The Python Library Reference
Release 3.10.18

Guido van Rossum
and the Python development team

June 03, 2025

Python Software Foundation
Email: docs@python.org






Introduction

1.1

Notes on availability

Built-in Functions

Built-in Constants

3.1  Constants added by the site module
Built-in Types
4.1  Truth Value Testing
4.2 Boolean Operations — and, or, not
4.3
4.4  Numeric Types — int, float, complex
4.4.1 Bitwise Operations on Integer Types
4.4.2  Additional Methods on Integer Types
4.4.3  Additional Methods on Float
4.4.4  Hashing of numeric types
4.5
4.5.1  Generator Types
4.6  Sequence Types — list, tuple, range
4.6.1  Common Sequence Operations
4.6.2 Immutable Sequence Types
4.6.3  Mutable Sequence Types
4.7  Text Sequence Type — str
4.7.1  String Methods
4.7.2  printf-style String Formatting
4.8
4.8.1  Bytes Objects
4.8.2  Bytearray Objects
4.8.3  Bytes and Bytearray Operations
4.8.4 printf-style Bytes Formatting
4.8.5 Memory Views
4.9 Set Types — set, frozenset
4.10 Mapping Types — dict
4.10.1 Dictionary view objects
4.11 Context Manager Types
4.12
4.12.1 Generic Alias Type
4.12.2  Union Type
4.13 Other Built-in Types

Comparisons . . . . . ... u e e

Iterator Types . . . . . . . ... ... .. ...

464 Lists . . ... ... o
465 Tuples . . ... ...
466 Ranges. ... ...............

Binary Sequence Types — bytes, bytearray, memoryview

Type Annotation Types — Generic Alias, Union

4.13.1 Modules . . . . ... ... ... ... ..

CONTENTS

......................... 38

......................... 89




4.13.2 Classesand Class Instances . . . . . . . . o o v v v v i i e e e e e e 90

4.13.3 Functions . . . . . . . .. 90
4134 Methods . . . . . . . L e 90
4135 Code Objects . . . . . . . . . e 90
4.13.6 Type Objects . . . . . o i i i e e e e e e e e 91
4.13.77 TheNullObject . . . . . . . . e 91
4.13.8 The Ellipsis Object . . . . . . . o o i i i e e e e e e e e e e e e 91
4.13.9 The NotImplemented Object . . . . . . . . . . . . it 91
4.13.10 Boolean Values . . . . . . ... . .. e 91
4.13.11 Internal Objects . . . . . . . . . . . L e 91
4.14 Special Attributes . . . . . ... e 91
4.15 Integer string conversion length limitation . . . . . . . .. .. ... ... L oo, 92
4.15.1 Affected APIs . . . . . . . e 93
4.15.2 Configuring the limit . . . . . . . . ... .. e 93
4.15.3 Recommended configuration . . . . . . ... ... Lol e e 94
Built-in Exceptions 95
5.1 EXCEeption CONTEXL . . . . . v v v v v vttt e e e e e e e e e e e e e e e e e 95
5.2 Inheriting from built-in exceptions . . . . . ... ... Lo oL o 96
5.3 Baseclasses . . . ... e e e e e e e e 96
5.4  Concrete €XCePiONS . v v v v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e 97
541 OSexCeptions . . . . v v v v it e e e e e e e e e e e e e e e e e 101
5.5 Warnings . . . . .. L e e e e e e e e e e e e 103
5.6 Exceptionhierarchy . . . . . . . . . . ... e 104
Text Processing Services 107
6.1 string— Common String OPerations . . . . . . . . . . . e et e e e 107
6.1.1  Stringconstants . . . . . . ... Lo e e 107
6.1.2  Custom String Formatting . . . . . . . . . ... ... e 108
6.1.3  Format String Syntax . . . . . . . . . . e e e e e e e e e e e 109
6.1.4  Template Strings . . . . . o v v v v e e e e e e e e e e e e e e e e e 116
6.1.5 Helperfunctions . . . . . . . . . ... 117
6.2 re — Regular expression Operations . . . . . . . . . . ... .o o i e e e 118
6.2.1  Regular Expression Syntax . . . . . . . . ... ..o e 118
6.2.2  Module Contents . . . . . . . . ... e e e e e 123
6.2.3  Regular Expression Objects . . . . . . . . . . . i it e e e e 128
6.2.4  Match Objects . . . . . . . v it e e e e e e e e e e e e 129
6.2.5 Regular Expression Examples . . . . . . . ... ... L oo 131
6.3 difflib — Helpers for computingdeltas . . . . . ... .. ... ... .. ... .. 137
6.3.1  SequenceMatcher Objects . . . . . . . . . . . .. 141
6.3.2  SequenceMatcher Examples . . . . . . . . . . . .. e 143
6.3.3 Differ Objects . . . . . . . . o e e e e e e e e e e e 144
6.34 DifferExample . . . . . ... ... e 145
6.3.5 A command-line interface todifflib . . . . ... ..o oL o oo 146
6.4 textwrap — Textwrappingandfilling . . . . . ... ... ... 147
6.5 unicodedata —Unicode Database . . . . . . ... ... ... ... ... . . ... ... 150
6.6 stringprep — Internet String Preparation . . . . . . . . . . ... .. e 152
6.7 readline — GNUreadlineinterface . . . . . ... ... .. ... ... ... ... 153
6.7.1 Imitfile. . . . . ... 154
6.7.2 Linebuffer. . . . . . . . . e 154
6.7.3 Historyfile. . . . . . . . e e e 154
6.7.4  History list. . . . . . . o e e e e e e e e e 155
6.7.5 Startuphooks . . . . . .. e e e e 155
6.7.6  Completion . . . . . . . . . e e e e 156
6.7.77 Example . . . . ... 156
6.8 rlcompleter — Completion function for GNU readline . . . . . .. ... ... ... ..... 158
6.8.1  Completer Objects . . . . . . . . i i i e e e e e e e e e e e e 158




7 Binary Data Services 159

7.1 struct — Interpret bytes as packed binarydata . . . . ... ... ... .. L L., 159
7.1.1  Functions and Exceptions . . . . . . . . . . . . . e e 159

7.1.2 0 Format Strings . . . .« c v v v e e e e e e e e e e e e e e e e 160

7.1.3  Applications . . . . . . ... L e e e 164

T4 CIasses . . o ov v v o e e e e e e 165

7.2 codecs — Codec registry and base classes . . . . . . . . . . ..o 166
7.2.1  CodecBase Classes . . . . . . . . i i v i ittt e 168

7.22 Encodingsand Unicode . . . . . . .. .. .. .. ... e 175

7.23  Standard Encodings . . . . . .. ..o 176

7.24  Python Specific Encodings . . . . . . . ... 179

7.2.5 encodings.idna — Internationalized Domain Names in Applications . . . . . . . .. 181

7.2.6 encodings.mbcs — Windows ANSIcodepage . . . . .. ... ... ... ...... 182

7277 encodings.utf_8_sig— UTF-8 codec with BOM signature . . . ... ... ... 182

8 Data Types 183
8.1 datetime — Basicdateand time types . . . . . . . . . ..o i e e e e e e e e 183
8.1.1  Awareand Naive Objects . . . . . . . . . .. ... ... 183

8.1.2  Constants . . . . . ... e e e e e e e e e e e 184

8.1.3 Available Types . . . . . . . o o e 184

8.14 timedelta Objects . . . . . . o o o v i i it e 185

8.1.5 date Objects . . . . . . . i e e 189

8.1.6 datetime Objects . . . . . . . o v i i e e e e e e e e e 193

8.1.7 time Objects . . . . . . . e e e e 203

8.1.8 tzinfo Objects . . . . . . . o e e 206

8.1.9 timezone ObJECtS . . . . . . . o oL e e e e 212
8.1.10 strftime () and strptime () Behavior . . . . ... ... ... ... ........ 213

8.2 zoneinfo —ITANA tIMEZONE SUPPOTL . . .« v v v v v v i i e e e e e e e e e e e e e e 217
82.1 UsingZoneInfo . . .. . .. . . it 218

8.2.2  DataSOoUICeS . . . « v v v v v e e e e e e e e e e e e e e e e e 219

823 The ZoneInfoclass . . . . . . . . . i i it 220

824  Functions . . . . . . . . .. e e e 222

825 Globals . . . . . . . 222

8.2.6  Exceptions and warnings . . . . . . . . . .o it et e e e e e e e e e e e e 222

8.3 calendar — General calendar-related functions . . . . . . . .. ... ... L oL oL 223
84 collections — Container datatypes . . . . . . .« . v v v v i et e e e 227
8.4.1 ChainMapobjects . . . . . . . o o o i i e e 227

84.2  Counter objectS . . . . . v v i i e e e e e e e e e e e e 230

843 deque objectS . . . . ... e e e e e 233

844 defaultdictobjects. . . . . . . . e e e e e 236

8.4.5 namedtuple () Factory Function for Tuples with Named Fields. . . . . ... ... .. 238

84.6 OrderedDict ObJECES. . . . o v v v v v i i i e e e e e 241

847 UserDIict ObJECtS . . . . o v i it e e e e e e e e e e e e e 243

84.8 UserList obJects . . . . . v i v v i i e e e e e e e e e e e 243

8.4.9 UserStringobjects . . . . . . . i i i e e e e e e 244

8.5 collections.abc — Abstract Base Classes for Containers . . . . . . .. ... ... ..... 244
8.5.1  Collections Abstract Base Classes . . . . . . . . . ... it 245

8.5.2  Collections Abstract Base Classes — Detailed Descriptions . . . . . ... ... ...... 247

8.5.3 Examplesand Recipes . . . . . . . . . . . e e e e 248

8.6 heapg— Heapqueuealgorithm . . . . .. ... ... ... ... 249
8.6.1 BasicExamples . . . .. ... .. 251

8.6.2  Priority Queue Implementation Notes . . . . . . . . . ... ... 251

8.63 Theory. . . . . . . o o e 252

8.7 Dbisect — Array bisection algorithm . . . . . . .. ... oL oL L 253
8.7.1 Performance Notes . . . . . . . . . .. . e 254

