python/C API, Release 3.13.0

provisional package
See provisional API.

Python 3000
Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in the
distant future.) This is also abbreviated “Py3k”.

Pythonic
An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is
to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

qualified name
A dotted name showing the “path” from a module’s global scope to a class, function or method defined in that
module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count
The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Some objects are immortal and have reference counts that are never modified, and therefore the objects are
never deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPython implementation. Programmers can call the sys.getrefcount() function to return the reference
count for a particular object.

regular package
A traditional package, such as a directory containing an __init__.py file.
See also namespace package.

REPL
An acronym for the “read–eval–print loop”, another name for the interactive interpreter shell.

__slots__
A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for
rare cases where there are large numbers of instances in a memory-critical application.

337

https://peps.python.org/pep-3155/


The Python/C API, Release 3.13.0

sequence
An iterable which supports efficient element access using integer indices via the __getitem__() spe-
cial method and defines a __len__() method that returns the length of the sequence. Some built-in se-
quence types are list, str, tuple, and bytes. Note that dict also supports __getitem__() and
__len__(), but is considered a mapping rather than a sequence because the lookups use arbitrary hashable
keys rather than integers.
The collections.abc.Sequence abstract base class defines a much richer interface that goes beyond
just __getitem__() and __len__(), adding count(), index(), __contains__(), and __re-
versed__(). Types that implement this expanded interface can be registered explicitly using regis-
ter(). For more documentation on sequence methods generally, see Common Sequence Operations.

set comprehension
A compact way to process all or part of the elements in an iterable and return a set with the results. results
= {c for c in 'abracadabra' if c not in 'abc'} generates the set of strings {'r',
'd'}. See comprehensions.

single dispatch
A form of generic function dispatch where the implementation is chosen based on the type of a single argument.

slice
An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (sub-
script) notation uses slice objects internally.

soft deprecated
A soft deprecated API should not be used in new code, but it is safe for already existing code to use it. The
API remains documented and tested, but will not be enhanced further.
Soft deprecation, unlike normal deprecation, does not plan on removing the API and will not emit warnings.
See PEP 387: Soft Deprecation.

special method
A method that is called implicitly by Python to execute a certain operation on a type, such as addition. Such
methods have names starting and ending with double underscores. Special methods are documented in spe-
cialnames.

statement
A statement is part of a suite (a “block” of code). A statement is either an expression or one of several constructs
with a keyword, such as if, while or for.

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also
type hints and the typing module.

strong reference
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py_INCREF() when the reference is created and released
with Py_DECREF() when the reference is deleted.
The Py_NewRef() function can be used to create a strong reference to an object. Usually, the
Py_DECREF() function must be called on the strong reference before exiting the scope of the strong refer-
ence, to avoid leaking one reference.
See also borrowed reference.

text encoding
A string in Python is a sequence of Unicode code points (in range U+0000–U+10FFFF). To store or transfer
a string, it needs to be serialized as a sequence of bytes.
Serializing a string into a sequence of bytes is known as “encoding”, and recreating the string from the sequence
of bytes is known as “decoding”.
There are a variety of different text serialization codecs, which are collectively referred to as “text encodings”.

338 Appendix A. Glossary

https://peps.python.org/pep-0387/#soft-deprecation


The Python/C API, Release 3.13.0

text file
A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream
and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.
See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string
A string which is bound by three instances of either a quotation mark (”) or an apostrophe (‘). While they don’t
provide any functionality not available with single-quoted strings, they are useful for a number of reasons. They
allow you to include unescaped single and double quotes within a string and they can span multiple lines without
the use of the continuation character, making them especially useful when writing docstrings.

type
The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias
A synonym for a type, created by assigning the type to an identifier.
Type aliases are useful for simplifying type hints. For example:

def remove_gray_shades(
colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:

pass

could be made more readable like this:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:
pass

See typing and PEP 484, which describe this functionality.
type hint

An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.
Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can
also aid IDEs with code completion and refactoring.
Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().
See typing and PEP 484, which describe this functionality.

universal newlines
A manner of interpreting text streams in which all of the following are recognized as ending a line: the Unix
end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention '\r'.
See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

variable annotation
An annotation of a variable or a class attribute.
When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.

339

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/


The Python/C API, Release 3.13.0

See function annotation, PEP 484 andPEP 526, which describe this functionality. Also see annotations-howto
for best practices on working with annotations.

virtual environment
A cooperatively isolated runtime environment that allows Python users and applications to install and upgrade
Python distribution packages without interfering with the behaviour of other Python applications running on
the same system.
See also venv.

virtual machine
A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by the byte-
code compiler.

Zen of Python
Listing of Python design principles and philosophies that are helpful in understanding and using the language.
The listing can be found by typing “import this” at the interactive prompt.

340 Appendix A. Glossary

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/


APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.
Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you
want to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers
are always welcome!
Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
• the Docutils project for creating reStructuredText and the Docutils suite;
• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation.
See Misc/ACKS in the Python source distribution for a partial list of contributors.
It is only with the input and contributions of the Python community that Python has such wonderful documentation
– Thank You!

341

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.13/Misc/ACKS


The Python/C API, Release 3.13.0

342 Appendix B. About these documents



APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
//www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.
All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

Note

GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the GPL,
let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

343

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/


The Python/C API, Release 3.13.0

C.2 Terms and conditions for accessing or otherwise using
Python

Python software and documentation are licensed under the PSF License Agreement.
Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.
Some software incorporated into Python is under different licenses. The licenses are listed with code falling under
that license. See Licenses and Acknowledgements for Incorporated Software for an incomplete list of these licenses.

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.13.0

1. This LICENSE AGREEMENT is between the Python Software Foundation␣
↪→("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise␣
↪→using Python

3.13.0 software in source or binary form and its associated␣
↪→documentation.

2. Subject to the terms and conditions of this License Agreement, PSF␣
↪→hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to␣
↪→reproduce,

analyze, test, perform and/or display publicly, prepare derivative␣
↪→works,

distribute, and otherwise use Python 3.13.0 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's␣

↪→notice of
copyright, i.e., "Copyright © 2001-2024 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.13.0 alone or in any derivative␣

↪→version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.13.0 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made␣

↪→to Python
3.13.0.

4. PSF is making Python 3.13.0 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY␣

↪→OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY␣

↪→REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR␣

↪→THAT THE
USE OF PYTHON 3.13.0 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.13.0
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A␣

↪→RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.13.0, OR ANY␣

↪→DERIVATIVE

344 Appendix C. History and License



The Python/C API, Release 3.13.0

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material␣
↪→breach of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. ␣
↪→This License

Agreement does not grant permission to use PSF trademarks or trade name␣
↪→in a

trademark sense to endorse or promote products or services of Licensee,␣
↪→or any

third party.

8. By copying, installing or otherwise using Python 3.13.0, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 345



The Python/C API, Release 3.13.0

(continued from previous page)
7. By copying, installing or otherwise using the software, Licensee agrees to be

bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

(continues on next page)

346 Appendix C. History and License



The Python/C API, Release 3.13.0

(continued from previous page)

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.13.0 DOCU-
MENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.2. Terms and conditions for accessing or otherwise using Python 347



The Python/C API, Release 3.13.0

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random C extension underlying the random module includes code based on a download from http:
//www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html. The following are the verbatim com-
ments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

348 Appendix C. History and License

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html


The Python/C API, Release 3.13.0

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asynchronous socket services

The test.support.asynchat and test.support.asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 349

https://www.wide.ad.jp/


The Python/C API, Release 3.13.0

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

350 Appendix C. History and License



The Python/C API, Release 3.13.0

C.3.6 UUencode and UUdecode functions

The uu codec contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 351



The Python/C API, Release 3.13.0

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

352 Appendix C. History and License



The Python/C API, Release 3.13.0

C.3.10 SipHash24

The filePython/pyhash.c containsMarekMajkowski’ implementation of Dan Bernstein’s SipHash24 algorithm.
It contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from https://web.archive.org/
web/20220517033456/http://www.netlib.org/fp/dtoa.c. The original file, as retrieved on March 16, 2009, contains
the following copyright and licensing notice:

/****************************************************************
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***************************************************************/

C.3. Licenses and Acknowledgements for Incorporated Software 353

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c


The Python/C API, Release 3.13.0

C.3.12 OpenSSL

The modules hashlib, posix and ssl use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004

https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to

(continues on next page)

354 Appendix C. History and License



The Python/C API, Release 3.13.0

(continued from previous page)
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 355



The Python/C API, Release 3.13.0

(continued from previous page)
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

356 Appendix C. History and License



The Python/C API, Release 3.13.0

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypesC extension underlying the ctypesmodule is built using an included copy of the libffi sources unless
the build is configured --with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 357



The Python/C API, Release 3.13.0

C.3.15 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too
old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

(continues on next page)

358 Appendix C. History and License



The Python/C API, Release 3.13.0

(continued from previous page)
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimalC extension underlying the decimalmodule is built using an included copy of the libmpdec library
unless the build is configured --with-system-libmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from the
W3C website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 359

https://www.w3.org/TR/xml-c14n2-testcases/


The Python/C API, Release 3.13.0

(continued from previous page)
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 mimalloc

MIT License:

Copyright (c) 2018-2021 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

(continues on next page)

360 Appendix C. History and License

https://github.com/MagicStack/uvloop/tree/v0.16.0


The Python/C API, Release 3.13.0

(continued from previous page)
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.21 Global Unbounded Sequences (GUS)

The file Python/qsbr.c is adapted from FreeBSD’s “Global Unbounded Sequences” safe memory reclamation
scheme in subr_smr.c. The file is distributed under the 2-Clause BSD License:

Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice unmodified, this list of conditions, and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 361

https://github.com/freebsd/freebsd-src/blob/main/sys/kern/subr_smr.c


The Python/C API, Release 3.13.0

362 Appendix C. History and License



APPENDIX

D

COPYRIGHT

Python and this documentation is:
Copyright © 2001-2024 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com. All rights reserved.
Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

363



The Python/C API, Release 3.13.0

364 Appendix D. Copyright



INDEX

Non-alphabetical
..., 325
>>>, 325
__all__ (package variable), 74
__dict__ (module attribute), 183
__doc__ (module attribute), 183
__file__ (module attribute), 183, 184
__future__, 330
__import__

built-in function, 74
__loader__ (module attribute), 183
__main__

module, 12, 211, 223, 224
__name__ (module attribute), 183
__package__ (module attribute), 183
__PYVENV_LAUNCHER__, 242, 248
__slots__, 337
_frozen (C struct), 77
_inittab (C struct), 77
_inittab.initfunc (C member), 77
_inittab.name (C member), 77
_Py_c_diff (C function), 140
_Py_c_neg (C function), 140
_Py_c_pow (C function), 141
_Py_c_prod (C function), 140
_Py_c_quot (C function), 141
_Py_c_sum (C function), 140
_Py_InitializeMain (C function), 255
_Py_NoneStruct (C var), 267
_PyBytes_Resize (C function), 144
_PyCode_GetExtra (C function), 181
_PyCode_SetExtra (C function), 181
_PyEval_RequestCodeExtraIndex (C func-

tion), 181
_PyFrameEvalFunction (C type), 221
_PyInterpreterFrame (C struct), 199
_PyInterpreterState_GetEvalFrameFunc

(C function), 221
_PyInterpreterState_SetEvalFrameFunc

(C function), 221
_PyObject_GetDictPtr (C function), 101
_PyObject_New (C function), 267
_PyObject_NewVar (C function), 267
_PyTuple_Resize (C function), 164
_thread

module, 218

A
abort (C function), 74
abs

built-in function, 110
abstract base class, 325
allocfunc (C type), 309
annotation, 325
argument, 325
argv (in module sys), 214, 242
ascii

built-in function, 101
asynchronous context manager, 326
asynchronous generator, 326
asynchronous generator iterator, 326
asynchronous iterable, 326
asynchronous iterator, 326
attribute, 326
awaitable, 326

B
BDFL, 326
binary file, 326
binaryfunc (C type), 310
borrowed reference, 326
buffer interface

(see buffer protocol), 116
buffer object

(see buffer protocol), 116
buffer protocol, 116
built-in function

__import__, 74
abs, 110
ascii, 101
bytes, 102
classmethod, 272
compile, 75
divmod, 110
float, 112
hash, 102, 287
int, 112
len, 103, 112, 114, 166, 170, 173
pow, 110, 111
repr, 101, 286
staticmethod, 272
tuple, 113, 167
type, 102

365



The Python/C API, Release 3.13.0

builtins
module, 12, 211, 223, 224

bytearray
object, 144

bytecode, 327
bytes

built-in function, 102
object, 142

bytes-like object, 327

C
callable, 327
callback, 327
calloc (C function), 257
Capsule

object, 196
C-contiguous, 120, 327
class, 327
class variable, 327
classmethod

built-in function, 272
cleanup functions, 74
close (in module os), 224
CO_FUTURE_DIVISION (C var), 47
code object, 178
compile

built-in function, 75
complex number, 327

object, 140
context manager, 327
context variable, 327
contiguous, 120, 327
copyright (in module sys), 214
coroutine, 328
coroutine function, 328
CPython, 328

D
decorator, 328
descrgetfunc (C type), 309
descriptor, 328
descrsetfunc (C type), 309
destructor (C type), 309
dictionary, 328

object, 168
dictionary comprehension, 328
dictionary view, 328
divmod

built-in function, 110
docstring, 328
duck-typing, 329

E
EAFP, 329
environment variable

__PYVENV_LAUNCHER__, 242, 248
PATH, 12
PYTHON_CPU_COUNT, 246

PYTHON_GIL, 331
PYTHON_PERF_JIT_SUPPORT, 250
PYTHON_PRESITE, 249
PYTHONCOERCECLOCALE, 253
PYTHONDEBUG, 208, 248
PYTHONDEVMODE, 244
PYTHONDONTWRITEBYTECODE, 208, 251
PYTHONDUMPREFS, 244
PYTHONEXECUTABLE, 248
PYTHONFAULTHANDLER, 244
PYTHONHASHSEED, 209, 245
PYTHONHOME, 12, 209, 215, 245
PYTHONINSPECT, 209, 245
PYTHONINTMAXSTRDIGITS, 246
PYTHONIOENCODING, 250
PYTHONLEGACYWINDOWSFSENCODING, 209,