8.7.2  Searching Sorted Lists . . . . . . . . . . .. L 255

873 Examples . . . . ... e e 255

8.8 array — Efficient arrays of numeric values . . . . . .. ... oL Lo 256




9

8.9 weakref —Weakreferences . . . . . .. ... 259
8.9.1  Weak Reference Objects . . . . . . . . . . o i i e e 263
8.9.2 Example . . . . . . e e e e e 264
8.9.3  Finalizer Objects . . . . . . . . . o o i i e e 265
8.9.4  Comparing finalizers with __del__ () methods . . ... ... ... ... .. ..... 266
8.10 types — Dynamic type creation and names for built-intypes . . . . . . .. ... ... ... 267
8.10.1 Dynamic Type Creation . . . . . . . . o v v i v v it e et e e e e e e e e 267
8.10.2 Standard Interpreter Types . . . . . . . . o v v i e e e e e e e 268
8.10.3 Additional Utility Classes and Functions . . . . . . ... ... ... ... ....... 271
8.10.4 Coroutine Utility Functions . . . . . . . . . . . ... . 272
8.11 copy — Shallow and deep copy operations . . . . . . . . . . . oo it 272
8.12 pprint — Datapretty printer . . . . . . . . . ... e e e e e e e 273
8.12.1 PrettyPrinter Objects . . . . . . . . . . e e e e e e e e 275
8.12.2 Example . . . . . . . L e e e e e e e 276
8.13 reprlib — Alternate repr () implementation . . . . . . . . . .. . ... ... 279
8.13.1 ReprObjects . . . . . . . o e 279
8.13.2 Subclassing Repr Objects . . . . . . . . . . e 280
8.14 enum — Support for enumMerations . . . . . . . . . . .. e e e e e e e e e e e 280
8.14.1 Module Contents . . . . . . . .. ... e e e e e e e e e 281
8.14.2 CreatinganEnum . . . . . . . ... oL 281
8.14.3 Programmatic access to enumeration members and their attributes . . . . . .. ... ... 283
8.14.4 Duplicating enum members and values . . . . . . .. ... Lo 283
8.14.5 Ensuring unique enumeration values . . . . . . . . . . ..o e e e e 284
8.14.6 Usingautomatic values . . . . . . . o v vt i e e e e e e e e e e e e e e 284
8.14.7 Tteration . . . . . . . . .. e e e e 285
8.14.8 CompariSOns . . . . . . . .. e 285
8.14.9 Allowed members and attributes of enumerations . . . . . . . . .. ... ... ... ... 286
8.14.10 Restricted Enum subclassing . . . . . . . . .. L. o 286
8.14.11 Pickling . . . . . . . L L 287
8.14.12 Functional APT . . . . . . . . . 287
8.14.13 Derived Enumerations . . . . . . . . . . .. Lo e e e e e e e e 289
8.14.14 Whentouse __new__ () VS. __dinit_ () . . . . v v v v i i i i i e 292
8.14.15 Interesting examples . . . . . . . . .. L e e e e e e e 292
8.14.16 How are Enums different? . . . . . . . . . .. ... ... 296
8.15 graphlib — Functionality to operate with graph-like structures . . . . . ... ... ... ... 299
8.15.1 Exceptions . . . . . . . .. 301
Numeric and Mathematical Modules 303
9.1 numbers — Numeric abstract base classes . . . . . . . . . .. ... ... 303
9.1.1  The numeric tOWET . . . . . . . v v i v it et e e e e e e e e e e e 303
9.1.2  Notes for type implementors . . . . . . . . . ... e e e e 304
9.2 math — Mathematical functions . . . . . . . .. ... . L 306
9.2.1  Number-theoretic and representation functions . . . . . . . . . . ... ... ... .... 306
9.2.2  Power and logarithmic functions . . . . . ... . ... ... oL oo 310
9.2.3  Trigonometric functions . . . . . . . . .. ... oL e 310
9.2.4  Angularconversion . . . . . ... oo 311
9.2.5 Hyperbolic functions . . . . . . . . . ... 311
9.2.6  Special functions . . . . . . .. L e e e e e 312
927  Constants . . . . . ..o e e e e e e e e e e e e e e e 312
9.3 cmath — Mathematical functions for complex numbers . . . . . .. ... ... ... ... ... 313
9.3.1  Conversions to and from polar coordinates . . . . . . . . ... .. ... ... ... 314
9.3.2  Power and logarithmic functions . . . . . . . . ... ... L. Lo 314
9.3.3  Trigonometric functions . . . . . . . . . . ..o e e 315
9.3.4  Hyperbolic functions . . . . . . . . . . . e e e e e 315
9.3.5 Classification functions . . . . . . . . . . ... e 315
0.3.6  ConsStantS . . . . . .o i e e e e e e e e e e e e e 316
9.4 decimal — Decimal fixed point and floating point arithmetic . . . . . ... ... ... ... .. 317
9.4.1  Quick-start Tutorial . . . . . . . . . . .. e e e 318




942 Decimalobjects . . . . . . . ... e e
943  ConteXtODJECES . . . . v v i e e e e e e e e e e e e e e e e
9.4.4  Constants . . . . . ..l e e e e e e e e e e e e
945 Roundingmodes. . . . . . . ... e
9.4.6  Signals . . . . . .. e e e e
9.4.7 FloatingPoint Notes . . . . . . . . . . . . . e
9.4.8 Workingwiththreads . . . . . . . . . . . . . . e
949  RECIPES .« . v v v i e e e e e e e e e
9.4.10 Decimal FAQ . . . . . . . . e e e
9.5 fractions —Rationalnumbers . . . . . . . .. .. L L L
9.6 random — Generate pseudo-random numbers . . . . . .. ..o Lol
9.6.1  Bookkeeping functions . . . . . . . . ... e
9.6.2 Functions forbytes . . . . . . . . e e
9.6.3  Functions for inte@ers . . . . . . . . . . ... e e e e
9.6.4  Functions forsequences . . . . . . . . . . ... e
9.6.5 Real-valued distributions . . . . . . . .. ...
9.6.6  Alternative GEnerator . . . . . . . . . .. it e e e e
9.6.7 Noteson Reproducibility . . . . . . ... .. .. e
9.6.8 Examples . . . . .. e e e e e e
9.6.9  ReCIpes . . . . . . e
9.7 statistics — Mathematical statistics functions . . . . . . . ... ...
9.7.1  Averages and measures of central location . . . . ... ... ... L.
9.7.2 Measuresof spread . . . . . . . ..o e e e e e
9.7.3  Statistics for relations between two inputs . . . . . . ... ..ol
9.7.4 Functiondetails . . . . . . .. .. e
975  EXCEpHons . . . . . . . ... e
9.7.6  NormalDist Objects . . . . . . . i v i i it e
10 Functional Programming Modules
10.1 itertools — Functions creating iterators for efficient looping . . . . . . . ... ... .. ...
10.1.1 Ttertool functions . . . . . . . . . o L e e
10.1.2 Ttertools ReCipes . . . . . . . v v i i e e e e e e e e e e e e
10.2 functools — Higher-order functions and operations on callable objects . . . . . . . ... ...
10.2.1 partial Objects . . . . . o o i i i e e e e e e e
10.3 operator — Standard operators as functions . . . . . .. ... ... oL Lo
10.3.1 Mapping Operators to Functions . . . . . . . . . .. ... ..
10.3.2 In-place Operators . . . . . . . . v i v v it e e e e e e e e
11 File and Directory Access
11.1 pathlib — Object-oriented filesystem paths . . . . . . . . . ... ... ... .. ... ...,
I1.1.1 BaSiCUSE . . . v v vt e e e e e e e e e e e e e
11.1.2 Purepaths . . . . . . . o o e e e e e e e e e
11.1.3 Concretepaths . . . . . . . . . . . e
11.1.4 Correspondence to toolsinthe osmodule . . . . .. ... ... ... ...... . ...
11.2 os.path — Common pathname manipulations . . . . . . . ... ... ... ... .......
11.3 fileinput — Iterate over lines from multiple input streams . . . . . . . ... ... .. ....
11.4 stat — Interpreting stat () results . . . . . . . . . . o e e e
11.5 filecmp — File and Directory Comparisons . . . . . . . . . . v v v v v v v v v e i
11.5.1 Thedircmpeclass . . . . . o . i i i e e e e e
11.6 tempfile — Generate temporary files and directories . . . . . . . . . . . ... ... ... ...
11.6.1 Examples . . . . . . o oo e e e e
11.6.2 Deprecated functions and variables . . . . . . . . . . .. ... .. e
11.7 glob — Unix style pathname pattern expansion . . . . . . . . .« v v v v v v v v v v v v o v v o
11.8 fnmatch — Unix filename pattern matching . . . . . . . . ... ... .. ... ... ......
119 linecache — Random accesstotextlines . . . . . ... .. ... .. .. .. ... ......
11.10 shutil — High-level file operations . . . . . . . . . . . . ... i
11.10.1 Directory and files operations . . . . . . . . . . . . . ittt e e
11.10.2 Archiving Operations . . . . . . . v v v v v v e e e e e e e e e e e e e

365
365
367
375
380
389
389
393
394




11.10.3 Querying the size of the output terminal . . . . . . . ... ... ... ... ... ... 445

12 Data Persistence 447
12.1 pickle — Python object serialization . . . . . . . . . . .. ... ..o 447
12.1.1 Relationship to other Pythonmodules . . . . . . .. ... ... .. ... .. ... ... 447

12.1.2 Datastream format . . . . . . . . . . e 448

12.1.3 Module Interface . . . . . . . . . L e e e 449
12.1.4 What can be pickled and unpickled? . . . ... ... ... ... 0oL, 452
12.1.5 Pickling Class Instances . . . . . . . . . . . . . it 453
12.1.6  Custom Reduction for Types, Functions, and Other Objects . . . . . .. ... ... ... 458
12.1.7 Out-of-band Buffers . . . . . . . . . . . 459

12.1.8 Restricting Globals . . . . . . . . . e e e e 461

12.1.9 Performance . . . . . . . . . . . e e e e e 462
12.1.10 Examples . . . . . o o o e 462

12.2 copyreg — Register pickle supportfunctions . . . . . . . . . . ... .o 462
12.2.1 Example . . . . . o o e e e e e e e e e e e e 463

12.3 shelve — Pythonobject persistence . . . . . . . . . . v v v v i v i v i e e e 463
12301 ReStriCtionS . . . . v v v v o ot e e e e e e e e e e e e e e e 464
1232 Example . . . . . . . oL e 465

12.4 marshal — Internal Python object serialization . . . . . . . ... ... ... ... ....... 466
12.5 dbm — Interfaces to Unix “databases” . . . . . . . . . . . . e 467
12.5.1 dbm.gnu — GNU’s reinterpretationof dbm . . . . . . ... .. .. ... ... ..... 468
12.5.2 dbm.ndbm — Interface basedonndbm . . . . . . ... ... o000 470
12.5.3 dbm.dumb — Portable DBM implementation . . . . . . . ... ... .......... 470

12.6 sglite3 — DB-API 2.0 interface for SQLite databases . . . . . . .. ... ... ........ 471
12.6.1 Tutorial . . . . . . . o e e e e 472
12.6.2 Reference . . . . . . . . e e 474

12.6.3 How-toguides . . . . . . . . o o i e e e e e e e e 487
12.6.4 Explanation . . . . . . . . ... e e 493

13 Data Compression and Archiving 495
13.1 z1lib — Compression compatible withgzip . . . . .. . . ... ... ... ... .. ... ... 495
13.2 gzip — Supportforgzipfiles . . . . . . . . .. e 498
13.2.1 Examplesof usage . . . . . . . . . . o o e 500
13.2.2 Command Line Interface . . . . . . . . . . ... L e 501

13.3 bz2 — Support for bzip2 compression . . . . . . . . .o e e e e e 501
13.3.1 (De)compressionof files . . . . . . . . . ... . 502
13.3.2 Incremental (de)compression . . . . . . . . . L. u i e e e e e 503

13.3.3  One-shot (de)compression . . . . . . . . o v v v vttt e e e e e e 504
1334 Examplesof usage . . . . . . . . . .o e e 504

13.4 1zma — Compression using the LZMA algorithm . . . . . ... ... ... ... ........ 505
13.4.1 Reading and writing compressed files . . . . . . . ... ... ... o o 506
13.4.2 Compressing and decompressing datainmemory . . . . . . . . . . ... ... ... 507
1343 Miscellaneous . . . . . . . . . . L. e e e e e e e e e e e e 509

13.4.4 Specifying custom filter chains . . . . . . .. ... .. o o 509
13.45 Examples . . . . . . o 510

13.5 zipfile — WorkwithZIParchives . . . . . . . . . . . . . . it e e 511
13.5.1 ZipFile Objects . . . . . . . . e e e e e 512

1352 PathObjects . . . . . . . . . . . o e 515
13.5.3 PyZipFileObjects . . . . . . . . . . e 516

13.5.4 ZipInfoObjects . . . . . . . . . e e 517

13.5.5 Command-Line Interface . . . . . . . . . ... ... L 519

13.5.6 Decompression pitfalls . . . . . . . . .. . e 519

13.6 tarfile — Read and write tar archivefiles . . . ... ... ... ... .. ... ... ... . 520
13.6.1 TarFile Objects . . . . . . . . . . e 523
13.6.2 TarInfo Objects . . . . . . . . . i i i e e 526

13.6.3 Extractionfilters . . . . . . . . . . L. e e 528
13.6.4 Command-Line Interface . . . . . . . .. ... ... L 532

vi



13.6.5 Examples . . . . . . o e e e e e e e e e e e 533

13.6.6 Supported tar formats . . . . . . . . L. e e e e e e e 534

13.6.7 UnicodeiSSUES . . . . . v v v i i e e e e e e e e e e e e e e e e e e e e e 534

14 File Formats 535
14.1 csv—CSVFileReadingand Writing . . . . . . . . . . . . . . i it 535
14.1.1 Module Contents . . . . . . . . . ottt e e e e e 535
14.1.2 Dialects and Formatting Parameters . . . . . . . . .. .. ... ... .. ......... 539
14.1.3 Reader Objects . . . . . . . . . i i i i e 540
14.1.4 Writer ObJects . . . . . . o o v v i e et e e e e e e e 540

14.1.5 Examples . . . . . . . e e e e e e e e e 541

142 configparser — Configuration file parser . . . . . . . . . . .. ... ... .. 542
14.2.1 Quick Start . . . . . . . e e e e e e e e e e e e e e 542
14.2.2 Supported Datatypes . . . . . . . . . ... e 544

1423 Fallback Values . . . . . . . . . . e 544

14.2.4 Supported INI File Structure . . . . . . . . . . . . e e 545

14.2.5 Interpolationof values . . . . . . . . . . . . . . e e 546
14.2.6 Mapping Protocol Access . . . . . . . . ... e 547
14.27 Customizing Parser Behaviour . . . . .. ... ... oL 0oL oL 548
142.8 Legacy APTExamples . . . . . . . . . . . . . e 552

14.2.9 ConfigParser Objects . . . . . . . . o v v i i e e e e e e e e e e e e 554
14.2.10 RawConfigParser Objects . . . . . . . . . o o i it e e e e e 557
14211 EXCEPHONS . . . . . o v o v it s e e e e e e e e e 558

143 netrc—mnetrcfileprocessing . . . . . . . . ... oL e 558
14.3.1 netrc Objects . . . . . . o o e e e e e e e 559

144 plistlib — Generate and parse Apple .plistfiles . ... ... ... ... ... ...... 559
14.4.1 Examples . . . . . . . e e e e e e e e e e e 561

15 Cryptographic Services 563
15.1 hashlib — Secure hashes and message digests . . . . . . . . . . . . . i vt 563
15.1.1 Hashalgorithms . . . . . . . . . . e e e e e 563
15.1.2 SHAKE variable length digests . . . . . . ... .. ... ... . ... ... ... 565
15.1.3 Keyderivation . . . . . . . . L e e e e e e e e 565
15.1.4 BLAKE2 . . . . . e 566

15.2 hmac — Keyed-Hashing for Message Authentication . . . . . . . . ... ... ... .. ..... 573
15.3 secrets — Generate secure random numbers for managing secrets . . . . . . . . .. ... ... 574
15.3.1 Randomnumbers . . . . . ... ... e 575
15.3.2 Generatingtokens . . . . . . . . . e 575
15.3.3 Other functions . . . . . . . . . oL e e e e e 576
15.3.4 Recipesand best practices . . . . . . . . . . ..o i e e e e 576

16 Generic Operating System Services 577
16.1 os — Miscellaneous operating system interfaces . . . . . . . ... ... ... ... 577
16.1.1 File Names, Command Line Arguments, and Environment Variables . . . ... ... .. 578
16.1.2 Python UTF-8 Mode . . . . . . . . . . . e e e e e e e e e 578

16.1.3 Process Parameters . . . . . . . . . . L e 579
16.1.4 File Object Creation . . . . . . . . . . . . .. ittt et 584
16.1.5 File Descriptor Operations . . . . . . . . . . . . it e e 585
16.1.6 Files and Directories . . . . . . . . . . . . L e e 594
16.1.7 Process Management . . . . . . . . v v v v i e e e e e e e e e e e e e e 615
16.1.8 Interfacetothescheduler . . . . .. . .. ... ... .. 626
16.1.9 Miscellaneous System Information . . . . .. ... ... ... .. ... ... 0., 627
16.1.10 Random numbers . . . . . . . . . . . . L e e e e e 629

16.2 io — Core tools for working with streams . . . . . . . . . . ... ..o 630
16.2.1 OVEIVIBW . . o v v it ittt e e e e e e e e e e e 630

1622 TextEncoding . . . . . . . . 0 o i e e e e e e e e 631

16.2.3 High-level Module Interface . . . . . . .. .. . ... .. 632
16.2.4 Classhierarchy . . . . . . . . . . .. e 633
16.2.5 Performance . . . . . . . . . L. e e 642

vii



16.3

16.4

16.5
16.6

16.7

16.8

16.9
16.10

16.11

16.12

time — Time access and CONVEISIONS . . . . . v v v v v v v e e e e e e e e e e e e e 643

16.3.1 Functions . . . . . . . . . . .. 644
1632 ClockID Constants . . . . . . . . o v v vt ittt e e e e e e e e e e 650
16.3.3 Timezone Constants . . . . . . . . . . . . ... o e e e 652
argparse — Parser for command-line options, arguments and sub-commands . . . . . . . . .. 652
16.4.1 Example . . . . . . . o e e 653
16.4.2 ArgumentParser ObJects . . . . . . . . . . oL e e e e e e e e 654
16.4.3 The add_argument() method . . . . . . . .. . . . . ... e 662
16.4.4 The parse_args()method . . . . . . ... ... L 673
16.4.5 Otherutilities . . . . . . . . . L e e e e e e e 676
16.4.6 Upgradingoptparse code . . . . . . . . . . oo e e e 683
getopt — C-style parser for command line options . . . . . . . ... .. ... ... ... ... 683
logging — Logging facility for Python . . . . . .. ... ... ... .. oo 686
16.6.1 Logger Objects . . . . . . o v i i e e e e e e e e e e 686
16.6.2 LoggingLevels . . . . .. ... . e 690
16.6.3 Handler Objects . . . . . . . . . . . L e 690
16.6.4 Formatter Objects . . . . . . . . o i i i e e e e e e 692
16.6.5 Filter Objects . . . . . . o v i v e e e e e e e e e e e e e e e e 693
16.6.6 LogRecord Objects . . . . . . . . i i i i it e e e e e e 694
16.6.7 LogRecord attributes . . . . . . . . ... L. e 695
16.6.8 LoggerAdapter Objects . . . . . . . . . . . ... e 697
16.6.9 Thread Safety . . . . . . . . . .. 697
16.6.10 Module-Level Functions . . . . . . . ... .. ... 697
16.6.11 Module-Level Attributes . . . . . . . .. .. .. 701
16.6.12 Integration with the warningsmodule . . . . . . . . ... ... .. ... ... ... 702
logging.config — Logging configuration . . . . . . .. ... ... .. ... ..., 702
16.7.1 Configuration functions . . . . . . . . . . . .. oL e e 702
16.7.2 Security considerations . . . . . . . . . . i e e e e e e e e e e e e e 704
16.7.3 Configuration dictionary schema . . . . . . . . . .. ... ... oo 705
16.7.4 Configuration file format . . . . . . ... ... oL 711
logging.handlers — Logginghandlers . . . .. . .. ... ... .. ........ . ... 713
16.8.1 StreamHandler . . . . . .. . ... 714
16.8.2 FileHandler . . . . . . . . . . . e 714
16.8.3 NullHandler . . . . . . . . . . .. 715
16.8.4 WatchedFileHandler . . . ... ... ... ... ... . . . . . . . . . .. 715
16.8.5 BaseRotatingHandler . . . . . . . . ... .. ... 716
16.8.6 RotatingFileHandler . . . . . . . . . . ... ... 717
16.8.7 TimedRotatingFileHandler . . . . . . . ... ... ... .. .. . ... .. . ..., 717
16.8.8 SocketHandler . . . . . . . . . . ... 719
16.8.9 DatagramHandler . . . . . . . . . . . e e e e e 720
16.8.10 SysLogHandler . . . . . . ... . . .. ... e 720
16.8.11 NTEventLogHandler . . . . . .. .. . . . . . ... i 722
16.8.12 SMTPHandler . . . . . . . . . . . . 723
16.8.13 MemoryHandler . . . . . . . . . . . . e e e e 723
16.8.14 HTTPHandler . . . . . . . . . . . . . e e e e e e 724
16.8.15 QueueHandler . . . . . . . . . . .. e e e e e 725
16.8.16 Queuelistener . . . . . . . . . . .. e e e e e e e e e e e e e e e 726
getpass — Portable password input . . . . . ... ool 727
curses — Terminal handling for character-cell displays . . . . . .. ... ... ... ...... 727
16.10.1 Functions . . . . . . . . . . . . e 728
16.10.2 Window Objects . . . . . . . v v v e i e e e e e e e e e e e 734
16.10.3 Constants . . . . . . . . ... e e e e e e e e e 740
curses.textpad — Text input widget for curses programs . . . . . . .. ... ... ..... 745
16.11.1 TextboX ObJECtS . . . . . v v v v e et e e e e e e e 745
curses.ascii — Utilities for ASCII characters . . . . . .. ... ... ... ......... 746
curses.panel — A panel stack extension forcurses . . . . . . ... ... 748
16.13.1 Functions . . . . . . . . . . . e e e e e e 748
16.13.2 Panel Objects . . . . . . . . . . e 749

viii



16.14 plat form — Access to underlying platform’s identifyingdata . . . . . . . ... ... ... ... 749