239
PYTHONLEGACYWINDOWSSTDIO, 210, 246
PYTHONMALLOC, 258, 262, 263, 265
PYTHONMALLOCSTATS, 246, 258
PYTHONNODEBUGRANGES, 243
PYTHONNOUSERSITE, 210, 250
PYTHONOPTIMIZE, 210, 247
PYTHONPATH, 12, 209, 247
PYTHONPLATLIBDIR, 247
PYTHONPROFILEIMPORTTIME, 245
PYTHONPYCACHEPREFIX, 248
PYTHONSAFEPATH, 242
PYTHONTRACEMALLOC, 250
PYTHONUNBUFFERED, 210, 243
PYTHONUTF8, 239, 253
PYTHONVERBOSE, 211, 251
PYTHONWARNINGS, 251

EOFError (built-in exception), 182
exc_info (in module sys), 10
executable (in module sys), 213
exit (C function), 74
expression, 329
extension module, 329

F
f-string, 329
file

object, 182
file object, 329
file-like object, 329
filesystem encoding and error handler,

329
finder, 329
float

built-in function, 112
floating-point

object, 138
floor division, 330
Fortran contiguous, 120, 327
free (C function), 257
free threading, 330
freefunc (C type), 309

366 Index



The Python/C API, Release 3.13.0

freeze utility, 77
frozenset

object, 172
function, 330

object, 174
function annotation, 330

G
garbage collection, 330
gcvisitobjects_t (C type), 316
generator, 330
generator expression, 330
generator iterator, 330
generic function, 331
generic type, 331
getattrfunc (C type), 309
getattrofunc (C type), 309
getbufferproc (C type), 310
getiterfunc (C type), 309
getter (C type), 276
GIL, 331
global interpreter lock, 215, 331

H
hash

built-in function, 102, 287
hash-based pyc, 331
hashable, 331
hashfunc (C type), 309

I
IDLE, 331
immortal, 331
immutable, 331
import path, 332
importer, 332
importing, 332
incr_item(), 11
initproc (C type), 309
inquiry (C type), 315
instancemethod

object, 176
int

built-in function, 112
integer

object, 131
interactive, 332
interpreted, 332
interpreter lock, 215
interpreter shutdown, 332
iterable, 332
iterator, 332
iternextfunc (C type), 310

K
key function, 333
KeyboardInterrupt (built-in exception), 61
keyword argument, 333

L
lambda, 333
LBYL, 333
len

built-in function, 103, 112, 114, 166, 170,
173

lenfunc (C type), 310
list, 333

object, 166
list comprehension, 333
loader, 333
locale encoding, 333
lock, interpreter, 215
long integer

object, 131
LONG_MAX (C macro), 133

M
magic

method, 333
magic method, 333
main(), 212, 214, 242
malloc (C function), 257
mapping, 333

object, 168
memoryview

object, 194
meta path finder, 334
metaclass, 334
METH_CLASS (C macro), 272
METH_COEXIST (C macro), 272
METH_FASTCALL (C macro), 271
METH_KEYWORDS (C macro), 271
METH_METHOD (C macro), 271
METH_NOARGS (C macro), 271
METH_O (C macro), 272
METH_STATIC (C macro), 272
METH_VARARGS (C macro), 271
method, 334

magic, 333
object, 177
special, 338

method resolution order, 334
MethodType (in module types), 174, 177
module, 334

__main__, 12, 211, 223, 224
_thread, 218
builtins, 12, 211, 223, 224
object, 183
search path, 12, 211, 213
signal, 61
sys, 12, 211, 223, 224

module spec, 334
modules (in module sys), 74, 211
ModuleType (in module types), 183
MRO, 334
mutable, 334

Index 367



The Python/C API, Release 3.13.0

N
named tuple, 334
namespace, 334
namespace package, 335
nested scope, 335
new-style class, 335
newfunc (C type), 309
None

object, 131
numeric

object, 131

O
object, 335

bytearray, 144
bytes, 142
Capsule, 196
code, 178
complex number, 140
dictionary, 168
file, 182
floating-point, 138
frozenset, 172
function, 174
instancemethod, 176
integer, 131
list, 166
long integer, 131
mapping, 168
memoryview, 194
method, 177
module, 183
None, 131
numeric, 131
sequence, 142
set, 172
tuple, 163
type, 6, 125

objobjargproc (C type), 310
objobjproc (C type), 310
optimized scope, 335
OverflowError (built-in exception), 133, 134

P
package, 335
package variable

__all__, 74
parameter, 335
PATH, 12
path

module search, 12, 211, 213
path (in module sys), 12, 211, 213
path based finder, 336
path entry, 336
path entry finder, 336
path entry hook, 336
path-like object, 336
PEP, 336

platform (in module sys), 214
portion, 336
positional argument, 336
pow

built-in function, 110, 111
provisional API, 336
provisional package, 337
Py_ABS (C macro), 4
Py_AddPendingCall (C function), 225
Py_ALWAYS_INLINE (C macro), 4
Py_ASNATIVEBYTES_ALLOW_INDEX (C macro),

136
Py_ASNATIVEBYTES_BIG_ENDIAN (C macro),

136
Py_ASNATIVEBYTES_DEFAULTS (C macro), 136
Py_ASNATIVEBYTES_LITTLE_ENDIAN (C

macro), 136
Py_ASNATIVEBYTES_NATIVE_ENDIAN (C

macro), 136
Py_ASNATIVEBYTES_REJECT_NEGATIVE (C

macro), 136
Py_ASNATIVEBYTES_UNSIGNED_BUFFER (C

macro), 136
Py_AtExit (C function), 74
Py_AUDIT_READ (C macro), 274
Py_AuditHookFunction (C type), 73
Py_BEGIN_ALLOW_THREADS (C macro), 216, 219
Py_BEGIN_CRITICAL_SECTION (C macro), 232
Py_BEGIN_CRITICAL_SECTION2 (C macro), 233
Py_BLOCK_THREADS (C macro), 219
Py_buffer (C type), 117
Py_buffer.buf (C member), 117
Py_buffer.format (C member), 118
Py_buffer.internal (C member), 119
Py_buffer.itemsize (C member), 118
Py_buffer.len (C member), 118
Py_buffer.ndim (C member), 118
Py_buffer.obj (C member), 117
Py_buffer.readonly (C member), 118
Py_buffer.shape (C member), 118
Py_buffer.strides (C member), 118
Py_buffer.suboffsets (C member), 118
Py_BuildValue (C function), 85
Py_BytesMain (C function), 43
Py_BytesWarningFlag (C var), 208
Py_CHARMASK (C macro), 5
Py_CLEAR (C function), 50
Py_CompileString (C function), 45, 46
Py_CompileStringExFlags (C function), 46
Py_CompileStringFlags (C function), 45
Py_CompileStringObject (C function), 45
Py_complex (C type), 140
Py_complex.imag (C member), 140
Py_complex.real (C member), 140
Py_CONSTANT_ELLIPSIS (C macro), 98
Py_CONSTANT_EMPTY_BYTES (C macro), 98
Py_CONSTANT_EMPTY_STR (C macro), 98
Py_CONSTANT_EMPTY_TUPLE (C macro), 98

368 Index



The Python/C API, Release 3.13.0

Py_CONSTANT_FALSE (C macro), 98
Py_CONSTANT_NONE (C macro), 98
Py_CONSTANT_NOT_IMPLEMENTED (C macro), 98
Py_CONSTANT_ONE (C macro), 98
Py_CONSTANT_TRUE (C macro), 98
Py_CONSTANT_ZERO (C macro), 98
PY_CXX_CONST (C macro), 85
Py_DEBUG (C macro), 12
Py_DebugFlag (C var), 208
Py_DecodeLocale (C function), 70
Py_DECREF (C function), 7, 50
Py_DecRef (C function), 51
Py_DEPRECATED (C macro), 5
Py_DontWriteBytecodeFlag (C var), 208
Py_Ellipsis (C var), 194
Py_EncodeLocale (C function), 71
Py_END_ALLOW_THREADS (C macro), 216, 219
Py_END_CRITICAL_SECTION (C macro), 232
Py_END_CRITICAL_SECTION2 (C macro), 233
Py_EndInterpreter (C function), 224
Py_EnterRecursiveCall (C function), 64
Py_EQ (C macro), 296
Py_eval_input (C var), 46
Py_Exit (C function), 74
Py_ExitStatusException (C function), 237
Py_False (C var), 138
Py_FatalError (C function), 74
Py_FatalError(), 214
Py_FdIsInteractive (C function), 69
Py_file_input (C var), 46
Py_Finalize (C function), 212
Py_FinalizeEx (C function), 74, 211, 224
Py_FrozenFlag (C var), 208
Py_GE (C macro), 296
Py_GenericAlias (C function), 206
Py_GenericAliasType (C var), 206
Py_GetArgcArgv (C function), 255
Py_GetBuildInfo (C function), 214
Py_GetCompiler (C function), 214
Py_GetConstant (C function), 97
Py_GetConstantBorrowed (C function), 98
Py_GetCopyright (C function), 214
Py_GETENV (C macro), 5
Py_GetExecPrefix (C function), 12, 212
Py_GetPath (C function), 12, 213
Py_GetPath(), 212
Py_GetPlatform (C function), 214
Py_GetPrefix (C function), 12, 212
Py_GetProgramFullPath (C function), 12, 213
Py_GetProgramName (C function), 212
Py_GetPythonHome (C function), 215
Py_GetVersion (C function), 213
Py_GT (C macro), 296
Py_hash_t (C type), 89
Py_HashPointer (C function), 90
Py_HashRandomizationFlag (C var), 208
Py_IgnoreEnvironmentFlag (C var), 209
Py_INCREF (C function), 7, 49

Py_IncRef (C function), 50
Py_Initialize (C function), 12, 211, 224
Py_Initialize(), 212
Py_InitializeEx (C function), 211
Py_InitializeFromConfig (C function), 251
Py_InspectFlag (C var), 209
Py_InteractiveFlag (C var), 209
Py_Is (C function), 268
Py_IS_TYPE (C function), 269
Py_IsFalse (C function), 269
Py_IsFinalizing (C function), 211
Py_IsInitialized (C function), 12, 211
Py_IsNone (C function), 268
Py_IsolatedFlag (C var), 209
Py_IsTrue (C function), 268
Py_LE (C macro), 296
Py_LeaveRecursiveCall (C function), 64
Py_LegacyWindowsFSEncodingFlag (C var),

209
Py_LegacyWindowsStdioFlag (C var), 209
Py_LIMITED_API (C macro), 16
Py_LT (C macro), 296
Py_Main (C function), 43
PY_MAJOR_VERSION (C macro), 317
Py_MAX (C macro), 5
Py_MEMBER_SIZE (C macro), 5
PY_MICRO_VERSION (C macro), 317
Py_MIN (C macro), 5
PY_MINOR_VERSION (C macro), 317
Py_mod_create (C macro), 186
Py_mod_exec (C macro), 187
Py_mod_gil (C macro), 187
Py_MOD_GIL_NOT_USED (C macro), 187
Py_MOD_GIL_USED (C macro), 187
Py_mod_multiple_interpreters (C macro),

187
Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED

(C macro), 187
Py_MOD_MULTIPLE_INTERPRETERS_SUPPORTED

(C macro), 187
Py_MOD_PER_INTERPRETER_GIL_SUPPORTED

(C macro), 187
PY_MONITORING_EVENT_BRANCH (C macro), 323
PY_MONITORING_EVENT_C_RAISE (C macro),

323
PY_MONITORING_EVENT_C_RETURN (C macro),

323
PY_MONITORING_EVENT_CALL (C macro), 323
PY_MONITORING_EVENT_EXCEPTION_HANDLED

(C macro), 323
PY_MONITORING_EVENT_INSTRUCTION (C

macro), 323
PY_MONITORING_EVENT_JUMP (C macro), 323
PY_MONITORING_EVENT_LINE (C macro), 323
PY_MONITORING_EVENT_PY_RESUME (C macro),

323
PY_MONITORING_EVENT_PY_RETURN (C macro),

323

Index 369



The Python/C API, Release 3.13.0

PY_MONITORING_EVENT_PY_START (C macro),
323

PY_MONITORING_EVENT_PY_THROW (C macro),
323

PY_MONITORING_EVENT_PY_UNWIND (C macro),
323

PY_MONITORING_EVENT_PY_YIELD (C macro),
323

PY_MONITORING_EVENT_RAISE (C macro), 323
PY_MONITORING_EVENT_RERAISE (C macro),

323
PY_MONITORING_EVENT_STOP_ITERATION (C

macro), 323
Py_NE (C macro), 296
Py_NewInterpreter (C function), 224
Py_NewInterpreterFromConfig (C function),

223
Py_NewRef (C function), 49
Py_NO_INLINE (C macro), 5
Py_None (C var), 131
Py_NoSiteFlag (C var), 210
Py_NotImplemented (C var), 98
Py_NoUserSiteDirectory (C var), 210
Py_OpenCodeHookFunction (C type), 182
Py_OptimizeFlag (C var), 210
Py_PreInitialize (C function), 239
Py_PreInitializeFromArgs (C function), 240
Py_PreInitializeFromBytesArgs (C func-

tion), 240
Py_PRINT_RAW (C macro), 98, 183
Py_QuietFlag (C var), 210
Py_READONLY (C macro), 274
Py_REFCNT (C function), 49
Py_RELATIVE_OFFSET (C macro), 274
PY_RELEASE_LEVEL (C macro), 317
PY_RELEASE_SERIAL (C macro), 317
Py_ReprEnter (C function), 64
Py_ReprLeave (C function), 64
Py_RETURN_FALSE (C macro), 138
Py_RETURN_NONE (C macro), 131
Py_RETURN_NOTIMPLEMENTED (C macro), 98
Py_RETURN_RICHCOMPARE (C macro), 296
Py_RETURN_TRUE (C macro), 138
Py_RunMain (C function), 255
Py_SET_REFCNT (C function), 49
Py_SET_SIZE (C function), 269
Py_SET_TYPE (C function), 269
Py_SetProgramName (C function), 212
Py_SetPythonHome (C function), 215
Py_SETREF (C macro), 51
Py_single_input (C var), 46
Py_SIZE (C function), 269
Py_ssize_t (C type), 10
PY_SSIZE_T_MAX (C macro), 134
Py_STRINGIFY (C macro), 5
Py_T_BOOL (C macro), 275
Py_T_BYTE (C macro), 275
Py_T_CHAR (C macro), 275