16.14.1 CrossPlatform . . . . . . . . . . . . e 750
16.14.2 JavaPlatform . . . . . . . . ... e 751
16.14.3 Windows Platform . . . . . . . . . . . . L 751
16.14.4 macOS Platform . . . . . . . . . . . e 752
16.14.5 Unix Platforms . . . . . . . . . o e 752
16.14.6 Linux Platforms . . . . . . . . . . . . e 752

16.15 errno — Standard errno system symbols . . . . . . ... oL L L 753
16.16 ctypes — A foreign function library for Python . . . . . . ... ... ... 000 758
16.16.1 ctypestutorial . . . . . . . . ... 758
16.16.2 ctypesreference . . . . . . . . ..o e e 775

17 Concurrent Execution 791
17.1 threading — Thread-based parallelism . . . . . . ... .. ... ... ... .......... 791
17.1.1 Thread-Local Data . . . . . . . . . . . e 793
17.1.2 Thread ObJects . . . . . o v v v e et e e e e e e e e e e e e e e e e e e 794
17.1.3 Lock Objects . . . . . o v v i e e e e e e e e e e e e 796
17.1.4 RLock Objects . . . . . . . . . e 797
17.1.5 Condition Objects . . . . . . . . . . ... 798
17.1.6 Semaphore Objects . . . . . . . . . . . e 800
17.1.7 Event ObJects . . . . . o v v i i e e e e e e e e e e e e e e e e e e e e 801

17.1.8 Timer ObJects . . . . . . v v i o e e i e e e e e e e e e e e e e e e e e 802
17.1.9 Barrier Objects . . . . . . . . . . o i i e e e e 802
17.1.10 Using locks, conditions, and semaphores in the with statement . . . . . ... ... ... 803

17.2 multiprocessing — Process-based parallelism . . . . . . ... ... . ... ......... 804
17.2.1 Introduction . . . . . . . . . . e e e 804

17.22 Reference . . . . . . . . e e 810

17.2.3 Programming guidelines . . . . . . . . . . .. . e e e 837
1724 Examples . . . . . . . . e 840

17.3 multiprocessing.shared_memory — Shared memory for direct access across processes . 845
17.4 The concurrent package . . . . . . . . . . . o ittt 850
17.5 concurrent.futures — Launching parallel tasks . . . . . . ... ... ... .. ...... 850
17.5.1 Executor ObJECtS . . . . . v v v v i i e e e e e e e e e e e e e e 850
17.5.2 ThreadPoolEXecutor . . . . . . . . . . . o o e e e e e e 851

17.5.3 ProcessPoolExecutor . . . . . . . . . . . e e 853
1754 Future ObJects . . . . . . . o o v i it e e e e e 854
17.5.5 Module Functions . . . . . . . . . . . e e e e 855
17.5.6 EXception Classes . . . . . . v v v i i i e e e e e e e e e e e e e 856

17.6 subprocess — Subprocess management . . . . . . . . . .ot u e e e e e e e e e e 856
17.6.1 Usingthe subprocessModule . . . . . ... .. ... ... . L. 857
17.6.2 Security Considerations . . . . . . . . . . . . it e e e 865
17.6.3 Popen Objects . . . . . . . . o e e e 865
17.6.4 Windows Popen Helpers . . . . . . . . . . . . . e 867

17.6.5 Older high-level APT . . . . . . . . . . . e 869
17.6.6 Replacing Older Functions with the subprocess Module . . . . ... ... ... ... 871
17.6.7 Legacy Shell Invocation Functions . . . . . ... .. ... ... . ... ... ... 874
17.6.8 NOES . . . v v v i e e 874

177 sched —Eventscheduler . . . . . . . . . . . . e 875
17.7.1 Scheduler Objects . . . . . . . o o v i e e e e e e e e e e e e e 875

17.8 queue — A synchronized queueclass . . . . . . . .. . ... ... o 876
17.8.1 QueueObjects . . . . . . . . . . e 877
17.8.2 SimpleQueue Objects . . . . . . . . . ... e 879

179 contextvars — Context Variables . . . . . . . . . . . . . .. e 879
17.9.1 Context Variables . . . . . . . . . . . e 880
17.9.2 Manual Context Management . . . . . . . . . . . ... ... it 881

1793 asynCio support . . . . . . . . ..o e e e e e e e e 882

17.10 _thread — Low-level threading API . . . . . . . . . ... ... ... ... ... ... ... 883




18 Networking and Interprocess Communication 887

18.1 asyncio— AsynchronousI/O . . . . . . . . . . . . e e 887
18.1.1 Coroutinesand Tasks . . . . . . . . . . . . e 888
18.1.2 Streams . . . . . . . o i e e e e e e e e e e 902
18.1.3 Synchronization Primitives . . . . . . . . . .. .. ... o 908
18.1.4  Subprocesses . . . . . .. e e e e 913
18.1.5 QUEUES . . . . o o i e e e e e e e 917
[8.1.6 EXCEpLiONS . . . v v v v i i e e e e e e e e e e e e e e e e e e 919
18.1.7 EventLoop . . . . . . . . e e e e e 920
18.1.8 Futures . . . . . . . e e e e e 941
18.1.9 Transports and Protocols . . . . . . . .. ... 944
18.1.10 Policies . . . . . . . . e e e e 957
18.1.11 Platform Support . . . . . . . . . e e e e e e 961
18.1.12 High-level APIIndex . . . .. .. . ... ... . . e 962
18.1.13 Low-level APIIndex . . . . . . . . . . . . e 964
18.1.14 Developing withasyncio . . . . . . . . . . . . ... o it 970

18.2 socket — Low-level networking interface . . . . . . ... ... ... oL oo 973
18.2.1 Socketfamilies . . . . . . . . . . e 973
1822 Modulecontents . . . . . . . ... e e e e e e e e e e e 976
18.2.3 Socket Objects . . . . . e e e e e e 986
18.2.4 Notesonsocket timeouts . . . . . . . . o o v v ittt e e e e e 993
1825 Example . . . . . . . o e 993

18.3 ss1 — TLS/SSL wrapper for socketobjects . . . . . . . . . . . . . . e 997
18.3.1 Functions, Constants, and Exceptions . . . . . . . . . . .. .. 997
183.2 SSLSockets . . . . . . . . L e 1009
18.3.3 SSLCONLEXIS . . . v v v v o e e e e e e e e e e e e e e e e e e 1013
18.3.4 Certificates . . . . . . . v v i e e e e e 1020
18.3.5 Examples . . . . . . . e e e e e e e e e e e 1022
18.3.6 Notes on non-blocking sockets . . . . . . .. .. ... ... .. e 1025
1837 Memory BIO Support . . . . . . . . .. 1026
18.3.8  SSLSession . . . . . v v i e e e e e e e e 1028
18.3.9 Security considerations . . . . . . .. ... Lo e e e 1028
183.10 TLS 1.3 .« . . o o 1029

184 select — Waiting for /O completion . . . . . . . . . . ... . e 1030
18.4.1 /dev/pollPollingObjects . . . . . . . . . . .. e 1032
18.4.2 Edge and Level Trigger Polling (epoll) Objects . . . . . . . ... ... ... ... .... 1033
18.4.3 Polling Objects . . . . . . . . . . e 1034
1844 Kqueue Objects . . . . . . . . . e 1035
18.4.5 Kevent Objects . . . . v v v v v e e e e e e e e e e e e e e e e 1035

18.5 selectors — High-level /O multiplexing . . . . . . . . . . .. ... ... 1037
18.5.1 Introduction . . . . . . . . . o L i e e e e e e e e 1037
18.5.2 Classes . . . . o v v i i e e e e e e 1037
18.5.3 Examples . . . . . . e e 1039

18.6 signal — Set handlers for asynchronousevents . . . . . . ... ... ... ... ........ 1040
18.6.1 Generalrules . . . . . . . . . . . e e 1040
18.6.2 Module contents . . . . . . . ..o e e e e e e e e 1041
1863 Example . . . . . . . . L e 1046
18.6.4 NoteonSIGPIPE . . . . . . . . . . e 1047
18.6.5 Note on Signal Handlers and Exceptions . . . . . . . ... ... ... .......... 1047

18.7 mmap — Memory-mapped file support . . . . . ... L. e e e 1048
18.7.1 MADV_*Constants . . . . . . . v v v v vttt e e e e e e e e e e e 1052
18.7.2 MAP_*Constants . . . . . . . o v i i e e e e e e e e e 1052

19 Internet Data Handling 1053

19.1 email — Anemail and MIME handling package . . . . . . . ... ... ... ... ....... 1053
19.1.1 email.message: Representing an email message . . . . . . . .. ... ... ..... 1054
19.1.2 email.parser: Parsingemail messages . . . . . . . . . .. ... 1061
19.1.3 email.generator: Generating MIME documents . . . . . ... ... ........ 1065