Py_T_DOUBLE (C macro), 275
Py_T_FLOAT (C macro), 275
Py_T_INT (C macro), 275
Py_T_LONG (C macro), 275
Py_T_LONGLONG (C macro), 275
Py_T_OBJECT_EX (C macro), 275
Py_T_PYSSIZET (C macro), 275
Py_T_SHORT (C macro), 275
Py_T_STRING (C macro), 275
Py_T_STRING_INPLACE (C macro), 275
Py_T_UBYTE (C macro), 275
Py_T_UINT (C macro), 275
Py_T_ULONG (C macro), 275
Py_T_ULONGLONG (C macro), 275
Py_T_USHORT (C macro), 275
Py_TPFLAGS_BASE_EXC_SUBCLASS (C macro),

291
Py_TPFLAGS_BASETYPE (C macro), 289
Py_TPFLAGS_BYTES_SUBCLASS (C macro), 291
Py_TPFLAGS_DEFAULT (C macro), 290
Py_TPFLAGS_DICT_SUBCLASS (C macro), 291
Py_TPFLAGS_DISALLOW_INSTANTIATION (C

macro), 292
Py_TPFLAGS_HAVE_FINALIZE (C macro), 291
Py_TPFLAGS_HAVE_GC (C macro), 290
Py_TPFLAGS_HAVE_VECTORCALL (C macro), 291
Py_TPFLAGS_HEAPTYPE (C macro), 289
Py_TPFLAGS_IMMUTABLETYPE (C macro), 291
Py_TPFLAGS_ITEMS_AT_END (C macro), 291
Py_TPFLAGS_LIST_SUBCLASS (C macro), 291
Py_TPFLAGS_LONG_SUBCLASS (C macro), 291
Py_TPFLAGS_MANAGED_DICT (C macro), 290
Py_TPFLAGS_MANAGED_WEAKREF (C macro), 290
Py_TPFLAGS_MAPPING (C macro), 292
Py_TPFLAGS_METHOD_DESCRIPTOR (C macro),

290
Py_TPFLAGS_READY (C macro), 289
Py_TPFLAGS_READYING (C macro), 290
Py_TPFLAGS_SEQUENCE (C macro), 292
Py_TPFLAGS_TUPLE_SUBCLASS (C macro), 291
Py_TPFLAGS_TYPE_SUBCLASS (C macro), 291
Py_TPFLAGS_UNICODE_SUBCLASS (C macro),

291
Py_TPFLAGS_VALID_VERSION_TAG (C macro),

293
Py_tracefunc (C type), 226
Py_True (C var), 138
Py_tss_NEEDS_INIT (C macro), 230
Py_tss_t (C type), 229
Py_TYPE (C function), 269
Py_UCS1 (C type), 145
Py_UCS2 (C type), 145
Py_UCS4 (C type), 145
Py_uhash_t (C type), 89
Py_UNBLOCK_THREADS (C macro), 219
Py_UnbufferedStdioFlag (C var), 210
Py_UNICODE (C type), 145

370 Index



The Python/C API, Release 3.13.0

Py_UNICODE_IS_HIGH_SURROGATE (C function),
148

Py_UNICODE_IS_LOW_SURROGATE (C function),
148

Py_UNICODE_IS_SURROGATE (C function), 148
Py_UNICODE_ISALNUM (C function), 148
Py_UNICODE_ISALPHA (C function), 147
Py_UNICODE_ISDECIMAL (C function), 147
Py_UNICODE_ISDIGIT (C function), 147
Py_UNICODE_ISLINEBREAK (C function), 147
Py_UNICODE_ISLOWER (C function), 147
Py_UNICODE_ISNUMERIC (C function), 147
Py_UNICODE_ISPRINTABLE (C function), 148
Py_UNICODE_ISSPACE (C function), 147
Py_UNICODE_ISTITLE (C function), 147
Py_UNICODE_ISUPPER (C function), 147
Py_UNICODE_JOIN_SURROGATES (C function),

148
Py_UNICODE_TODECIMAL (C function), 148
Py_UNICODE_TODIGIT (C function), 148
Py_UNICODE_TOLOWER (C function), 148
Py_UNICODE_TONUMERIC (C function), 148
Py_UNICODE_TOTITLE (C function), 148
Py_UNICODE_TOUPPER (C function), 148
Py_UNREACHABLE (C macro), 5
Py_UNUSED (C macro), 6
Py_VaBuildValue (C function), 87
PY_VECTORCALL_ARGUMENTS_OFFSET (C

macro), 105
Py_VerboseFlag (C var), 210
Py_Version (C var), 317
PY_VERSION_HEX (C macro), 317
Py_VISIT (C function), 314
Py_XDECREF (C function), 11, 50
Py_XINCREF (C function), 49
Py_XNewRef (C function), 50
Py_XSETREF (C macro), 51
PyAIter_Check (C function), 116
PyAnySet_Check (C function), 173
PyAnySet_CheckExact (C function), 173
PyArg_Parse (C function), 84
PyArg_ParseTuple (C function), 83
PyArg_ParseTupleAndKeywords (C function),

83
PyArg_UnpackTuple (C function), 84
PyArg_ValidateKeywordArguments (C func-

tion), 84
PyArg_VaParse (C function), 83
PyArg_VaParseTupleAndKeywords (C func-

tion), 84
PyASCIIObject (C type), 145
PyAsyncMethods (C type), 308
PyAsyncMethods.am_aiter (C member), 308
PyAsyncMethods.am_anext (C member), 308
PyAsyncMethods.am_await (C member), 308
PyAsyncMethods.am_send (C member), 308
PyBool_Check (C function), 138
PyBool_FromLong (C function), 138

PyBool_Type (C var), 138
PyBUF_ANY_CONTIGUOUS (C macro), 120
PyBUF_C_CONTIGUOUS (C macro), 120
PyBUF_CONTIG (C macro), 121
PyBUF_CONTIG_RO (C macro), 121
PyBUF_F_CONTIGUOUS (C macro), 120
PyBUF_FORMAT (C macro), 119
PyBUF_FULL (C macro), 121
PyBUF_FULL_RO (C macro), 121
PyBUF_INDIRECT (C macro), 120
PyBUF_MAX_NDIM (C macro), 119
PyBUF_ND (C macro), 120
PyBUF_READ (C macro), 194
PyBUF_RECORDS (C macro), 121
PyBUF_RECORDS_RO (C macro), 121
PyBUF_SIMPLE (C macro), 120
PyBUF_STRIDED (C macro), 121
PyBUF_STRIDED_RO (C macro), 121
PyBUF_STRIDES (C macro), 120
PyBUF_WRITABLE (C macro), 119
PyBUF_WRITE (C macro), 194
PyBuffer_FillContiguousStrides (C func-

tion), 123
PyBuffer_FillInfo (C function), 123
PyBuffer_FromContiguous (C function), 123
PyBuffer_GetPointer (C function), 123
PyBuffer_IsContiguous (C function), 123
PyBuffer_Release (C function), 123
PyBuffer_SizeFromFormat (C function), 123
PyBuffer_ToContiguous (C function), 123
PyBufferProcs (C type), 117, 307
PyBufferProcs.bf_getbuffer (C member),

307
PyBufferProcs.bf_releasebuffer (C mem-

ber), 307
PyByteArray_AS_STRING (C function), 145
PyByteArray_AsString (C function), 145
PyByteArray_Check (C function), 144
PyByteArray_CheckExact (C function), 144
PyByteArray_Concat (C function), 144
PyByteArray_FromObject (C function), 144
PyByteArray_FromStringAndSize (C func-

tion), 144
PyByteArray_GET_SIZE (C function), 145
PyByteArray_Resize (C function), 145
PyByteArray_Size (C function), 144
PyByteArray_Type (C var), 144
PyByteArrayObject (C type), 144
PyBytes_AS_STRING (C function), 143
PyBytes_AsString (C function), 143
PyBytes_AsStringAndSize (C function), 143
PyBytes_Check (C function), 142
PyBytes_CheckExact (C function), 142
PyBytes_Concat (C function), 143
PyBytes_ConcatAndDel (C function), 144
PyBytes_FromFormat (C function), 142
PyBytes_FromFormatV (C function), 143
PyBytes_FromObject (C function), 143

Index 371



The Python/C API, Release 3.13.0

PyBytes_FromString (C function), 142
PyBytes_FromStringAndSize (C function), 142
PyBytes_GET_SIZE (C function), 143
PyBytes_Size (C function), 143
PyBytes_Type (C var), 142
PyBytesObject (C type), 142
PyCallable_Check (C function), 109
PyCallIter_Check (C function), 191
PyCallIter_New (C function), 191
PyCallIter_Type (C var), 191
PyCapsule (C type), 196
PyCapsule_CheckExact (C function), 196
PyCapsule_Destructor (C type), 196
PyCapsule_GetContext (C function), 197
PyCapsule_GetDestructor (C function), 197
PyCapsule_GetName (C function), 197
PyCapsule_GetPointer (C function), 196
PyCapsule_Import (C function), 197
PyCapsule_IsValid (C function), 197
PyCapsule_New (C function), 196
PyCapsule_SetContext (C function), 197
PyCapsule_SetDestructor (C function), 197
PyCapsule_SetName (C function), 197
PyCapsule_SetPointer (C function), 197
PyCell_Check (C function), 177
PyCell_GET (C function), 177
PyCell_Get (C function), 177
PyCell_New (C function), 177
PyCell_SET (C function), 178
PyCell_Set (C function), 177
PyCell_Type (C var), 177
PyCellObject (C type), 177
PyCFunction (C type), 270
PyCFunction_New (C function), 272
PyCFunction_NewEx (C function), 272
PyCFunctionFast (C type), 270
PyCFunctionFastWithKeywords (C type), 270
PyCFunctionWithKeywords (C type), 270
PyCMethod (C type), 270
PyCMethod_New (C function), 272
PyCode_Addr2Line (C function), 179
PyCode_Addr2Location (C function), 179
PyCode_AddWatcher (C function), 180
PyCode_Check (C function), 178
PyCode_ClearWatcher (C function), 180
PyCode_GetCellvars (C function), 179
PyCode_GetCode (C function), 179
PyCode_GetFreevars (C function), 180
PyCode_GetNumFree (C function), 178
PyCode_GetVarnames (C function), 179
PyCode_New (C function), 178
PyCode_NewEmpty (C function), 179
PyCode_NewWithPosOnlyArgs (C function), 179
PyCode_Type (C var), 178
PyCode_WatchCallback (C type), 180
PyCodec_BackslashReplaceErrors (C func-

tion), 93
PyCodec_Decode (C function), 92

PyCodec_Decoder (C function), 92
PyCodec_Encode (C function), 92
PyCodec_Encoder (C function), 92
PyCodec_IgnoreErrors (C function), 93
PyCodec_IncrementalDecoder (C function), 92
PyCodec_IncrementalEncoder (C function), 92
PyCodec_KnownEncoding (C function), 91
PyCodec_LookupError (C function), 93
PyCodec_NameReplaceErrors (C function), 93
PyCodec_Register (C function), 91
PyCodec_RegisterError (C function), 92
PyCodec_ReplaceErrors (C function), 93
PyCodec_StreamReader (C function), 92
PyCodec_StreamWriter (C function), 92
PyCodec_StrictErrors (C function), 93
PyCodec_Unregister (C function), 91
PyCodec_XMLCharRefReplaceErrors (C func-

tion), 93
PyCodeEvent (C type), 180
PyCodeObject (C type), 178
PyCompactUnicodeObject (C type), 145
PyCompilerFlags (C struct), 46
PyCompilerFlags.cf_feature_version (C

member), 46
PyCompilerFlags.cf_flags (C member), 46
PyComplex_AsCComplex (C function), 141
PyComplex_Check (C function), 141
PyComplex_CheckExact (C function), 141
PyComplex_FromCComplex (C function), 141
PyComplex_FromDoubles (C function), 141
PyComplex_ImagAsDouble (C function), 141
PyComplex_RealAsDouble (C function), 141
PyComplex_Type (C var), 141
PyComplexObject (C type), 141
PyConfig (C type), 240
PyConfig_Clear (C function), 241
PyConfig_InitIsolatedConfig (C function),

241
PyConfig_InitPythonConfig (C function), 240
PyConfig_Read (C function), 241
PyConfig_SetArgv (C function), 241
PyConfig_SetBytesArgv (C function), 241
PyConfig_SetBytesString (C function), 241
PyConfig_SetString (C function), 241
PyConfig_SetWideStringList (C function),

241
PyConfig.argv (C member), 242
PyConfig.base_exec_prefix (C member), 242
PyConfig.base_executable (C member), 242
PyConfig.base_prefix (C member), 242
PyConfig.buffered_stdio (C member), 243
PyConfig.bytes_warning (C member), 243
PyConfig.check_hash_pycs_mode (C mem-

ber), 243
PyConfig.code_debug_ranges (C member),

243
PyConfig.configure_c_stdio (C member),

243

372 Index



The Python/C API, Release 3.13.0

PyConfig.cpu_count (C member), 246
PyConfig.dev_mode (C member), 243
PyConfig.dump_refs (C member), 244
PyConfig.exec_prefix (C member), 244
PyConfig.executable (C member), 244
PyConfig.faulthandler (C member), 244
PyConfig.filesystem_encoding (C member),

244
PyConfig.filesystem_errors (C member),

244
PyConfig.hash_seed (C member), 245
PyConfig.home (C member), 245
PyConfig.import_time (C member), 245
PyConfig.inspect (C member), 245
PyConfig.install_signal_handlers (C

member), 245
PyConfig.int_max_str_digits (C member),

245
PyConfig.interactive (C member), 245
PyConfig.isolated (C member), 246
PyConfig.legacy_windows_stdio (C mem-

ber), 246
PyConfig.malloc_stats (C member), 246
PyConfig.module_search_paths (C member),

247
PyConfig.module_search_paths_set (C

member), 247
PyConfig.optimization_level (C member),

247
PyConfig.orig_argv (C member), 247
PyConfig.parse_argv (C member), 247
PyConfig.parser_debug (C member), 248
PyConfig.pathconfig_warnings (C member),

248
PyConfig.perf_profiling (C member), 250
PyConfig.platlibdir (C member), 246
PyConfig.prefix (C member), 248
PyConfig.program_name (C member), 248
PyConfig.pycache_prefix (C member), 248
PyConfig.pythonpath_env (C member), 247
PyConfig.quiet (C member), 248
PyConfig.run_command (C member), 249
PyConfig.run_filename (C member), 249
PyConfig.run_module (C member), 249
PyConfig.run_presite (C member), 249
PyConfig.safe_path (C member), 242
PyConfig.show_ref_count (C member), 249
PyConfig.site_import (C member), 249
PyConfig.skip_source_first_line (C mem-

ber), 249
PyConfig.stdio_encoding (C member), 249
PyConfig.stdio_errors (C member), 249
PyConfig.tracemalloc (C member), 250
PyConfig.use_environment (C member), 250
PyConfig.use_hash_seed (C member), 245
PyConfig.user_site_directory (C member),

250
PyConfig.verbose (C member), 250

PyConfig.warn_default_encoding (C mem-
ber), 243

PyConfig.warnoptions (C member), 251
PyConfig.write_bytecode (C member), 251
PyConfig.xoptions (C member), 251
PyContext (C type), 201
PyContext_CheckExact (C function), 201
PyContext_Copy (C function), 202
PyContext_CopyCurrent (C function), 202
PyContext_Enter (C function), 202
PyContext_Exit (C function), 202
PyContext_New (C function), 201
PyContext_Type (C var), 201
PyContextToken (C type), 201
PyContextToken_CheckExact (C function), 201
PyContextToken_Type (C var), 201
PyContextVar (C type), 201
PyContextVar_CheckExact (C function), 201
PyContextVar_Get (C function), 202
PyContextVar_New (C function), 202
PyContextVar_Reset (C function), 202
PyContextVar_Set (C function), 202
PyContextVar_Type (C var), 201
PyCoro_CheckExact (C function), 200
PyCoro_New (C function), 201
PyCoro_Type (C var), 200
PyCoroObject (C type), 200
PyDate_Check (C function), 203
PyDate_CheckExact (C function), 203
PyDate_FromDate (C function), 204
PyDate_FromTimestamp (C function), 206
PyDateTime_Check (C function), 203
PyDateTime_CheckExact (C function), 203
PyDateTime_Date (C type), 202
PyDateTime_DATE_GET_FOLD (C function), 205
PyDateTime_DATE_GET_HOUR (C function), 205
PyDateTime_DATE_GET_MICROSECOND (C func-

tion), 205
PyDateTime_DATE_GET_MINUTE (C function),

205
PyDateTime_DATE_GET_SECOND (C function),

205
PyDateTime_DATE_GET_TZINFO (C function),

205
PyDateTime_DateTime (C type), 202
PyDateTime_DateTimeType (C var), 203
PyDateTime_DateType (C var), 203
PyDateTime_Delta (C type), 203
PyDateTime_DELTA_GET_DAYS (C function), 205
PyDateTime_DELTA_GET_MICROSECONDS (C

function), 205
PyDateTime_DELTA_GET_SECONDS (C function),

205
PyDateTime_DeltaType (C var), 203
PyDateTime_FromDateAndTime (C function),

204
PyDateTime_FromDateAndTimeAndFold (C

function), 204

Index 373



The Python/C API, Release 3.13.0

PyDateTime_FromTimestamp (C function), 206
PyDateTime_GET_DAY (C function), 204
PyDateTime_GET_MONTH (C function), 204
PyDateTime_GET_YEAR (C function), 204
PyDateTime_Time (C type), 202
PyDateTime_TIME_GET_FOLD (C function), 205
PyDateTime_TIME_GET_HOUR (C function), 205
PyDateTime_TIME_GET_MICROSECOND (C func-

tion), 205
PyDateTime_TIME_GET_MINUTE (C function),

205
PyDateTime_TIME_GET_SECOND (C function),

205
PyDateTime_TIME_GET_TZINFO (C function),

205
PyDateTime_TimeType (C var), 203
PyDateTime_TimeZone_UTC (C var), 203
PyDateTime_TZInfoType (C var), 203
PyDelta_Check (C function), 203
PyDelta_CheckExact (C function), 203
PyDelta_FromDSU (C function), 204
PyDescr_IsData (C function), 192
PyDescr_NewClassMethod (C function), 192
PyDescr_NewGetSet (C function), 192
PyDescr_NewMember (C function), 192
PyDescr_NewMethod (C function), 192
PyDescr_NewWrapper (C function), 192
PyDict_AddWatcher (C function), 171
PyDict_Check (C function), 168
PyDict_CheckExact (C function), 168
PyDict_Clear (C function), 168
PyDict_ClearWatcher (C function), 171
PyDict_Contains (C function), 168
PyDict_ContainsString (C function), 168
PyDict_Copy (C function), 168
PyDict_DelItem (C function), 168
PyDict_DelItemString (C function), 168
PyDict_GetItem (C function), 169
PyDict_GetItemRef (C function), 168
PyDict_GetItemString (C function), 169
PyDict_GetItemStringRef (C function), 169
PyDict_GetItemWithError (C function), 169
PyDict_Items (C function), 170
PyDict_Keys (C function), 170
PyDict_Merge (C function), 171
PyDict_MergeFromSeq2 (C function), 171
PyDict_New (C function), 168
PyDict_Next (C function), 170
PyDict_Pop (C function), 170
PyDict_PopString (C function), 170
PyDict_SetDefault (C function), 169
PyDict_SetDefaultRef (C function), 169
PyDict_SetItem (C function), 168
PyDict_SetItemString (C function), 168
PyDict_Size (C function), 170
PyDict_Type (C var), 168
PyDict_Unwatch (C function), 172
PyDict_Update (C function), 171

PyDict_Values (C function), 170
PyDict_Watch (C function), 171
PyDict_WatchCallback (C type), 172
PyDict_WatchEvent (C type), 172
PyDictObject (C type), 168
PyDictProxy_New (C function), 168
PyDoc_STR (C macro), 6
PyDoc_STRVAR (C macro), 6
PyErr_BadArgument (C function), 54
PyErr_BadInternalCall (C function), 56
PyErr_CheckSignals (C function), 61
PyErr_Clear (C function), 10, 11, 53
PyErr_DisplayException (C function), 54
PyErr_ExceptionMatches (C function), 11, 58
PyErr_Fetch (C function), 58
PyErr_Format (C function), 54
PyErr_FormatUnraisable (C function), 54
PyErr_FormatV (C function), 54
PyErr_GetExcInfo (C function), 60
PyErr_GetHandledException (C function), 59
PyErr_GetRaisedException (C function), 58
PyErr_GivenExceptionMatches (C function),

58
PyErr_NewException (C function), 62
PyErr_NewExceptionWithDoc (C function), 62
PyErr_NoMemory (C function), 55
PyErr_NormalizeException (C function), 59
PyErr_Occurred (C function), 10, 57
PyErr_Print (C function), 53
PyErr_PrintEx (C function), 53
PyErr_ResourceWarning (C function), 57
PyErr_Restore (C function), 59
PyErr_SetExcFromWindowsErr (C function), 55
PyErr_SetExcFromWindowsErrWithFilename

(C function), 56
PyErr_SetExcFromWindowsErrWithFilenameObject

(C function), 55
PyErr_SetExcFromWindowsErrWithFilenameObjects

(C function), 56
PyErr_SetExcInfo (C function), 60
PyErr_SetFromErrno (C function), 55
PyErr_SetFromErrnoWithFilename (C func-

tion), 55
PyErr_SetFromErrnoWithFilenameObject

(C function), 55
PyErr_SetFromErrnoWithFilenameObjects

(C function), 55
PyErr_SetFromWindowsErr (C function), 55
PyErr_SetFromWindowsErrWithFilename (C

function), 55
PyErr_SetHandledException (C function), 60
PyErr_SetImportError (C function), 56
PyErr_SetImportErrorSubclass (C function),

56
PyErr_SetInterrupt (C function), 61
PyErr_SetInterruptEx (C function), 61
PyErr_SetNone (C function), 54
PyErr_SetObject (C function), 54

374 Index



The Python/C API, Release 3.13.0

PyErr_SetRaisedException (C function), 58
PyErr_SetString (C function), 10, 54
PyErr_SyntaxLocation (C function), 56
PyErr_SyntaxLocationEx (C function), 56
PyErr_SyntaxLocationObject (C function), 56
PyErr_WarnEx (C function), 57
PyErr_WarnExplicit (C function), 57
PyErr_WarnExplicitObject (C function), 57
PyErr_WarnFormat (C function), 57
PyErr_WriteUnraisable (C function), 53
PyEval_AcquireThread (C function), 222
PyEval_AcquireThread(), 217
PyEval_EvalCode (C function), 46
PyEval_EvalCodeEx (C function), 46
PyEval_EvalFrame (C function), 46
PyEval_EvalFrameEx (C function), 46
PyEval_GetBuiltins (C function), 90
PyEval_GetFrame (C function), 91
PyEval_GetFrameBuiltins (C function), 91
PyEval_GetFrameGlobals (C function), 91
PyEval_GetFrameLocals (C function), 91
PyEval_GetFuncDesc (C function), 91
PyEval_GetFuncName (C function), 91
PyEval_GetGlobals (C function), 90
PyEval_GetLocals (C function), 90
PyEval_InitThreads (C function), 217
PyEval_InitThreads(), 211
PyEval_MergeCompilerFlags (C function), 46
PyEval_ReleaseThread (C function), 222
PyEval_ReleaseThread(), 217
PyEval_RestoreThread (C function), 216, 218
PyEval_RestoreThread(), 217
PyEval_SaveThread (C function), 216, 218
PyEval_SaveThread(), 217
PyEval_SetProfile (C function), 227
PyEval_SetProfileAllThreads (C function),

227
PyEval_SetTrace (C function), 227
PyEval_SetTraceAllThreads (C function), 227
PyExc_ArithmeticError (C var), 65
PyExc_AssertionError (C var), 65
PyExc_AttributeError (C var), 65
PyExc_BaseException (C var), 65
PyExc_BlockingIOError (C var), 65
PyExc_BrokenPipeError (C var), 65
PyExc_BufferError (C var), 65
PyExc_BytesWarning (C var), 66
PyExc_ChildProcessError (C var), 65
PyExc_ConnectionAbortedError (C var), 65
PyExc_ConnectionError (C var), 65
PyExc_ConnectionRefusedError (C var), 65
PyExc_ConnectionResetError (C var), 65
PyExc_DeprecationWarning (C var), 66
PyExc_EnvironmentError (C var), 66
PyExc_EOFError (C var), 65
PyExc_Exception (C var), 65
PyExc_FileExistsError (C var), 65
PyExc_FileNotFoundError (C var), 65

PyExc_FloatingPointError (C var), 65
PyExc_FutureWarning (C var), 66
PyExc_GeneratorExit (C var), 65
PyExc_ImportError (C var), 65
PyExc_ImportWarning (C var), 66
PyExc_IndentationError (C var), 65
PyExc_IndexError (C var), 65
PyExc_InterruptedError (C var), 65
PyExc_IOError (C var), 66
PyExc_IsADirectoryError (C var), 65
PyExc_KeyboardInterrupt (C var), 65
PyExc_KeyError (C var), 65
PyExc_LookupError (C var), 65
PyExc_MemoryError (C var), 65
PyExc_ModuleNotFoundError (C var), 65
PyExc_NameError (C var), 65
PyExc_NotADirectoryError (C var), 65
PyExc_NotImplementedError (C var), 65
PyExc_OSError (C var), 65
PyExc_OverflowError (C var), 65
PyExc_PendingDeprecationWarning (C var),

66
PyExc_PermissionError (C var), 65
PyExc_ProcessLookupError (C var), 65
PyExc_PythonFinalizationError (C var), 65
PyExc_RecursionError (C var), 65
PyExc_ReferenceError (C var), 65
PyExc_ResourceWarning (C var), 66
PyExc_RuntimeError (C var), 65
PyExc_RuntimeWarning (C var), 66
PyExc_StopAsyncIteration (C var), 65
PyExc_StopIteration (C var), 65
PyExc_SyntaxError (C var), 65
PyExc_SyntaxWarning (C var), 66
PyExc_SystemError (C var), 65
PyExc_SystemExit (C var), 65
PyExc_TabError (C var), 65
PyExc_TimeoutError (C var), 65
PyExc_TypeError (C var), 65
PyExc_UnboundLocalError (C var), 65
PyExc_UnicodeDecodeError (C var), 65
PyExc_UnicodeEncodeError (C var), 65
PyExc_UnicodeError (C var), 65
PyExc_UnicodeTranslateError (C var), 65
PyExc_UnicodeWarning (C var), 66
PyExc_UserWarning (C var), 66
PyExc_ValueError (C var), 65
PyExc_Warning (C var), 66
PyExc_WindowsError (C var), 66
PyExc_ZeroDivisionError (C var), 65
PyException_GetArgs (C function), 62
PyException_GetCause (C function), 62
PyException_GetContext (C function), 62
PyException_GetTraceback (C function), 62
PyException_SetArgs (C function), 62
PyException_SetCause (C function), 62
PyException_SetContext (C function), 62
PyException_SetTraceback (C function), 62