20

19.14 email.policy: PolicyObjects . . . . .. .. ... .. ... 1068

19.1.5 email.errors: Exception and Defectclasses . . . . . .. ... ... .. ....... 1074
19.1.6 email.headerregistry: Custom Header Objects . . . . ... ... ... ..... 1075
19.1.7 email.contentmanager: Managing MIME Content . . . . . ... ... ... ... 1080
19.1.8 email:Examples . . . . . .. . ... e 1083
19.19 email.message.Message: Representing an email message using the compat 32 API1089
19.1.10 email.mime: Creating email and MIME objects from scratch . . . . . . ... ... .. 1097
19.1.11 email.header: Internationalized headers . . . . . . . ... ... ... ........ 1099
19.1.12 email.charset: Representing charactersets . . . . . ... ... ... ........ 1101
19.1.13 email.encoders:Encoders. . . . . . . . . . ... e 1104
19.1.14 email.utils: Miscellaneous utilities . . . . . . . . ... ... ... ... ... 1104
19.1.15 email.iterators: terators . . . . . . . . v v v i v v i i e e e e 1107
19.2 json —JSONencoderanddecoder . . . . . . ... .. . . .. .. ..., 1108
19.2.1 BasicUsage . . . . . v v i i e e e e e e 1110
19.2.2 Encodersand Decoders . . . . . . . . . ... 1111
1923 EXCEPHONS . . . . v o o i it i e e e e e e e e 1114
19.2.4 Standard Compliance and Interoperability . . . . . . . ... ... ... .. ... .... 1114
19.2.5 Command Line Interface . . . . . . . . . .. ... 1116
19.3 mailbox — Manipulate mailboxes in various formats . . . . . . ... ... oL 1117
19.3.1 Mailbox ODJECES . . . v v v v i e i e e e e e e e e e e e e 1117
19.3.2 Messageobjects . . . . . .. e e e e e e 1125
1933 EXCEPHONS . . . . v o v i i it e e e e e e e e 1132
1934 Examples . . . . . . . e e e e e e e e e e e 1133
19.4 mimetypes — Map filenamesto MIME types . . . . . . . . . .. .. .. o 1134
19.4.1 MimeTypes Objects . . . . . . . . . . . . o e 1136
19.5 baset64 — Basel6, Base32, Base64, Base85 Data Encodings . . . . .. ... .. ... ..... 1137
19.5.1 Security Considerations . . . . . . . . . . . ..o oo e e e 1139
19.6 binhex — Encode and decode binhex4 files . . . . . . ... ... ... ... .. .. 1140
19.6.1 NOLES . . . v o i e e e e e e e e e e e e e e e 1140
19.7 binascii — Convert between binaryand ASCII . . . . . .. ... .. ... .. ... ... 1140
19.8 quopri — Encode and decode MIME quoted-printable data . . . . . . .. .. ... ... .... 1143
Structured Markup Processing Tools 1145
20.1 html — HyperText Markup Language support . . . . . . . . ... .. ... ... ...... 1145
20.2 html.parser — Simple HTML and XHTML parser . . . . . . . .. ... ... ... ..... 1145
20.2.1 Example HTML Parser Application . . . . . . . . . . . . ... ... 1146
20.2.2 HTMLParser Methods . . . . . . . . . . . . i ittt 1146
20.2.3 Examples . . ... . e e e e e e e e e e e e 1148
20.3 html.entities — Definitions of HTML general entities . . . . ... ... .. ... ..... 1150
20.4 XML Processing Modules . . . . . . ... e 1150
20.4.1 XML vulnerabilities . . . . . . . ... Lo e 1151
2042 Thedefusedxml Package . . ... ... ... ... ... 1152
20.5 xml.etree.ElementTree — The ElementTree XML APT . . . ... ... ... ...... 1152
20.5.1 Tutorial . . . . ... e e e e e 1152
20.5.2 XPathsupport . . . . . . . . L e e e 1157
20.53 Reference . . . . . . . e e 1159
20.5.4 XlInclude support . . . . . ... L. e e e e e e 1162
20.5.5 Reference . . . . . . . e e e 1163
20.6 xml.dom — The Document Object Model APT . . . . ... ... .. ... ... ... .... 1170
20.6.1 Module Contents . . . . . . . . .. e e e e e 1171
20.6.2 Objectsinthe DOM . . . . . . . . . . e e 1172
20.6.3 Conformance . . . . . . . . . . i i e e e e 1179
20.7 xml.dom.minidom — Minimal DOM implementation . . . . . . . . .. ... ... ...... 1180
20.7.1 DOMODJECtS . . . . v v o i e e e e e e e e e e e e 1181
20.7.2 DOMExample . . . . . . . e e e e e e 1182
20.7.3 minidom and the DOM standard . . . . . .. . .. .. ... ... .. ... ... 1184
20.8 xml.dom.pulldom — Support for building partial DOM trees . . . . . ... ... .. .... 1184
20.8.1 DOMEventStream Objects . . . . . . . . . ..ot i i e e 1186

Xi



20.9 xml.sax — Support for SAX2 parsers . . . . . ... i i e e e e 1186
20.9.1 SAXException ObJectS . . . . . . v v v v i e e e e e e e e e e e e e e 1188
20.10 xml.sax.handler — Base classes for SAX handlers . . . . .. ... ... .. ........ 1188
20.10.1 ContentHandler Objects . . . . . . . . . . . . . ... e 1190
20.10.2 DTDHandler Objects . . . . . . . . . o o ittt e e e e e 1192
20.10.3 EntityResolver Objects . . . . . . . . . . ... 1192
20.10.4 ErrorHandler Objects . . . . . . . . . . i i i e e e e e e e 1192
20.10.5 LexicalHandler Objects . . . . . . . . . o v v i i e e e e e e e e e 1193
20.11 xml.sax.saxutils — SAX Utilities . . . . . . . . . . . . i 1193
20.12 xml.sax.xmlreader — Interface for XML parsers . . . . . . .. ... ... ......... 1194
20.12.1 XMLReader Objects . . . . . . . . o v v it i e e e e e 1195
20.12.2 IncrementalParser Objects . . . . . . . . . . . i i v i e e e e e 1196
20.12.3 Locator ODJECtS . . . v v v v o o e e e e e e e e e e e e e e e e e e e e 1196
20.12.4 InputSource Objects . . . . . . . . . . e e 1196
20.12.5 The AttributesInterface . . . . . .. .. . ... .. L oo 1197
20.12.6 The AttributesNSInterface . . . . . . . . . . ... .. 1197
20.13 xml.parsers.expat — Fast XML parsingusing Expat . . . . ... ... .......... 1198
20.13.1 XMLParser Objects . . . . . o v v v v e e e e e e e e e e e e e e e e e e e 1199
20.13.2 ExpatError Exceptions . . . . . . . . . e e e e e e e 1203
20133 Example . . . . ... e e e e 1203
20.13.4 Content Model Descriptions . . . . . . . . . . . . o i 1204
20.13.5 EXpat error CONStANtS . . . . . v v v v e e e e e e e e e e e e e e e e e e 1205
21 Internet Protocols and Support 1207
21.1 webbrowser — Convenient web-browser controller . . . . . . . ... ... ... ... ... .. 1207
21.1.1 Browser Controller Objects . . . . . . . . . . . . ittt 1209
21.2 wsgiref — WSGI Utilities and Reference Implementation . . . . . . ... ... ... ..... 1209
21.2.1 wsgiref.util - WSGI environment utilities . . . . . .. ... ... . ... ..... 1209
2122 wsgiref.headers - WSGIresponse headertools . . . . ... ... ... ...... 1211
2123 wsgiref.simple_server —asimple WSGIHTTPserver . . . ... ... ... .. 1212
2124 wsgiref.validate — WSGI conformance checker . . . . . .. ... .. .. .... 1213
21.2.5 wsgiref.handlers - server/gateway baseclasses . . . . . . . .. .. ... ... .. 1214
21.2.6  Examples . . . . . .. e e e e e e e e e e e 1217
21.3 urllib —URLhandlingmodules . . . . . .. ... ... ... ... 1218
214 urllib.request — Extensible library foropening URLs . . . . . ... ... ... ... ... 1219
21.4.1 RequestObjects . . . . . . o o oL e e e e 1223
21.4.2 OpenerDirector ObJects . . . . . . . . o v v v v i e e e e e e 1225
21.4.3 BaseHandler Objects . . . . . . . . . o i i it e e e e e e e e e 1226
21.4.4 HTTPRedirectHandler Objects . . . . . . . . . . . . 0 ittt e e 1227
21.4.5 HTTPCookieProcessor Objects . . . . . . . . . .. . . .. i 1227
21.4.6 ProxyHandler Objects . . . . . . . . . . . . . o e 1228
21.477 HTTPPasswordMgr Objects . . . . . . . . o o vt v ittt e et e 1228
21.4.8 HTTPPasswordMgrWithPriorAuth Objects . . . . . . . . ... .. ... ... .. .... 1228
21.4.9 AbstractBasicAuthHandler Objects . . . . . . . . . . .. .. o o 1228
21.4.10 HTTPBasicAuthHandler Objects . . . . . . . . ... .. ... .. .. ... ... 1229
21.4.11 ProxyBasicAuthHandler Objects . . . . . .. . ... ... ... ... ... ....... 1229
21.4.12 AbstractDigestAuthHandler Objects . . . . . . . . .. ... . . .. . ... ... ... 1229
21.4.13 HTTPDigestAuthHandler Objects . . . . . . . . . . . ... ... ... 1229
21.4.14 ProxyDigestAuthHandler Objects . . . . . . . . .. .. ... ... .. ... .. 1229
21.4.15 HTTPHandler Objects . . . . . . . . . . . . ittt e et e e 1229
21.4.16 HTTPSHandler Objects . . . . . . . . . . . . o o ittt i et e i e 1229
21.4.17 FileHandler Objects . . . . . . . . . . . . . . o it 1229
21.4.18 DataHandler Objects . . . . . . . . . . . o i i e e e 1230
21.4.19 FTPHandler Objects . . . . . . . . o o v i e e e e e e e e e e e 1230
21.4.20 CacheFTPHandler Objects . . . . . . . . . . . o i it i e e e e e e e 1230
21.4.21 UnknownHandler Objects . . . . . . . . . .. . ... . e 1230
21.4.22 HTTPErrorProcessor Objects . . . . . . . . . o o o v i ittt e e e et 1230
21.4.23 Examples . . . . . .. e e e e e 1230

Xii



21.4.25 urllib.request Restrictions . . . . . . . . . . . .. . ... . e 1235
21.5 urllib.response — Responseclassesusedbyurllib . . . . ... ... ... ... ... 1236
21.6 urllib.parse — Parse URLsintocomponents . . . . . . . ... ... ... .. ....... 1236
21.6.1 URLParsing . . . . . . . . e e e 1236
21.6.2 URL parSing SECUTItY . . . . o v v v v e i e e e e e e e e e e e e e e e e 1241
21.6.3 Parsing ASCITEncoded Bytes . . . . . . . . . . . . . 0 i ittt 1241
21.6.4 Structured Parse Results . . . . . . . ... ... o o o 1241
21.6.5 URLQUOtNZ . . . . . o ot e e e e e e e e e e e e e 1242
217 urllib.error — Exception classes raised by urllib.request . . . . . . .. ... ... ... .. 1244
21.8 urllib.robotparser — Parser forrobots.txt . . . . . . .. .. ... ... ......... 1245
219 http —HTTPmodules . . . . . . . . . . . . e e e e e 1246
21.9.1 HTTPstatuscodes . . . . . . . . . o i i i ittt it ittt e e 1247
21.10 http.client — HTTP protocolclient . . . . . . . . . . . ... .. .. ... .. 1248
21.10.1 HTTPConnection Objects . . . . . . . . . . . . .. ittt i 1251
21.10.2 HTTPResponse Objects . . . . . . . . . o o v v i et et e e e e e e e 1253
21.10.3 Examples . . . . . o . e e e e e e e e e e e e 1254
21.10.4 HTTPMessage ODJeCts . . . . v v v v v v i e e e e e e e e e e e e e e e e e 1255
21.11 ftplib — FTP protocol client . . . . . . . . . . . . . . . i e 1255
21.11.1 FTPObjects . . . . . o e e e e e e e e e e e e e e e e e 1257
21.11.2 FTP_TLS Objects . . . . . . . o ottt e e e e e e e e e e e 1260
21.12 poplib — POP3 protocol client . . . . . . . . . . . . ... e 1260
21.12.1 POP3 ODbJECtS . . . . v o o i o e e e e e e e e e e e e e e 1261
21.122 POP3 Example . . . . . . . . . o e e e 1263
21.13 imaplib —IMAP4 protocolclient . . . . . . . . . . ... oL 1263
21.13.1 IMAP4 Objects . . . . o o v vt e e e e e e e e 1265
21.13.2 IMAP4 Example . . . . . . . .. 1269
21.14 smtplib — SMTP protocol client . . . . . . . . . . . . i it e 1269
21.14.1 SMTP ODbjects . . . . . . o o i e e e e e e 1271
21.142 SMTP Example . . . . . . . . ... e e 1275
21.15 uuid — UUID objects accordingto RFC 4122 . . . . . . . ... ... ... ... ... ..... 1276
21.15.1 Example . . . . . oL e e e e e e 1278
21.16 socketserver — A framework for network servers . . . . . . ... ... oL 1279
21.16.1 Server Creation NOtES . . . . . . . . . . v v v v ittt e e e e 1280
21.16.2 Server ODJECtS . . . . v v v v o e e e e e e e e e e e e e e e e e 1281
21.16.3 Request Handler Objects . . . . . . . . . .. . ... ... e 1283
21.16.4 Examples . . . . . .. L 1283
21.17 http.server — HTTPservers . . . . . . . . . . . . . . 0 i i it i et 1287
21.17.1 Security Considerations . . . . . . . . . v v v v i e e e e e e e e e e e e 1292
21.18 http.cookies — HTTP state management . . . . . . . . . . . v v v v v v v v v v v 1292
21.18.1 Cookie Objects . . . . . . . . . o e e e e 1293
21.18.2 Morsel Objects . . . . . . . .. L 1294
21,183 Example . . . . oo e e e e e e e 1295
21.19 http.cookiejar — Cookie handling for HTTP clients . . . . ... ... ... ... ..... 1296
21.19.1 CookielJar and FileCookieJar Objects . . . . . . . . . . . . . v i v i i et 1297
21.19.2 FileCookieJar subclasses and co-operation with web browsers . . . . . . ... ... ... 1299
21.19.3 CookiePolicy Objects . . . . . . . . . . . . e e 1299
21.19.4 DefaultCookiePolicy Objects . . . . . . . . . . . . i 1300
21.19.5 Cookie Objects . . . . . . o v v i e e e e e e 1302
21.19.6 Examples . . . . . . .o e e e e e e e e e e e 1303
21.20 xmlrpc — XMLRPC server and clientmodules . . . . . . ... ... ... ... ... .... 1304
21.21 xmlrpc.client — XML-RPCclientaccess . . . . . . . . . . . oo vt i i vt i o 1304
21.21.1 ServerProxy Objects. . . . . . . . . . . L 1306
21.21.2 DateTime Objects . . . . . . . o o v v i i i e e e e e 1307
21.21.3 Binary ObjJectS . . . . . . o v i e e e e e e e e e e e e e e 1307
21.21.4 Fault Objects . . . . . . . o i it e e e e e 1308
21.21.5 ProtocolError Objects . . . . . . . . . . L e e 1309
21.21.6 MultiCall Objects . . . . . . . . . o o e e e e e e e 1309




21.21.7 Convenience Functions . . . . . . . . . . . @ 0 i i i i i e e e e e e e 1310

21.21.8 Example of Client Usage . . . . . . . . . . . . i i i i ittt e e e e et 1310
21.21.9 Example of Clientand Server Usage . . . . . . . . . .. ... ... ... 1311
21.22 xmlrpc.server — Basic XML-RPCservers. . . . . . ... ... ... ... ... ..... 1311
21.22.1 SimpleXMLRPCServer Objects . . . . . . . . o o v v v v v v i it 1312
21.22.2 CGIXMLRPCRequestHandler . . . . . . ... ... .. . ... ... ... ... 1315
21.22.3 Documenting XMLRPC server . . . . . . . . . . .. i 1316
21.22.4 DocXMLRPCServer Objects . . . . . . v v v v it e e e e e e e e e e e 1316
21.22.5 DocCGIXMLRPCRequestHandler . . . . . . . ... .. ... ... .. ........ 1317
21.23 ipaddress — IPv4/IPv6 manipulation library . . . . . .. ... ... 0000000 1317
21.23.1 Convenience factory functions . . . . . . . . . . .. . ..o 1317
21232 TP AAIesses . . . . . . v vttt e e e e e e e 1318
21.23.3 TP Network definitions . . . . . . . . . . . . . L e 1322
21.234 Interface Objects . . . . . . . . ... e e e e 1328
21.23.5 Other Module Level Functions . . . . . . .. . .. . .. . ... 1329
21.23.6 Custom Exceptions . . . . . . . . . . e e 1330

22 Multimedia Services 1331
22.1 wave — Read and write WAV files . . . . . . . . . . ... 1331
22.1.1 Wave_read Objects . . . . . . . . . i e e e e e 1332
22.1.2 Wave write ObjJects . . . . . . . . . i e e e e e 1332
22.2 colorsys — Conversions between color systems . . . . . . . . ... ..o 1333

23 Internationalization 1335
23.1 gettext — Multilingual internationalization services . . . . . . . . . . . . . ... ... ... 1335
23.1.1 GNUgettext API . . . . . . . . . e 1335
23.1.2 Class-based APL . . . . . . . . . .. 1337
23.1.3 Internationalizing your programs and modules . . . . . . ... ... 1341
23.1.4  Acknowledgements . . . . . . .. ... e e 1343
23.2 locale — Internationalization SEIViCes . . . . . . . . . . . ... .o 1344
23.2.1 Background, details, hints, tipsand caveats . . . . . . . ... ... .. 1350
23.2.2  For extension writers and programs that embed Python . . . . . . .. .. ... ... ... 1350
2323 Accesstomessage catalogs . . . .. ..ol o L e 1350

24 Program Frameworks 1351
24.1 turtle —Turtlegraphics . . . . . . . . . . e 1351
24.1.1 IntroducCtion . . . . . . o o v i it e e e e e e e e e e e e e 1351
24.1.2 Overview of available Turtle and Screen methods . . . . . . .. ... ... ... .... 1353
24.1.3 Methods of RawTurtle/Turtle and corresponding functions . . . . . . . . ... ... ... 1355
24.1.4 Methods of TurtleScreen/Screen and corresponding functions . . . . . . ... ... ... 1371
24.1.5 Publicclasses . . . . .. 1377
24.1.6 Helpand configuration . . . . . .. . .. .. ... L e 1379
24177 turtledemo —DemosCripts . . . . . . . . . .. . 1381
24.1.8 Changessince Python 2.6 . . . . . . . . . . .. ... 1382
24.1.9 Changessince Python 3.0 . . . . . . . . . . . . e e 1383
24.2  cmd — Support for line-oriented command interpreters . . . . . . ... ... oo 1383
242.1 CmdObjects . . . . . . e e e e e e e e 1383
2422 CmdExample . . . . . .. L 1385
243 shlex — Simple lexical analysis . . . . . . . . . . . . L 1388
24.3.1 shlex Objects . . . . . . o i i e e e e e e e e e e e e 1389
2432 ParsingRules . . . . . . .. e e e e 1391
24.3.3 Improved Compatibility with Shells . . . . . . . ... . ... ... L. 1392

25 Graphical User Interfaces with Tk 1393
25.1 tkinter — Pythoninterface to Tcl/Tk. . . . . . . . ... . . o 1393
25.1.1 Architecture . . . . . . . .. e e e 1394
25.1.2 Tkinter Modules . . . . . . . . . L e e e e e e 1394
25.1.3 Tkinter Life Preserver . . . . . . . . . . . o e 1396
25.1.4 Threadingmodel . . . . . . . ... e 1399