Index 375



The Python/C API, Release 3.13.0

PyFile_FromFd (C function), 182
PyFile_GetLine (C function), 182
PyFile_SetOpenCodeHook (C function), 182
PyFile_WriteObject (C function), 183
PyFile_WriteString (C function), 183
PyFloat_AS_DOUBLE (C function), 139
PyFloat_AsDouble (C function), 138
PyFloat_Check (C function), 138
PyFloat_CheckExact (C function), 138
PyFloat_FromDouble (C function), 138
PyFloat_FromString (C function), 138
PyFloat_GetInfo (C function), 139
PyFloat_GetMax (C function), 139
PyFloat_GetMin (C function), 139
PyFloat_Pack2 (C function), 139
PyFloat_Pack4 (C function), 139
PyFloat_Pack8 (C function), 139
PyFloat_Type (C var), 138
PyFloat_Unpack2 (C function), 140
PyFloat_Unpack4 (C function), 140
PyFloat_Unpack8 (C function), 140
PyFloatObject (C type), 138
PyFrame_Check (C function), 198
PyFrame_GetBack (C function), 198
PyFrame_GetBuiltins (C function), 198
PyFrame_GetCode (C function), 198
PyFrame_GetGenerator (C function), 198
PyFrame_GetGlobals (C function), 198
PyFrame_GetLasti (C function), 198
PyFrame_GetLineNumber (C function), 199
PyFrame_GetLocals (C function), 199
PyFrame_GetVar (C function), 199
PyFrame_GetVarString (C function), 199
PyFrame_Type (C var), 198
PyFrameObject (C type), 198
PyFrozenSet_Check (C function), 173
PyFrozenSet_CheckExact (C function), 173
PyFrozenSet_New (C function), 173
PyFrozenSet_Type (C var), 173
PyFunction_AddWatcher (C function), 175
PyFunction_Check (C function), 174
PyFunction_ClearWatcher (C function), 175
PyFunction_GetAnnotations (C function), 175
PyFunction_GetClosure (C function), 175
PyFunction_GetCode (C function), 174
PyFunction_GetDefaults (C function), 175
PyFunction_GetGlobals (C function), 175
PyFunction_GetModule (C function), 175
PyFunction_New (C function), 174
PyFunction_NewWithQualName (C function),

174
PyFunction_SetAnnotations (C function), 175
PyFunction_SetClosure (C function), 175
PyFunction_SetDefaults (C function), 175
PyFunction_SetVectorcall (C function), 175
PyFunction_Type (C var), 174
PyFunction_WatchCallback (C type), 175
PyFunction_WatchEvent (C type), 175

PyFunctionObject (C type), 174
PyGC_Collect (C function), 315
PyGC_Disable (C function), 315
PyGC_Enable (C function), 315
PyGC_IsEnabled (C function), 315
PyGen_Check (C function), 200
PyGen_CheckExact (C function), 200
PyGen_New (C function), 200
PyGen_NewWithQualName (C function), 200
PyGen_Type (C var), 200
PyGenObject (C type), 200
PyGetSetDef (C type), 276
PyGetSetDef.closure (C member), 276
PyGetSetDef.doc (C member), 276
PyGetSetDef.get (C member), 276
PyGetSetDef.name (C member), 276
PyGetSetDef.set (C member), 276
PyGILState_Check (C function), 219
PyGILState_Ensure (C function), 218
PyGILState_GetThisThreadState (C func-

tion), 219
PyGILState_Release (C function), 219
PyHASH_BITS (C macro), 89
PyHash_FuncDef (C type), 89
PyHash_FuncDef.hash_bits (C member), 89
PyHash_FuncDef.name (C member), 89
PyHash_FuncDef.seed_bits (C member), 89
PyHash_GetFuncDef (C function), 90
PyHASH_IMAG (C macro), 89
PyHASH_INF (C macro), 89
PyHASH_MODULUS (C macro), 89
PyHASH_MULTIPLIER (C macro), 89
PyImport_AddModule (C function), 75
PyImport_AddModuleObject (C function), 75
PyImport_AddModuleRef (C function), 75
PyImport_AppendInittab (C function), 77
PyImport_ExecCodeModule (C function), 75
PyImport_ExecCodeModuleEx (C function), 76
PyImport_ExecCodeModuleObject (C func-

tion), 76
PyImport_ExecCodeModuleWithPathnames

(C function), 76
PyImport_ExtendInittab (C function), 77
PyImport_FrozenModules (C var), 77
PyImport_GetImporter (C function), 77
PyImport_GetMagicNumber (C function), 76
PyImport_GetMagicTag (C function), 76
PyImport_GetModule (C function), 76
PyImport_GetModuleDict (C function), 76
PyImport_Import (C function), 75
PyImport_ImportFrozenModule (C function),

77
PyImport_ImportFrozenModuleObject (C

function), 77
PyImport_ImportModule (C function), 74
PyImport_ImportModuleEx (C function), 74
PyImport_ImportModuleLevel (C function), 75

376 Index



The Python/C API, Release 3.13.0

PyImport_ImportModuleLevelObject (C
function), 74

PyImport_ImportModuleNoBlock (C function),
74

PyImport_ReloadModule (C function), 75
PyIndex_Check (C function), 112
PyInstanceMethod_Check (C function), 176
PyInstanceMethod_Function (C function), 176
PyInstanceMethod_GET_FUNCTION (C func-

tion), 176
PyInstanceMethod_New (C function), 176
PyInstanceMethod_Type (C var), 176
PyInterpreterConfig (C type), 222
PyInterpreterConfig_DEFAULT_GIL (C

macro), 223
PyInterpreterConfig_OWN_GIL (C macro),

223
PyInterpreterConfig_SHARED_GIL (C

macro), 223
PyInterpreterConfig.allow_daemon_threads

(C member), 223
PyInterpreterConfig.allow_exec (C mem-

ber), 223
PyInterpreterConfig.allow_fork (C mem-

ber), 223
PyInterpreterConfig.allow_threads (C

member), 223
PyInterpreterConfig.check_multi_interp_extensions

(C member), 223
PyInterpreterConfig.gil (C member), 223
PyInterpreterConfig.use_main_obmalloc

(C member), 223
PyInterpreterState (C type), 217
PyInterpreterState_Clear (C function), 220
PyInterpreterState_Delete (C function), 220
PyInterpreterState_Get (C function), 221
PyInterpreterState_GetDict (C function),

221
PyInterpreterState_GetID (C function), 221
PyInterpreterState_Head (C function), 229
PyInterpreterState_Main (C function), 229
PyInterpreterState_New (C function), 220
PyInterpreterState_Next (C function), 229
PyInterpreterState_ThreadHead (C func-

tion), 229
PyIter_Check (C function), 116
PyIter_Next (C function), 116
PyIter_Send (C function), 116
PyList_Append (C function), 167
PyList_AsTuple (C function), 167
PyList_Check (C function), 166
PyList_CheckExact (C function), 166
PyList_Clear (C function), 167
PyList_Extend (C function), 167
PyList_GET_ITEM (C function), 166
PyList_GET_SIZE (C function), 166
PyList_GetItem (C function), 9, 166
PyList_GetItemRef (C function), 166

PyList_GetSlice (C function), 167
PyList_Insert (C function), 167
PyList_New (C function), 166
PyList_Reverse (C function), 167
PyList_SET_ITEM (C function), 166
PyList_SetItem (C function), 7, 166
PyList_SetSlice (C function), 167
PyList_Size (C function), 166
PyList_Sort (C function), 167
PyList_Type (C var), 166
PyListObject (C type), 166
PyLong_AS_LONG (C function), 133
PyLong_AsDouble (C function), 135
PyLong_AsInt (C function), 133
PyLong_AsLong (C function), 133
PyLong_AsLongAndOverflow (C function), 133
PyLong_AsLongLong (C function), 133
PyLong_AsLongLongAndOverflow (C function),

133
PyLong_AsNativeBytes (C function), 135
PyLong_AsSize_t (C function), 134
PyLong_AsSsize_t (C function), 134
PyLong_AsUnsignedLong (C function), 134
PyLong_AsUnsignedLongLong (C function), 134
PyLong_AsUnsignedLongLongMask (C func-

tion), 134
PyLong_AsUnsignedLongMask (C function), 134
PyLong_AsVoidPtr (C function), 135
PyLong_Check (C function), 131
PyLong_CheckExact (C function), 131
PyLong_FromDouble (C function), 132
PyLong_FromLong (C function), 131
PyLong_FromLongLong (C function), 132
PyLong_FromNativeBytes (C function), 132
PyLong_FromSize_t (C function), 132
PyLong_FromSsize_t (C function), 132
PyLong_FromString (C function), 132
PyLong_FromUnicodeObject (C function), 132
PyLong_FromUnsignedLong (C function), 132
PyLong_FromUnsignedLongLong (C function),

132
PyLong_FromUnsignedNativeBytes (C func-

tion), 133
PyLong_FromVoidPtr (C function), 132
PyLong_GetInfo (C function), 137
PyLong_Type (C var), 131
PyLongObject (C type), 131
PyMapping_Check (C function), 114
PyMapping_DelItem (C function), 115
PyMapping_DelItemString (C function), 115
PyMapping_GetItemString (C function), 114
PyMapping_GetOptionalItem (C function), 114
PyMapping_GetOptionalItemString (C func-

tion), 114
PyMapping_HasKey (C function), 115
PyMapping_HasKeyString (C function), 115
PyMapping_HasKeyStringWithError (C func-

tion), 115

Index 377



The Python/C API, Release 3.13.0

PyMapping_HasKeyWithError (C function), 115
PyMapping_Items (C function), 115
PyMapping_Keys (C function), 115
PyMapping_Length (C function), 114
PyMapping_SetItemString (C function), 114
PyMapping_Size (C function), 114
PyMapping_Values (C function), 115
PyMappingMethods (C type), 306
PyMappingMethods.mp_ass_subscript (C

member), 306
PyMappingMethods.mp_length (C member),

306
PyMappingMethods.mp_subscript (C mem-

ber), 306
PyMarshal_ReadLastObjectFromFile (C

function), 78
PyMarshal_ReadLongFromFile (C function), 78
PyMarshal_ReadObjectFromFile (C function),

78
PyMarshal_ReadObjectFromString (C func-

tion), 78
PyMarshal_ReadShortFromFile (C function),

78
PyMarshal_WriteLongToFile (C function), 78
PyMarshal_WriteObjectToFile (C function),

78
PyMarshal_WriteObjectToString (C func-

tion), 78
PyMem_Calloc (C function), 259
PyMem_Del (C function), 260
PYMEM_DOMAIN_MEM (C macro), 262
PYMEM_DOMAIN_OBJ (C macro), 262
PYMEM_DOMAIN_RAW (C macro), 262
PyMem_Free (C function), 260
PyMem_GetAllocator (C function), 263
PyMem_Malloc (C function), 259
PyMem_New (C macro), 260
PyMem_RawCalloc (C function), 259
PyMem_RawFree (C function), 259
PyMem_RawMalloc (C function), 258
PyMem_RawRealloc (C function), 259
PyMem_Realloc (C function), 260
PyMem_Resize (C macro), 260
PyMem_SetAllocator (C function), 263
PyMem_SetupDebugHooks (C function), 263
PyMemAllocatorDomain (C type), 262
PyMemAllocatorEx (C type), 262
PyMember_GetOne (C function), 273
PyMember_SetOne (C function), 273
PyMemberDef (C type), 273
PyMemberDef.doc (C member), 273
PyMemberDef.flags (C member), 273
PyMemberDef.name (C member), 273
PyMemberDef.offset (C member), 273
PyMemberDef.type (C member), 273
PyMemoryView_Check (C function), 194
PyMemoryView_FromBuffer (C function), 194
PyMemoryView_FromMemory (C function), 194

PyMemoryView_FromObject (C function), 194
PyMemoryView_GET_BASE (C function), 194
PyMemoryView_GET_BUFFER (C function), 194
PyMemoryView_GetContiguous (C function),

194
PyMethod_Check (C function), 177
PyMethod_Function (C function), 177
PyMethod_GET_FUNCTION (C function), 177
PyMethod_GET_SELF (C function), 177
PyMethod_New (C function), 177
PyMethod_Self (C function), 177
PyMethod_Type (C var), 177
PyMethodDef (C type), 270
PyMethodDef.ml_doc (C member), 271
PyMethodDef.ml_flags (C member), 270
PyMethodDef.ml_meth (C member), 270
PyMethodDef.ml_name (C member), 270
PyMODINIT_FUNC (C macro), 4
PyModule_Add (C function), 189
PyModule_AddFunctions (C function), 188
PyModule_AddIntConstant (C function), 190
PyModule_AddIntMacro (C macro), 190
PyModule_AddObject (C function), 189
PyModule_AddObjectRef (C function), 188
PyModule_AddStringConstant (C function),

190
PyModule_AddStringMacro (C macro), 190
PyModule_AddType (C function), 190
PyModule_Check (C function), 183
PyModule_CheckExact (C function), 183
PyModule_Create (C function), 185
PyModule_Create2 (C function), 185
PyModule_ExecDef (C function), 188
PyModule_FromDefAndSpec (C function), 188
PyModule_FromDefAndSpec2 (C function), 188
PyModule_GetDef (C function), 183
PyModule_GetDict (C function), 183
PyModule_GetFilename (C function), 184
PyModule_GetFilenameObject (C function),

184
PyModule_GetName (C function), 183
PyModule_GetNameObject (C function), 183
PyModule_GetState (C function), 183
PyModule_New (C function), 183
PyModule_NewObject (C function), 183
PyModule_SetDocString (C function), 188
PyModule_Type (C var), 183
PyModuleDef (C type), 184
PyModuleDef_Init (C function), 186
PyModuleDef_Slot (C type), 186
PyModuleDef_Slot.slot (C member), 186
PyModuleDef_Slot.value (C member), 186
PyModuleDef.m_base (C member), 184
PyModuleDef.m_clear (C member), 185
PyModuleDef.m_doc (C member), 184
PyModuleDef.m_free (C member), 185
PyModuleDef.m_methods (C member), 184
PyModuleDef.m_name (C member), 184

378 Index



The Python/C API, Release 3.13.0

PyModuleDef.m_size (C member), 184
PyModuleDef.m_slots (C member), 184
PyModuleDef.m_slots.m_reload (C member),

185
PyModuleDef.m_traverse (C member), 185
PyMonitoring_EnterScope (C function), 322
PyMonitoring_ExitScope (C function), 323
PyMonitoring_FireBranchEvent (C function),