Xiv



25.1.5 Handy Reference . . . . . . . . . . . . . e e e 1399

25.1.6 FileHandlers . . . . .. .. . . ... .. 1405
25.2 tkinter.colorchooser — Color choosingdialog . . . . . . .. ... ... .. ....... 1405
253 tkinter.font — Tkinter font wrapper . . . . . . ... ... oo 1406
254 Tkinter Dialogs . . . . . . . . e 1407
254.1 tkinter.simpledialog — Standard Tkinter input dialogs . . ... ... ... .. 1407
25.4.2 tkinter.filedialog — Fileselectiondialogs . . ... ... ... ......... 1407
25.4.3 tkinter.commondialog — Dialog window templates . . . ... ... ... .... 1409
25.5 tkinter.messagebox — Tkinter message prompts . . . . . . . . . . o i ot et e 1410
25.6 tkinter.scrolledtext — Scrolled Text Widget . . . . . . . ... ... ... ... .... 1410
257 tkinter.dnd — Draganddropsupport . . . . . . .. ... o 1411
25.8 tkinter.ttk — Tkthemedwidgets . . . . . . . . . . . . . . i 1412
25.8.1 Using Ttk . . . . . . . o e e e e 1412
25.82 Tk WIdEets . . . . . . o i e e e e e e e e e e e 1412
2583 Widget. . . . . o o e e e e e 1413
25.8.4 CombobOX . . . . . v v e e e 1415
25.8.5 SpIinboX . . . .. e e e e e e e e e 1416
25.8.6 Notebook . . . . . . . . 1417
25.8.7 Progressbar . . . . . . L e e e 1419
25.8.8 Separator . . . . ... e e 1420
25.8.9  Sizegrip . . . . . e e 1421
25.8.10 Treeview . . . . o v v i e e e e e e e 1421
25.8.11 Ttk Styling . . . . . . . o o e e e e 1426
259 tkinter.tix — Extensionwidgetsfor Tk . . . .. ... ... ... ... ... ... . ..., 1430
259.1 UsingTiX . . . . o o i e e e e e 1430
2592 TIXWIAgets . . . . . e e e e e e 1431
2593 TixCommands . . . . . . . . . L. e e e 1433
25.10 IDLE . . . . . o 1434
25.10.1 Menus . . . . . e e e e 1435
25.10.2 Editingand Navigation . . . . . . . . . . . ... e 1438
25.10.3 Startupand Code Execution . . . . . . . . .. . ... e e 1441
25.10.4 Help and Preferences . . . . . . . . . . . . ... 1445
25.10.5 idlelib . . .o 1445
26 Development Tools 1447
26.1 typing— Supportfortypehints . . . . . . . ... 1447
26.1.1 RelevantPEPs . . . . . . . . . .. 1448
26.1.2 Typealiases . . . . . v v v v i e e e e e e e e e e e e e e e 1448
26.1.3 NewType . . . . o o i e e e 1449
26.1.4 Callable . . . . . . . e e 1450
20.1.5 GENETICS . « . v v v v v e e e e e e e e e 1450
26.1.6 User-defined generic types . . . . . . . . . o oo e e e e e 1451
26.1.7 The ANy tYPe . . . v v i i e e e e e e e e e e e e e e e e e e 1453
26.1.8 Nominal vs structural subtyping . . . . . . . . . ... L L 1454
26.1.9 Modulecontents . . . . . . . ... e e e e e e 1455
26.2 pydoc — Documentation generator and online helpsystem . . . . ... .. ... ... .. ... 1478
26.3 Python Development Mode . . . . . . . . . . . L 1480
26.4 Effects of the Python Development Mode . . . . . ... ... .. ... ... ... .. ...... 1480
26.5 ResourceWarning Example . . . . . . . . . . . L e e 1481
26.6 Bad file descriptor errorexample . . . . . . ..ol L Lo o 1482
26.7 doctest — Testinteractive Pythonexamples . . . . . . .. ... ... .. ... L. 1483
26.7.1 Simple Usage: Checking Examples in Docstrings . . . . . . ... ... ... ... .... 1485
26.7.2 Simple Usage: Checking Examplesina TextFile. . . . . . .. .. ... ... ...... 1485
26.7.3 HowltWorks . . . . . . . 1486
26.7.4 Basic APL . . . . .. e 1493
26.7.5 Unittest API . . . . . . 0o e 1495
26.7.6 Advanced APL. . . . . . ... 1497
26.7.77 Debugging . . . . . . . e e e e 1501




27

26.7.8 S0apboX . . . ... e e e e 1504

26.8 unittest — Unittesting framework . . . . .. .. . . ... ... ... e 1505
26.8.1 Basicexample . . . . . ... e e e e e e e 1506
26.8.2 Command-Line Interface . . . . . . . .. ... .. ... 1507
26.8.3 TestDiscovery . . . . . . . . L e 1508
26.8.4 Organizingtestcode . . . . . . . . ... 1509
26.8.5 Re-usingoldtestcode . . . . . . . . . e e e e e 1510
26.8.6 Skipping tests and expected failures . . . . . . . ... Lo o oo 1511
26.8.7 Distinguishing test iterations using subtests . . . . . . .. ... ... oL 1512
26.8.8 Classesand functions . . . . . . . . . . . ... e 1513
26.8.9 Classand Module Fixtures . . . . . . . . . .. ... e 1532
26.8.10 Signal Handling . . . . . . . . . . . . e 1533

269 unittest.mock —mockobjectlibrary . . .. ... ... e 1534
269.1 Quick Guide . . . . . . . . L e 1534
269.2 TheMock Class . . . . . . . . o o i e e e e e 1536
2693 Thepatchers . . . . . . . . oL e 1552
26.9.4 MagicMock and magic method support . . . . . . . ..o 1560
26.9.5 Helpers . . . . . . . e e e e e e e e 1564

26.10 unittest.mock — gettingstarted . . . . . . . ... L L e e e 1572
26.10.1 UsingMock . . . . . . .o e 1572
26.10.2 Patch Decorators . . . . . . . . . i e e e e e e e 1577
26.10.3 Further Examples . . . . . . . . . . . . 1579

26.11 2to3 — Automated Python 2 to 3 code translation . . . . . . . . ... ... ... .. ... . 1591
26.11.1 Using 203 . . . . . o e e e e e e e e e 1591
20.11.2 FIXers . . . . . . o o i i e e e e 1593
26.11.3 1ib2to3 —2to3’slibrary . . . . . . . . . ... 1596

26.12 test — Regression tests package for Python . . . . . . . ... ..o o oo oL, 1596
26.12.1 Writing Unit Tests for the test package . . . . . . . . . ... .. .. . ... ... 1597
26.12.2 Running tests using the command-line interface . . . . . ... ... ... ... ... .. 1598

26.13 test.support — Utilities for the Python testsuite . . . . . . . .. ... ... ... ...... 1599

26.14 test.support.socket_helper — Utilities for sockettests . . . . . ... ... ... ... 1607

26.15 test.support.script_helper — Utilities for the Python execution tests . . . . . . . .. 1608

26.16 test.support.bytecode_helper — Support tools for testing correct bytecode generation 1609

26.17 test.support.threading_helper — Utilities for threading tests . . . . . ... ... .. 1609

26.18 test.support.os_helper — Utilitiesforostests . . . .. .. ... ... ... ...... 1610

26.19 test.support.import_helper — Utilities for importtests . . . . . . . .. ... .. ... 1612

26.20 test.support.warnings_helper — Utilities for warningstests . . . . . . . ... .. .. 1613

Debugging and Profiling 1615

27.1 Auditeventstable . . . . . . ... e e e 1615

27.2 bdb — Debugger framework . . . . ... L 1619

273 faulthandler — Dump the Pythontraceback . . . . . .. .. ... ... ... ... ..., 1624
27.3.1 Dumping the traceback . . . . . . . . . . e e e e 1624
2732 Faulthandlerstate . . . . . . . . . . . e 1624
27.3.3 Dumping the tracebacks afteratimeout. . . . . . . . .. ... ... L. 1625
27.3.4 Dumping the traceback onausersignal . . . . . . .. ... ... 000 1625
27.3.5 [Issue with file descriptors . . . . . . . . L. 1625
27.3.6 Example . . . . . .. e e e e e e e e e e e 1626

274 pdb — The Python Debugger . . . . . . . . . . . . . e 1626
27.4.1 Debugger Commands . . . . . . . . . L e 1628

27.5 ThePython Profilers . . . . . . . . . . . . e 1632
27.5.1 Introduction to the profilers . . . . . . . . . .. ... 1632
27.5.2 Instant Users Manual . . . . . . . . . . . .. e 1632
2753 profileand cProfile Module Reference . . . . . ... ... ... ......... 1634
2754 The Stats Class . . . . . . . o o i e e 1636
27.5.5 WhatIs Deterministic Profiling? . . . . . .. . ... .. .. o Lo 1638
27.5.6 Limitations . . . . . . . . oo i e e e e e e e e e e 1638
27.5.77 Calibration . . . . . . . . e e e e e 1639




28

29

27.5.8 Usingacustom tiMET . . . . v v v v v v e e e e e e e e e e e e e e e e e e e e
27.6 timeit — Measure execution time of small code snippets . . . . . . .. ... ... .. .....
27.6.1 Basic Examples . . . . . . ... e
27.6.2 PythonlInterface . . . . . . . . . ... L
27.6.3 Command-Line Interface . . . . . . . . . .. .. ...
27.6.4 Examples . . . . ... e e e e
27.7 trace — Trace or track Python statement execution . . . . . . . . . . . . ...
27.7.1 Command-Line Usage . . . . . . . . . . ittt e e
27.7.2 Programmatic Interface . . . . . .. ... o oL
27.8 tracemalloc — Trace memory allocations . . . . . . . . . . .. ... o oo
27.8.1 Examples . . . . . .. e e e
27.82 APL . . e
Software Packaging and Distribution
28.1 distutils — Building and installing Python modules . . . . . ... .. ... ... ......
28.2 ensurepip — Bootstrapping the pipinstaller . . . . . ... ... ... .. L.
28.2.1 Command lineinterface . . . . . . . . . . .. ... e
2822 Module APT . . . . . . e
28.3 wvenv — Creation of virtual environments . . . . . . . . . .. . ... L oo
28.3.1 Creating virtual environments . . . . . . . . . . . ..o e e e e
2832 Howvenvs Work . . . . . . . . ...
2833 APL . . e
28.3.4 Anexample of extending EnvBuilder . . . . ... .. ... o
28.4 zipapp — Manage executable Python ziparchives . . . . . . . . ... ... ...
28.4.1 BasicExample. . . . . . . ...
28.4.2 Command-Line Interface . . . . . . . . . ... ...
28.43 Python API . . . . . . e
28.4.4 Examples . . . . .. e e e e e e e e e e
28.4.5 Specifying the Interpreter . . . . . . . . . ... L. oL e
28.4.6 Creating Standalone Applications with zipapp . . . . . . . . . . . ... ... ... ...
28.4.7 The Python Zip Application Archive Format . . . . . .. . ... ... ... .......
Python Runtime Services
29.1 sys — System-specific parameters and functions . . . . . . .. ... Lo
29.2 sysconfig — Provide access to Python’s configuration information . . . . . . ... ... ...
29.2.1 Configuration variables . . . . . . . . . . L e e e e
29.2.2 Installation paths . . . . . . . . . o e e e e e e e
29.23 Otherfunctions . . . . . . . . . .. e e
29.2.4 Using sysconfigasascript . . . . .. ... ... Lo e
293 builtins —Built-inobjects . . . . . . ... e
294 _ _main__ — Top-level code environment . . . . . . . . . ... L. oo
2941 __name_ == "'_main__ " ... e e
2942 __main__ .pyinPythonPackages . . . .. ... ... ... ... .
2043 dImport _ mMAain___ ... e e e e e e e e e e e e e e e e e e
29.5 warnings — Warningcontrol . . . . . . ...l o e
29.5.1 Warning Categories . . . . v v v v v i e e e e e e e e e e e e e e e e e e e e
29.5.2 The Warnings Filter . . . . . . . . . . . e e e e
29.5.3 Temporarily Suppressing Warnings . . . . . . . . . . . ... oo
29.5.4 Testing Warnings . . . . . . . . ... oot e e e e e e e e e
29.5.5 Updating Code For New Versions of Dependencies . . . . . ... ... .........
29.5.6 Available Functions . . . . . . . ...
29.5.7 Available Context Managers . . . . . . . . . v v it e e e e e e e e e
29.6 dataclasses —DataClasses. . . . . . ... .. e
29.6.1 Modulecontents . . . . . . .. ... e e e e e
29.6.2 PoSt-Init processing . . . . . . . . . .o e e e e e
29.6.3 Classvariables . . . . . . . . ... e e
29.6.4 Init-only variables . . . . . . . . . L e e e e e e e
29.6.5 FrozeninstanCes . . . . . . . . . . .. i i i e e e e e