321
PyMonitoring_FireCallEvent (C function),

321
PyMonitoring_FireCRaiseEvent (C function),

322
PyMonitoring_FireCReturnEvent (C func-

tion), 321
PyMonitoring_FireExceptionHandledEvent

(C function), 322
PyMonitoring_FireJumpEvent (C function),

321
PyMonitoring_FireLineEvent (C function),

321
PyMonitoring_FirePyResumeEvent (C func-

tion), 321
PyMonitoring_FirePyReturnEvent (C func-

tion), 321
PyMonitoring_FirePyStartEvent (C func-

tion), 321
PyMonitoring_FirePyThrowEvent (C func-

tion), 322
PyMonitoring_FirePyUnwindEvent (C func-

tion), 322
PyMonitoring_FirePyYieldEvent (C func-

tion), 321
PyMonitoring_FireRaiseEvent (C function),

322
PyMonitoring_FireReraiseEvent (C func-

tion), 322
PyMonitoring_FireStopIterationEvent (C

function), 322
PyMonitoringState (C type), 321
PyMutex (C type), 231
PyMutex_Lock (C function), 231
PyMutex_Unlock (C function), 231
PyNumber_Absolute (C function), 110
PyNumber_Add (C function), 109
PyNumber_And (C function), 110
PyNumber_AsSsize_t (C function), 112
PyNumber_Check (C function), 109
PyNumber_Divmod (C function), 110
PyNumber_Float (C function), 112
PyNumber_FloorDivide (C function), 109
PyNumber_Index (C function), 112
PyNumber_InPlaceAdd (C function), 110
PyNumber_InPlaceAnd (C function), 111
PyNumber_InPlaceFloorDivide (C function),

111
PyNumber_InPlaceLshift (C function), 111
PyNumber_InPlaceMatrixMultiply (C func-

tion), 111
PyNumber_InPlaceMultiply (C function), 110
PyNumber_InPlaceOr (C function), 111
PyNumber_InPlacePower (C function), 111
PyNumber_InPlaceRemainder (C function), 111
PyNumber_InPlaceRshift (C function), 111
PyNumber_InPlaceSubtract (C function), 110
PyNumber_InPlaceTrueDivide (C function),

111
PyNumber_InPlaceXor (C function), 111
PyNumber_Invert (C function), 110
PyNumber_Long (C function), 111
PyNumber_Lshift (C function), 110
PyNumber_MatrixMultiply (C function), 109
PyNumber_Multiply (C function), 109
PyNumber_Negative (C function), 110
PyNumber_Or (C function), 110
PyNumber_Positive (C function), 110
PyNumber_Power (C function), 110
PyNumber_Remainder (C function), 109
PyNumber_Rshift (C function), 110
PyNumber_Subtract (C function), 109
PyNumber_ToBase (C function), 112
PyNumber_TrueDivide (C function), 109
PyNumber_Xor (C function), 110
PyNumberMethods (C type), 303
PyNumberMethods.nb_absolute (C member),

305
PyNumberMethods.nb_add (C member), 304
PyNumberMethods.nb_and (C member), 305
PyNumberMethods.nb_bool (C member), 305
PyNumberMethods.nb_divmod (C member), 305
PyNumberMethods.nb_float (C member), 305
PyNumberMethods.nb_floor_divide (C mem-

ber), 305
PyNumberMethods.nb_index (C member), 305
PyNumberMethods.nb_inplace_add (C mem-

ber), 305
PyNumberMethods.nb_inplace_and (C mem-

ber), 305
PyNumberMethods.nb_inplace_floor_divide

(C member), 305
PyNumberMethods.nb_inplace_lshift (C

member), 305
PyNumberMethods.nb_inplace_matrix_multiply

(C member), 305
PyNumberMethods.nb_inplace_multiply (C

member), 305
PyNumberMethods.nb_inplace_or (C mem-

ber), 305
PyNumberMethods.nb_inplace_power (C

member), 305
PyNumberMethods.nb_inplace_remainder

(C member), 305
PyNumberMethods.nb_inplace_rshift (C

member), 305
PyNumberMethods.nb_inplace_subtract (C

member), 305

Index 379



The Python/C API, Release 3.13.0

PyNumberMethods.nb_inplace_true_divide
(C member), 305

PyNumberMethods.nb_inplace_xor (C mem-
ber), 305

PyNumberMethods.nb_int (C member), 305
PyNumberMethods.nb_invert (C member), 305
PyNumberMethods.nb_lshift (C member), 305
PyNumberMethods.nb_matrix_multiply (C

member), 305
PyNumberMethods.nb_multiply (C member),

304
PyNumberMethods.nb_negative (C member),

305
PyNumberMethods.nb_or (C member), 305
PyNumberMethods.nb_positive (C member),

305
PyNumberMethods.nb_power (C member), 305
PyNumberMethods.nb_remainder (C member),

305
PyNumberMethods.nb_reserved (C member),

305
PyNumberMethods.nb_rshift (C member), 305
PyNumberMethods.nb_subtract (C member),

304
PyNumberMethods.nb_true_divide (C mem-

ber), 305
PyNumberMethods.nb_xor (C member), 305
PyObject (C type), 268
PyObject_ASCII (C function), 101
PyObject_AsFileDescriptor (C function), 182
PyObject_Bytes (C function), 101
PyObject_Call (C function), 107
PyObject_CallFunction (C function), 107
PyObject_CallFunctionObjArgs (C function),

108
PyObject_CallMethod (C function), 107
PyObject_CallMethodNoArgs (C function), 108
PyObject_CallMethodObjArgs (C function),

108
PyObject_CallMethodOneArg (C function), 108
PyObject_CallNoArgs (C function), 107
PyObject_CallObject (C function), 107
PyObject_Calloc (C function), 261
PyObject_CallOneArg (C function), 107
PyObject_CheckBuffer (C function), 122
PyObject_ClearManagedDict (C function), 104
PyObject_ClearWeakRefs (C function), 195
PyObject_CopyData (C function), 123
PyObject_Del (C function), 267
PyObject_DelAttr (C function), 100
PyObject_DelAttrString (C function), 100
PyObject_DelItem (C function), 103
PyObject_Dir (C function), 103
PyObject_Format (C function), 101
PyObject_Free (C function), 261
PyObject_GC_Del (C function), 314
PyObject_GC_IsFinalized (C function), 314
PyObject_GC_IsTracked (C function), 314

PyObject_GC_New (C macro), 313
PyObject_GC_NewVar (C macro), 313
PyObject_GC_Resize (C macro), 313
PyObject_GC_Track (C function), 313
PyObject_GC_UnTrack (C function), 314
PyObject_GenericGetAttr (C function), 100
PyObject_GenericGetDict (C function), 100
PyObject_GenericHash (C function), 90
PyObject_GenericSetAttr (C function), 100
PyObject_GenericSetDict (C function), 101
PyObject_GetAIter (C function), 103
PyObject_GetArenaAllocator (C function),

265
PyObject_GetAttr (C function), 99
PyObject_GetAttrString (C function), 99
PyObject_GetBuffer (C function), 122
PyObject_GetItem (C function), 103
PyObject_GetItemData (C function), 104
PyObject_GetIter (C function), 103
PyObject_GetOptionalAttr (C function), 99
PyObject_GetOptionalAttrString (C func-

tion), 100
PyObject_GetTypeData (C function), 103
PyObject_HasAttr (C function), 99
PyObject_HasAttrString (C function), 99
PyObject_HasAttrStringWithError (C func-

tion), 99
PyObject_HasAttrWithError (C function), 99
PyObject_Hash (C function), 102
PyObject_HashNotImplemented (C function),

102
PyObject_HEAD (C macro), 268
PyObject_HEAD_INIT (C macro), 269
PyObject_Init (C function), 267
PyObject_InitVar (C function), 267
PyObject_IS_GC (C function), 314
PyObject_IsInstance (C function), 102
PyObject_IsSubclass (C function), 102
PyObject_IsTrue (C function), 102
PyObject_Length (C function), 103
PyObject_LengthHint (C function), 103
PyObject_Malloc (C function), 261
PyObject_New (C macro), 267
PyObject_NewVar (C macro), 267
PyObject_Not (C function), 102
PyObject_Print (C function), 98
PyObject_Realloc (C function), 261
PyObject_Repr (C function), 101
PyObject_RichCompare (C function), 101
PyObject_RichCompareBool (C function), 101
PyObject_SetArenaAllocator (C function),

265
PyObject_SetAttr (C function), 100
PyObject_SetAttrString (C function), 100
PyObject_SetItem (C function), 103
PyObject_Size (C function), 103
PyObject_Str (C function), 101
PyObject_Type (C function), 102

380 Index



The Python/C API, Release 3.13.0

PyObject_TypeCheck (C function), 102
PyObject_VAR_HEAD (C macro), 268
PyObject_Vectorcall (C function), 108
PyObject_VectorcallDict (C function), 108
PyObject_VectorcallMethod (C function), 108
PyObject_VisitManagedDict (C function), 104
PyObjectArenaAllocator (C type), 265
PyObject.ob_refcnt (C member), 283
PyObject.ob_type (C member), 283
PyOS_AfterFork (C function), 70
PyOS_AfterFork_Child (C function), 70
PyOS_AfterFork_Parent (C function), 69
PyOS_BeforeFork (C function), 69
PyOS_CheckStack (C function), 70
PyOS_double_to_string (C function), 88
PyOS_FSPath (C function), 69
PyOS_getsig (C function), 70
PyOS_InputHook (C var), 44
PyOS_ReadlineFunctionPointer (C var), 44
PyOS_setsig (C function), 70
PyOS_sighandler_t (C type), 70
PyOS_snprintf (C function), 87
PyOS_stricmp (C function), 89
PyOS_string_to_double (C function), 88
PyOS_strnicmp (C function), 89
PyOS_strtol (C function), 88
PyOS_strtoul (C function), 87
PyOS_vsnprintf (C function), 87
PyPreConfig (C type), 238
PyPreConfig_InitIsolatedConfig (C func-

tion), 238
PyPreConfig_InitPythonConfig (C function),

238
PyPreConfig.allocator (C member), 238
PyPreConfig.coerce_c_locale (C member),

238
PyPreConfig.coerce_c_locale_warn (C

member), 238
PyPreConfig.configure_locale (C member),

238
PyPreConfig.dev_mode (C member), 239
PyPreConfig.isolated (C member), 239
PyPreConfig.legacy_windows_fs_encoding

(C member), 239
PyPreConfig.parse_argv (C member), 239
PyPreConfig.use_environment (C member),

239
PyPreConfig.utf8_mode (C member), 239
PyProperty_Type (C var), 192
PyRefTracer (C type), 228
PyRefTracer_CREATE (C var), 228
PyRefTracer_DESTROY (C var), 228
PyRefTracer_GetTracer (C function), 228
PyRefTracer_SetTracer (C function), 228
PyRun_AnyFile (C function), 43
PyRun_AnyFileEx (C function), 43
PyRun_AnyFileExFlags (C function), 43
PyRun_AnyFileFlags (C function), 43

PyRun_File (C function), 45
PyRun_FileEx (C function), 45
PyRun_FileExFlags (C function), 45
PyRun_FileFlags (C function), 45
PyRun_InteractiveLoop (C function), 44
PyRun_InteractiveLoopFlags (C function), 44
PyRun_InteractiveOne (C function), 44
PyRun_InteractiveOneFlags (C function), 44
PyRun_SimpleFile (C function), 44
PyRun_SimpleFileEx (C function), 44
PyRun_SimpleFileExFlags (C function), 44
PyRun_SimpleString (C function), 43
PyRun_SimpleStringFlags (C function), 44
PyRun_String (C function), 45
PyRun_StringFlags (C function), 45
PySendResult (C type), 116
PySeqIter_Check (C function), 191
PySeqIter_New (C function), 191
PySeqIter_Type (C var), 191
PySequence_Check (C function), 112
PySequence_Concat (C function), 112
PySequence_Contains (C function), 113
PySequence_Count (C function), 113
PySequence_DelItem (C function), 113
PySequence_DelSlice (C function), 113
PySequence_Fast (C function), 113
PySequence_Fast_GET_ITEM (C function), 114
PySequence_Fast_GET_SIZE (C function), 114
PySequence_Fast_ITEMS (C function), 114
PySequence_GetItem (C function), 9, 113
PySequence_GetSlice (C function), 113
PySequence_Index (C function), 113
PySequence_InPlaceConcat (C function), 112
PySequence_InPlaceRepeat (C function), 112
PySequence_ITEM (C function), 114
PySequence_Length (C function), 112
PySequence_List (C function), 113
PySequence_Repeat (C function), 112
PySequence_SetItem (C function), 113
PySequence_SetSlice (C function), 113
PySequence_Size (C function), 112
PySequence_Tuple (C function), 113
PySequenceMethods (C type), 306
PySequenceMethods.sq_ass_item (C mem-

ber), 306
PySequenceMethods.sq_concat (C member),

306
PySequenceMethods.sq_contains (C mem-

ber), 306
PySequenceMethods.sq_inplace_concat (C

member), 306
PySequenceMethods.sq_inplace_repeat (C

member), 307
PySequenceMethods.sq_item (C member), 306
PySequenceMethods.sq_length (C member),

306
PySequenceMethods.sq_repeat (C member),

306

Index 381



The Python/C API, Release 3.13.0

PySet_Add (C function), 174
PySet_Check (C function), 173
PySet_CheckExact (C function), 173
PySet_Clear (C function), 174
PySet_Contains (C function), 173
PySet_Discard (C function), 174
PySet_GET_SIZE (C function), 173
PySet_New (C function), 173
PySet_Pop (C function), 174
PySet_Size (C function), 173
PySet_Type (C var), 173
PySetObject (C type), 172
PySignal_SetWakeupFd (C function), 61
PySlice_AdjustIndices (C function), 193
PySlice_Check (C function), 192
PySlice_GetIndices (C function), 192
PySlice_GetIndicesEx (C function), 192
PySlice_New (C function), 192
PySlice_Type (C var), 192
PySlice_Unpack (C function), 193
PyState_AddModule (C function), 191
PyState_FindModule (C function), 191
PyState_RemoveModule (C function), 191
PyStatus (C type), 236
PyStatus_Error (C function), 237
PyStatus_Exception (C function), 237
PyStatus_Exit (C function), 237
PyStatus_IsError (C function), 237
PyStatus_IsExit (C function), 237
PyStatus_NoMemory (C function), 237
PyStatus_Ok (C function), 237
PyStatus.err_msg (C member), 236
PyStatus.exitcode (C member), 236
PyStatus.func (C member), 236
PyStructSequence_Desc (C type), 164
PyStructSequence_Desc.doc (C member), 165
PyStructSequence_Desc.fields (C member),

165
PyStructSequence_Desc.n_in_sequence (C

member), 165
PyStructSequence_Desc.name (C member),

165
PyStructSequence_Field (C type), 165
PyStructSequence_Field.doc (C member),

165
PyStructSequence_Field.name (C member),

165
PyStructSequence_GET_ITEM (C function), 165
PyStructSequence_GetItem (C function), 165
PyStructSequence_InitType (C function), 164
PyStructSequence_InitType2 (C function),

164
PyStructSequence_New (C function), 165
PyStructSequence_NewType (C function), 164
PyStructSequence_SET_ITEM (C function), 165
PyStructSequence_SetItem (C function), 165
PyStructSequence_UnnamedField (C var),

165

PySys_AddAuditHook (C function), 73
PySys_Audit (C function), 72
PySys_AuditTuple (C function), 73
PySys_FormatStderr (C function), 72
PySys_FormatStdout (C function), 72
PySys_GetObject (C function), 72
PySys_GetXOptions (C function), 72
PySys_ResetWarnOptions (C function), 72
PySys_SetArgv (C function), 215
PySys_SetArgvEx (C function), 214
PySys_SetObject (C function), 72
PySys_WriteStderr (C function), 72
PySys_WriteStdout (C function), 72
Python 3000, 337
Python Enhancement Proposals

PEP 1, 336
PEP 7, 3, 6
PEP 238, 47, 330
PEP 278, 339
PEP 302, 333
PEP 343, 327
PEP 353, 10
PEP 362, 326, 336
PEP 383, 153, 154
PEP 387, 15
PEP 393, 145
PEP 411, 336
PEP 420, 335, 336
PEP 432, 255, 256
PEP 442, 303
PEP 443, 331
PEP 451, 186
PEP 456, 90
PEP 483, 331
PEP 484, 325, 330, 331, 339, 340
PEP 489, 187, 223
PEP 492, 326, 328
PEP 498, 329
PEP 519, 336
PEP 523, 199, 221
PEP 525, 326
PEP 526, 325, 340
PEP 528, 210, 246
PEP 529, 154, 209
PEP 538, 253
PEP 539, 229
PEP 540, 253
PEP 552, 243
PEP 554, 225
PEP 578, 73
PEP 585, 331
PEP 587, 235
PEP 590, 105
PEP 623, 145
PEP 0626#out-of-process-

debuggers-and-profilers, 179
PEP 634, 292, 293
PEP 667, 90, 199

382 Index



The Python/C API, Release 3.13.0

PEP 0683, 49, 50, 331
PEP 703, 330, 331
PEP 3116, 339
PEP 3119, 102
PEP 3121, 184
PEP 3147, 76
PEP 3151, 66
PEP 3155, 337

PYTHON_CPU_COUNT, 246
PYTHON_GIL, 331
PYTHON_PERF_JIT_SUPPORT, 250
PYTHON_PRESITE, 249
PYTHONCOERCECLOCALE, 253
PYTHONDEBUG, 208, 248
PYTHONDEVMODE, 244
PYTHONDONTWRITEBYTECODE, 208, 251
PYTHONDUMPREFS, 244
PYTHONEXECUTABLE, 248
PYTHONFAULTHANDLER, 244
PYTHONHASHSEED, 209, 245
PYTHONHOME, 12, 209, 215, 245
Pythonic, 337
PYTHONINSPECT, 209, 245
PYTHONINTMAXSTRDIGITS, 246
PYTHONIOENCODING, 250
PYTHONLEGACYWINDOWSFSENCODING, 209, 239
PYTHONLEGACYWINDOWSSTDIO, 210, 246
PYTHONMALLOC, 258, 262, 263, 265
PYTHONMALLOCSTATS, 246, 258
PYTHONNODEBUGRANGES, 243
PYTHONNOUSERSITE, 210, 250
PYTHONOPTIMIZE, 210, 247
PYTHONPATH, 12, 209, 247
PYTHONPLATLIBDIR, 247
PYTHONPROFILEIMPORTTIME, 245
PYTHONPYCACHEPREFIX, 248
PYTHONSAFEPATH, 242
PYTHONTRACEMALLOC, 250
PYTHONUNBUFFERED, 210, 243
PYTHONUTF8, 239, 253
PYTHONVERBOSE, 211, 251
PYTHONWARNINGS, 251
PyThread_create_key (C function), 231
PyThread_delete_key (C function), 231
PyThread_delete_key_value (C function), 231
PyThread_get_key_value (C function), 231
PyThread_ReInitTLS (C function), 231
PyThread_set_key_value (C function), 231
PyThread_tss_alloc (C function), 230
PyThread_tss_create (C function), 230
PyThread_tss_delete (C function), 230
PyThread_tss_free (C function), 230
PyThread_tss_get (C function), 230
PyThread_tss_is_created (C function), 230
PyThread_tss_set (C function), 230
PyThreadState (C type), 215, 217
PyThreadState_Clear (C function), 220
PyThreadState_Delete (C function), 220

PyThreadState_DeleteCurrent (C function),
220

PyThreadState_EnterTracing (C function),
220

PyThreadState_Get (C function), 218
PyThreadState_GetDict (C function), 221
PyThreadState_GetFrame (C function), 220
PyThreadState_GetID (C function), 220
PyThreadState_GetInterpreter (C function),

220
PyThreadState_GetUnchecked (C function),

218
PyThreadState_LeaveTracing (C function),

221
PyThreadState_New (C function), 220
PyThreadState_Next (C function), 229
PyThreadState_SetAsyncExc (C function), 222
PyThreadState_Swap (C function), 218
PyThreadState.interp (C member), 217
PyTime_AsSecondsDouble (C function), 94
PyTime_Check (C function), 203
PyTime_CheckExact (C function), 203
PyTime_FromTime (C function), 204
PyTime_FromTimeAndFold (C function), 204
PyTime_MAX (C var), 93
PyTime_MIN (C var), 93
PyTime_Monotonic (C function), 94
PyTime_MonotonicRaw (C function), 94
PyTime_PerfCounter (C function), 94
PyTime_PerfCounterRaw (C function), 94
PyTime_t (C type), 93
PyTime_Time (C function), 94
PyTime_TimeRaw (C function), 94
PyTimeZone_FromOffset (C function), 204
PyTimeZone_FromOffsetAndName (C function),

204
PyTrace_C_CALL (C var), 227
PyTrace_C_EXCEPTION (C var), 227
PyTrace_C_RETURN (C var), 227
PyTrace_CALL (C var), 226
PyTrace_EXCEPTION (C var), 226
PyTrace_LINE (C var), 227
PyTrace_OPCODE (C var), 227
PyTrace_RETURN (C var), 227
PyTraceMalloc_Track (C function), 266
PyTraceMalloc_Untrack (C function), 266
PyTuple_Check (C function), 163
PyTuple_CheckExact (C function), 163
PyTuple_GET_ITEM (C function), 163
PyTuple_GET_SIZE (C function), 163
PyTuple_GetItem (C function), 163
PyTuple_GetSlice (C function), 164
PyTuple_New (C function), 163
PyTuple_Pack (C function), 163
PyTuple_SET_ITEM (C function), 164
PyTuple_SetItem (C function), 7, 164
PyTuple_Size (C function), 163
PyTuple_Type (C var), 163

Index 383



The Python/C API, Release 3.13.0

PyTupleObject (C type), 163
PyType_AddWatcher (C function), 126
PyType_Check (C function), 125
PyType_CheckExact (C function), 125
PyType_ClearCache (C function), 125
PyType_ClearWatcher (C function), 126
PyType_FromMetaclass (C function), 128
PyType_FromModuleAndSpec (C function), 129
PyType_FromSpec (C function), 129
PyType_FromSpecWithBases (C function), 129
PyType_GenericAlloc (C function), 126
PyType_GenericNew (C function), 127
PyType_GetDict (C function), 125
PyType_GetFlags (C function), 125
PyType_GetFullyQualifiedName (C function),

127
PyType_GetModule (C function), 127
PyType_GetModuleByDef (C function), 128
PyType_GetModuleName (C function), 127
PyType_GetModuleState (C function), 128
PyType_GetName (C function), 127
PyType_GetQualName (C function), 127
PyType_GetSlot (C function), 127
PyType_GetTypeDataSize (C function), 103
PyType_HasFeature (C function), 126
PyType_IS_GC (C function), 126
PyType_IsSubtype (C function), 126
PyType_Modified (C function), 126
PyType_Ready (C function), 127
PyType_Slot (C type), 130
PyType_Slot.pfunc (C member), 131
PyType_Slot.slot (C member), 130
PyType_Spec (C type), 129
PyType_Spec.basicsize (C member), 129
PyType_Spec.flags (C member), 130
PyType_Spec.itemsize (C member), 130
PyType_Spec.name (C member), 129
PyType_Spec.slots (C member), 130
PyType_Type (C var), 125
PyType_Watch (C function), 126
PyType_WatchCallback (C type), 126
PyTypeObject (C type), 125
PyTypeObject.tp_alloc (C member), 300
PyTypeObject.tp_as_async (C member), 286
PyTypeObject.tp_as_buffer (C member), 289
PyTypeObject.tp_as_mapping (C member),

287
PyTypeObject.tp_as_number (C member), 287
PyTypeObject.tp_as_sequence (C member),

287
PyTypeObject.tp_base (C member), 297
PyTypeObject.tp_bases (C member), 301
PyTypeObject.tp_basicsize (C member), 284
PyTypeObject.tp_cache (C member), 301
PyTypeObject.tp_call (C member), 288
PyTypeObject.tp_clear (C member), 294
PyTypeObject.tp_dealloc (C member), 285
PyTypeObject.tp_del (C member), 302

PyTypeObject.tp_descr_get (C member), 298
PyTypeObject.tp_descr_set (C member), 298
PyTypeObject.tp_dict (C member), 298
PyTypeObject.tp_dictoffset (C member),

299
PyTypeObject.tp_doc (C member), 293
PyTypeObject.tp_finalize (C member), 302
PyTypeObject.tp_flags (C member), 289
PyTypeObject.tp_free (C member), 300
PyTypeObject.tp_getattr (C member), 286
PyTypeObject.tp_getattro (C member), 288
PyTypeObject.tp_getset (C member), 297
PyTypeObject.tp_hash (C member), 287
PyTypeObject.tp_init (C member), 299
PyTypeObject.tp_is_gc (C member), 301
PyTypeObject.tp_itemsize (C member), 284
PyTypeObject.tp_iter (C member), 297
PyTypeObject.tp_iternext (C member), 297
PyTypeObject.tp_members (C member), 297
PyTypeObject.tp_methods (C member), 297
PyTypeObject.tp_mro (C member), 301
PyTypeObject.tp_name (C member), 284
PyTypeObject.tp_new (C member), 300
PyTypeObject.tp_repr (C member), 286
PyTypeObject.tp_richcompare (C member),

295
PyTypeObject.tp_setattr (C member), 286
PyTypeObject.tp_setattro (C member), 288
PyTypeObject.tp_str (C member), 288
PyTypeObject.tp_subclasses (C member),

301
PyTypeObject.tp_traverse (C member), 293
PyTypeObject.tp_vectorcall (C member),

303
PyTypeObject.tp_vectorcall_offset (C

member), 285
PyTypeObject.tp_version_tag (C member),

302
PyTypeObject.tp_watched (C member), 303
PyTypeObject.tp_weaklist (C member), 302
PyTypeObject.tp_weaklistoffset (C mem-

ber), 296
PyTZInfo_Check (C function), 204
PyTZInfo_CheckExact (C function), 204
PyUnicode_1BYTE_DATA (C function), 146
PyUnicode_1BYTE_KIND (C macro), 146
PyUnicode_2BYTE_DATA (C function), 146
PyUnicode_2BYTE_KIND (C macro), 146
PyUnicode_4BYTE_DATA (C function), 146
PyUnicode_4BYTE_KIND (C macro), 146
PyUnicode_AsASCIIString (C function), 159
PyUnicode_AsCharmapString (C function), 160
PyUnicode_AsEncodedString (C function), 156
PyUnicode_AsLatin1String (C function), 159
PyUnicode_AsMBCSString (C function), 160
PyUnicode_AsRawUnicodeEscapeString (C

function), 159
PyUnicode_AsUCS4 (C function), 153

384 Index



The Python/C API, Release 3.13.0

PyUnicode_AsUCS4Copy (C function), 153
PyUnicode_AsUnicodeEscapeString (C func-

tion), 159
PyUnicode_AsUTF8 (C function), 157
PyUnicode_AsUTF8AndSize (C function), 156
PyUnicode_AsUTF8String (C function), 156
PyUnicode_AsUTF16String (C function), 158
PyUnicode_AsUTF32String (C function), 157
PyUnicode_AsWideChar (C function), 155
PyUnicode_AsWideCharString (C function),

155
PyUnicode_Check (C function), 146
PyUnicode_CheckExact (C function), 146
PyUnicode_Compare (C function), 162
PyUnicode_CompareWithASCIIString (C

function), 162
PyUnicode_Concat (C function), 161
PyUnicode_Contains (C function), 162
PyUnicode_CopyCharacters (C function), 152
PyUnicode_Count (C function), 161
PyUnicode_DATA (C function), 146
PyUnicode_Decode (C function), 156
PyUnicode_DecodeASCII (C function), 159
PyUnicode_DecodeCharmap (C function), 160
PyUnicode_DecodeFSDefault (C function), 155
PyUnicode_DecodeFSDefaultAndSize (C

function), 154
PyUnicode_DecodeLatin1 (C function), 159
PyUnicode_DecodeLocale (C function), 153
PyUnicode_DecodeLocaleAndSize (C func-

tion), 153
PyUnicode_DecodeMBCS (C function), 160
PyUnicode_DecodeMBCSStateful (C function),

160
PyUnicode_DecodeRawUnicodeEscape (C

function), 159
PyUnicode_DecodeUnicodeEscape (C func-

tion), 159
PyUnicode_DecodeUTF7 (C function), 158
PyUnicode_DecodeUTF7Stateful (C function),

158
PyUnicode_DecodeUTF8 (C function), 156
PyUnicode_DecodeUTF8Stateful (C function),

156
PyUnicode_DecodeUTF16 (C function), 158
PyUnicode_DecodeUTF16Stateful (C func-

tion), 158
PyUnicode_DecodeUTF32 (C function), 157
PyUnicode_DecodeUTF32Stateful (C func-

tion), 157
PyUnicode_EncodeCodePage (C function), 161
PyUnicode_EncodeFSDefault (C function), 155
PyUnicode_EncodeLocale (C function), 153
PyUnicode_EqualToUTF8 (C function), 162
PyUnicode_EqualToUTF8AndSize (C function),

162
PyUnicode_Fill (C function), 152
PyUnicode_Find (C function), 161

PyUnicode_FindChar (C function), 161
PyUnicode_Format (C function), 162
PyUnicode_FromEncodedObject (C function),

152
PyUnicode_FromFormat (C function), 149
PyUnicode_FromFormatV (C function), 152
PyUnicode_FromKindAndData (C function), 149
PyUnicode_FromObject (C function), 152
PyUnicode_FromString (C function), 149
PyUnicode_FromStringAndSize (C function),

149
PyUnicode_FromWideChar (C function), 155
PyUnicode_FSConverter (C function), 154
PyUnicode_FSDecoder (C function), 154
PyUnicode_GET_LENGTH (C function), 146
PyUnicode_GetLength (C function), 152
PyUnicode_InternFromString (C function),

163
PyUnicode_InternInPlace (C function), 162
PyUnicode_IsIdentifier (C function), 147
PyUnicode_Join (C function), 161
PyUnicode_KIND (C function), 146
PyUnicode_MAX_CHAR_VALUE (C function), 147
PyUnicode_New (C function), 149
PyUnicode_READ (C function), 147
PyUnicode_READ_CHAR (C function), 147
PyUnicode_ReadChar (C function), 152
PyUnicode_READY (C function), 146
PyUnicode_Replace (C function), 162
PyUnicode_RichCompare (C function), 162
PyUnicode_Split (C function), 161
PyUnicode_Splitlines (C function), 161
PyUnicode_Substring (C function), 153
PyUnicode_Tailmatch (C function), 161
PyUnicode_Translate (C function), 160
PyUnicode_Type (C var), 146
PyUnicode_WRITE (C function), 146
PyUnicode_WriteChar (C function), 152
PyUnicodeDecodeError_Create (C function),

63
PyUnicodeDecodeError_GetEncoding (C

function), 63
PyUnicodeDecodeError_GetEnd (C function),

63
PyUnicodeDecodeError_GetObject (C func-

tion), 63
PyUnicodeDecodeError_GetReason (C func-

tion), 64
PyUnicodeDecodeError_GetStart (C func-

tion), 63
PyUnicodeDecodeError_SetEnd (C function),

63
PyUnicodeDecodeError_SetReason (C func-

tion), 64
PyUnicodeDecodeError_SetStart (C func-

tion), 63
PyUnicodeEncodeError_GetEncoding (C

function), 63

Index 385



The Python/C API, Release 3.13.0

PyUnicodeEncodeError_GetEnd (C function),
63

PyUnicodeEncodeError_GetObject (C func-
tion), 63

PyUnicodeEncodeError_GetReason (C func-
tion), 64

PyUnicodeEncodeError_GetStart (C func-
tion), 63

PyUnicodeEncodeError_SetEnd (C function),
63

PyUnicodeEncodeError_SetReason (C func-
tion), 64

PyUnicodeEncodeError_SetStart (C func-
tion), 63

PyUnicodeObject (C type), 145
PyUnicodeTranslateError_GetEnd (C func-

tion), 63
PyUnicodeTranslateError_GetObject (C

function), 63
PyUnicodeTranslateError_GetReason (C

function), 64
PyUnicodeTranslateError_GetStart (C

function), 63
PyUnicodeTranslateError_SetEnd (C func-

tion), 63
PyUnicodeTranslateError_SetReason (C

function), 64
PyUnicodeTranslateError_SetStart (C

function), 63
PyUnstable, 15
PyUnstable_Code_GetExtra (C function), 181
PyUnstable_Code_GetFirstFree (C function),

178
PyUnstable_Code_New (C function), 178
PyUnstable_Code_NewWithPosOnlyArgs (C

function), 179
PyUnstable_Code_SetExtra (C function), 181
PyUnstable_Eval_RequestCodeExtraIndex

(C function), 181
PyUnstable_Exc_PrepReraiseStar (C func-

tion), 63
PyUnstable_GC_VisitObjects (C function),

315
PyUnstable_InterpreterFrame_GetCode (C

function), 199
PyUnstable_InterpreterFrame_GetLasti

(C function), 199
PyUnstable_InterpreterFrame_GetLine (C

function), 200
PyUnstable_Long_CompactValue (C function),

137
PyUnstable_Long_IsCompact (C function), 137
PyUnstable_Module_SetGIL (C function), 190
PyUnstable_Object_ClearWeakRefsNoCallbacks

(C function), 196
PyUnstable_Object_GC_NewWithExtraData

(C function), 313
PyUnstable_PerfMapState_Fini (C function),

95
PyUnstable_PerfMapState_Init (C function),

94
PyUnstable_Type_AssignVersionTag (C

function), 128
PyUnstable_WritePerfMapEntry (C function),

95
PyVarObject (C type), 268
PyVarObject_HEAD_INIT (C macro), 269
PyVarObject.ob_size (C member), 284
PyVectorcall_Call (C function), 106
PyVectorcall_Function (C function), 106
PyVectorcall_NARGS (C function), 106
PyWeakref_Check (C function), 195
PyWeakref_CheckProxy (C function), 195
PyWeakref_CheckRef (C function), 195
PyWeakref_GET_OBJECT (C function), 195
PyWeakref_GetObject (C function), 195
PyWeakref_GetRef (C function), 195
PyWeakref_NewProxy (C function), 195
PyWeakref_NewRef (C function), 195
PyWideStringList (C type), 236
PyWideStringList_Append (C function), 236
PyWideStringList_Insert (C function), 236
PyWideStringList.items (C member), 236
PyWideStringList.length (C member), 236
PyWrapper_New (C function), 192

Q
qualified name, 337

R
READ_RESTRICTED (C macro), 274
READONLY (C macro), 274
realloc (C function), 257
reference count, 337
regular package, 337
releasebufferproc (C type), 310
REPL, 337
repr

built-in function, 101, 286
reprfunc (C type), 309
RESTRICTED (C macro), 274
richcmpfunc (C type), 309

S
search

path, module, 12, 211, 213
sendfunc (C type), 310
sequence, 338

object, 142
set

object, 172
set comprehension, 338
set_all(), 8
setattrfunc (C type), 309
setattrofunc (C type), 309
setswitchinterval (in module sys), 215

386 Index



The Python/C API, Release 3.13.0

setter (C type), 276
SIGINT (C macro), 61
signal

module, 61
single dispatch, 338
SIZE_MAX (C macro), 134
slice, 338
soft deprecated, 338
special

method, 338
special method, 338
ssizeargfunc (C type), 310
ssizeobjargproc (C type), 310
statement, 338
static type checker, 338
staticmethod

built-in function, 272
stderr (in module sys), 223, 224
stdin (in module sys), 223, 224
stdout (in module sys), 223, 224
strerror (C function), 55
string

PyObject_Str (C function), 101
strong reference, 338
structmember.h, 276
sum_list(), 9
sum_sequence(), 9, 10
sys

module, 12, 211, 223, 224
SystemError (built-in exception), 183, 184

T
T_BOOL (C macro), 276
T_BYTE (C macro), 276
T_CHAR (C macro), 276
T_DOUBLE (C macro), 276
T_FLOAT (C macro), 276
T_INT (C macro), 276
T_LONG (C macro), 276
T_LONGLONG (C macro), 276
T_NONE (C macro), 276
T_OBJECT (C macro), 276
T_OBJECT_EX (C macro), 276
T_PYSSIZET (C macro), 276
T_SHORT (C macro), 276
T_STRING (C macro), 276
T_STRING_INPLACE (C macro), 276
T_UBYTE (C macro), 276
T_UINT (C macro), 276
T_ULONG (C macro), 276
T_ULONGULONG (C macro), 276
T_USHORT (C macro), 276
ternaryfunc (C type), 310
text encoding, 338
text file, 339
traverseproc (C type), 314
triple-quoted string, 339
tuple

built-in function, 113, 167
object, 163

type, 339
built-in function, 102
object, 6, 125

type alias, 339
type hint, 339

U
ULONG_MAX (C macro), 134
unaryfunc (C type), 310
universal newlines, 339
USE_STACKCHECK (C macro), 70

V
variable annotation, 339
vectorcallfunc (C type), 105
version (in module sys), 213, 214
virtual environment, 340
virtual machine, 340
visitproc (C type), 314

W
WRITE_RESTRICTED (C macro), 274

Z
Zen of Python, 340

Index 387


	Introduction
	Coding standards
	Include Files
	Useful macros
	Objects, Types and Reference Counts
	Reference Counts
	Reference Count Details

	Types

	Exceptions
	Embedding Python
	Debugging Builds

	C API Stability
	Unstable C API
	Stable Application Binary Interface
	Limited C API
	Stable ABI
	Limited API Scope and Performance
	Limited API Caveats

	Platform Considerations
	Contents of Limited API

	The Very High Level Layer
	Reference Counting
	Exception Handling
	Printing and clearing
	Raising exceptions
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Exception Objects
	Unicode Exception Objects
	Recursion Control
	Standard Exceptions
	Standard Warning Categories

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	Parsing arguments
	Strings and buffers
	Numbers
	Other objects
	API Functions

	Building values

	String conversion and formatting
	PyHash API
	Reflection
	Codec registry and support functions
	Codec lookup API
	Registry API for Unicode encoding error handlers

	PyTime C API
	Types
	Clock Functions
	Raw Clock Functions
	Conversion functions

	Support for Perf Maps

	Abstract Objects Layer
	Object Protocol
	Call Protocol
	The tp_call Protocol
	The Vectorcall Protocol
	Recursion Control
	Vectorcall Support API

	Object Calling API
	Call Support API

	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol
	Buffer structure
	Buffer request types
	request-independent fields
	readonly, format
	shape, strides, suboffsets
	contiguity requests
	compound requests

	Complex arrays
	NumPy-style: shape and strides
	PIL-style: shape, strides and suboffsets

	Buffer-related functions


	Concrete Objects Layer
	Fundamental Objects
	Type Objects
	Creating Heap-Allocated Types

	The None Object

	Numeric Objects
	Integer Objects
	Boolean Objects
	Floating-Point Objects
	Pack and Unpack functions
	Pack functions
	Unpack functions


	Complex Number Objects
	Complex Numbers as C Structures
	Complex Numbers as Python Objects


	Sequence Objects
	Bytes Objects
	Byte Array Objects
	Type check macros
	Direct API functions
	Macros

	Unicode Objects and Codecs
	Unicode Objects
	Unicode Type
	Unicode Character Properties
	Creating and accessing Unicode strings
	Locale Encoding
	File System Encoding
	wchar_t Support

	Built-in Codecs
	Generic Codecs
	UTF-8 Codecs
	UTF-32 Codecs
	UTF-16 Codecs
	UTF-7 Codecs
	Unicode-Escape Codecs
	Raw-Unicode-Escape Codecs
	Latin-1 Codecs
	ASCII Codecs
	Character Map Codecs
	MBCS codecs for Windows
	Methods & Slots

	Methods and Slot Functions

	Tuple Objects
	Struct Sequence Objects
	List Objects

	Container Objects
	Dictionary Objects
	Set Objects

	Function Objects
	Function Objects
	Instance Method Objects
	Method Objects
	Cell Objects
	Code Objects
	Extra information

	Other Objects
	File Objects
	Module Objects
	Initializing C modules
	Single-phase initialization
	Multi-phase initialization
	Low-level module creation functions
	Support functions

	Module lookup

	Iterator Objects
	Descriptor Objects
	Slice Objects
	Ellipsis Object

	MemoryView objects
	Weak Reference Objects
	Capsules
	Frame Objects
	Internal Frames

	Generator Objects
	Coroutine Objects
	Context Variables Objects
	DateTime Objects
	Objects for Type Hinting


	Initialization, Finalization, and Threads
	Before Python Initialization
	Global configuration variables
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Releasing the GIL from extension code
	Non-Python created threads
	Cautions about fork()
	High-level API
	Low-level API

	Sub-interpreter support
	A Per-Interpreter GIL
	Bugs and caveats

	Asynchronous Notifications
	Profiling and Tracing
	Reference tracing
	Advanced Debugger Support
	Thread Local Storage Support
	Thread Specific Storage (TSS) API
	Dynamic Allocation
	Methods

	Thread Local Storage (TLS) API

	Synchronization Primitives
	Python Critical Section API


	Python Initialization Configuration
	Example
	PyWideStringList
	PyStatus
	PyPreConfig
	Preinitialize Python with PyPreConfig
	PyConfig
	Initialization with PyConfig
	Isolated Configuration
	Python Configuration
	Python Path Configuration
	Py_RunMain()
	Py_GetArgcArgv()
	Multi-Phase Initialization Private Provisional API

	Memory Management
	Overview
	Allocator Domains
	Raw Memory Interface
	Memory Interface
	Object allocators
	Default Memory Allocators
	Customize Memory Allocators
	Debug hooks on the Python memory allocators
	The pymalloc allocator
	Customize pymalloc Arena Allocator

	The mimalloc allocator
	tracemalloc C API
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Base object types and macros
	Implementing functions and methods
	Accessing attributes of extension types
	Member flags
	Member types
	Defining Getters and Setters


	Type Objects
	Quick Reference
	“tp slots”
	sub-slots
	slot typedefs

	PyTypeObject Definition
	PyObject Slots
	PyVarObject Slots
	PyTypeObject Slots
	Static Types
	Heap Types

	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	Slot Type typedefs
	Examples
	Supporting Cyclic Garbage Collection
	Controlling the Garbage Collector State
	Querying Garbage Collector State


	API and ABI Versioning
	Monitoring C API
	Generating Execution Events
	Managing the Monitoring State

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	PSF LICENSE AGREEMENT FOR PYTHON 3.13.0
	BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
	CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
	CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.13.0 DOCUMENTATION

	Licenses and Acknowledgements for Incorporated Software
	Mersenne Twister
	Sockets
	Asynchronous socket services
	Cookie management
	Execution tracing
	UUencode and UUdecode functions
	XML Remote Procedure Calls
	test_epoll
	Select kqueue
	SipHash24
	strtod and dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite
	mimalloc
	asyncio
	Global Unbounded Sequences (GUS)


	Copyright
	Index