XVii



30

31

20.6.6 Inheritance . . . . . . . . .. e e e e e e e 1719

29.6.7 Re-ordering of keyword-only parametersin __ init () . ... ... ... .. .. .. 1719
29.6.8 Default factory functions . . . . . . . .. L e 1720
29.6.9 Mutable default values . . . . . . . . . . L 1720
29.6.10 Descriptor-typed fields . . . . . . . . .. 1721
29.7 contextlib — Utilities for with-statement contexts . . . . . . . . . . ... ... ... ... 1722
20.7.1 UHHEES . . o o o vt e e e e e e e e e e e e e 1722
29.7.2 Examplesand Recipes . . . . . . . . . . . e e e e 1730
29.7.3 Single use, reusable and reentrant context managers . . . . . . ... ... ... ... 1733
29.8 abc — Abstract Base Classes . . . . . . . . . . . e e e e e e e 1735
299 atexit —Exithandlers . . . . . .. . .. 1740
299.1 atexit Example. . . . . . . . .. e 1740
29.10 traceback — Print or retrieve a stack traceback . . . . . . ... ... o oL 1741
29.10.1 TracebackExceptionObjects . . . . . . . . . . v v it i v i 1743
29.10.2 StackSummary Objects . . . . . . .. ... e 1745
29.10.3 FrameSummary Objects . . . . . . . . . . . . 1745
29.10.4 Traceback Examples . . . . . . . . . . e 1745
29.11 __ future__ — Future statement definitions . . . . . . . . . . ... ... L 1748
29.12 gc — Garbage Collector interface . . . . . . . . . . . . . . e 1749
29.13 inspect —Inspectliveobjects . . . . . . . . ... L e 1753
29.13.1 Typesandmembers . . . . . . . . . . . L 1753
29.13.2 Retrieving source code . . . . . . . ..o e e e e e e e 1757
29.13.3 Introspecting callables with the Signature object . . . . . ... ... ... ... ..... 1757
29.13.4 Classesand functions . . . . . . . . . . . L e e 1762
29.13.5 The interpreter stack . . . . . . . . . oL e 1765
29.13.6 Fetching attributes statically . . . . . . . . ... ... oL o oo 1766
29.13.7 Current State of Generators and Coroutines . . . . . . . . . . . . . oo 1767
29.13.8 Code Objects Bit Flags . . . . . . . . . . . . . . e 1768
29.13.9 Command Line Interface . . . . . . . .. .. . ... L 1768
29.14 site — Site-specific configurationhook . . . . . . . ... oL oo 1769
29.14.1 Readline configuration . . . . . . . . . .. ... Lo 1770
29.14.2 Module contents . . . . . . . ... .. e e e e e e e e e e 1770
29.14.3 Command Line Interface . . . . . . . . . ... ... L 1771
Custom Python Interpreters 1773
30.1 code — Interpreter base classes . . . . . . . ... L e e e 1773
30.1.1 Interactive Interpreter Objects . . . . . . . . . . . . . L 1774
30.1.2 Interactive Console Objects . . . . . . . . . . . . . e 1774
30.2 codeop — Compile Pythoncode . . . . . . .. ... ... L 1775
Importing Modules 1777
31.1 zipimport — Import modules from Zip archives . . . . . . . . ... ... ... ... ... 1777
31.1.1 zipimporter Objects . . . . . . . . . . e 1778
31.1.2 Examples . . . . ... e 1779
31.2 pkgutil — Packageextensionutility . . . . ... ... ... ... o L 1779
31.3 modulefinder — Find modulesused by ascript . . . . . . . . ... ... ... 1782
31.3.1 Example usage of ModuleFinder . . . . . . o v v i v v i i it 1783
31.4 runpy — Locating and executing Python modules . . . . . .. ... ... ... ... ..., 1784
31.5 importlib — The implementation of import . . . . . . .. ... ... .. ... ... 1786
31.5.1 Introduction . . . . . . . . . ... e e e e 1786
31.52 Functions . . . . . . . i e e e e e 1786
31.5.3 importlib.abc — Abstract base classes related toimport. . . . . . . ... ... ... 1788
31.54 importlib.resources-Resources. . . .. ... .. ... ... .. .. .. ..., 1795
31.5.,5 importlib.machinery - Importers and pathhooks . . ... ... ... .. .... 1797
31.5.6 importlib.util - Utility code for importers . . . . .. . ... ... ... ..... 1801
3157 Examples . . . ... e e e 1804
31.6 Using importlib.metadata . . . ... .. . i 1806
31.6.1 OVEIrVIEW . . . . o v i e e e e e e e e e e 1807

xviii



31.6.2 Functional API . . ..
31.6.3 Distributions . . . . . .

31.6.4 Extending the search algorithm . . . . . . .. . ... .. o

32 Python Language Services

32.1

322

323
324
325

32.6
32.7

32.8

329

ast — Abstract Syntax Trees .
32.1.1 Abstract Grammar . .
32.1.2 Nodeclasses . . . . . .
32.1.3 ast Helpers. . . . ..
32.1.4 Compiler Flags . . . .
32.1.5 Command-Line Usage

32.2.1 Generating Symbol Tables . . . . . . . .. ... ... L
32.2.2 Examining Symbol Tables . . . . . . . . . . .. ...
token — Constants used with Python parse trees . . . . . . . . . ... ... ... ... ...,
keyword — Testing for Python keywords . . . . . . .. ... .. ... ... ... ... ...
tokenize — Tokenizer for Pythonsource . . . . . . . .. .. ... ... .. .. ...

32.5.1 Tokenizing Input . . .
32.5.2 Command-Line Usage
3253 Examples . ... ...

tabnanny — Detection of ambiguous indentation . . . . . . . .. .. ... .. ...
pyclbr — Python module browser support.. . . . . . . . . ... e

32.7.1 Function Objects . . .
32.7.2 Class Objects . . . . .

py_compile — Compile Python sourcefiles . . . . .. .. ... ... ... ..........
32.8.1 Command-Line Interface . . . . . .. .. ... . ... ... .. . e
compileall — Byte-compile Python libraries . . . . . ... ... ... ... ... ...

32.9.1 Command-line use . .
32.9.2 Public functions . . . .

32.10 dis — Disassembler for Python bytecode . . . . . . . . . ... ... Lo oo

32.10.1 Bytecode analysis . . .
32.10.2 Analysis functions . . .

32.10.3 Python Bytecode Instructions . . . . . . . . . . . . . e e

32.10.4 Opcode collections . .

32.11 pickletools — Tools for pickle developers . . . . . . ... ... ... ... ... ...

32.11.1 Command line usage .
32.11.2 Programmatic Interface

33 MS Windows Specific Services
33.1 msvcrt — Useful routines from the MS VC++runtime . . . . . . . . .. . ... ... .....

332

33.1.1 File Operations . . . .
33.1.2 Consolel/O . .. ...
33.1.3 Other Functions . . . .

winreg — Windows registry access . . . . . . . ottt e i e e e e e e e e e e

33.2.1 Functions .. ... ..
3322 Constants . ... ...
33.2.3 Registry Handle Objects

33.3 winsound — Sound-playing interface for Windows . . . . . . ... ... o oL

34 Unix Specific Services
posix — The most common POSIX systemcalls . . . . ... ... ... ... .........

34.1

342
343
34.4

34.5
34.6

34.1.1 Large File Support . .

34.1.2 Notable Module Contents . . . . . . . . . . . v v i i i e e e e e

pwd — The password database .
grp — The group database . .

termios — POSIXstyletty control . . . . . . . . . . . . . e

344.1 Example ... ... ..

tty — Terminal control functions . . . . . . . . . . . . ..

pty — Pseudo-terminal utilities

Xix



35

34.6.1 Example . . . . . .. e e e e e e e e e e e e 1896

3477 fcntl —The fentlandioctlsystemcalls. . . . . o oL o 000 oo 1896
34.8 resource — Resource usage information . . . . . . ... oL Lo 1899
34.8.1 Resource Limits . . . . . . . . .. e e e e e 1899
3482 Resource Usage . . . . . . . . . .. e 1901
349 syslog— Unixsysloglibraryroutines . . . . . . . . . ... .. ... o 1903
349.1 Examples . . . . . .. e e e e e e e e e e e 1904
Superseded Modules 1905
35.1 aifc — Readand write AIFFand AIFCfiles . . . . . . . . . . .. ... .. ... ... .. 1905
35.2 asynchat — Asynchronous socket command/response handler . . . . . ... ... ... .... 1907
35.2.1 asynchatExample . . . . . . . . . . e e 1909
35.3 asyncore — Asynchronous sockethandler . . . . . ... ... ... ... oL 1910
35.3.1 asyncore Example basic HTTP client . . . . . .. ... ... ... ... ......... 1912
35.3.2 asyncore Example basicechoserver. . . . .. ... ... .. ... L. 1913
354 audioop — Manipulate raw audiodata . . . . . . ... L. 1914
35.5 cgi — Common Gateway Interface support . . . . . . . . . . . . . . e 1917
35.5.1 Introduction . . . . . . . . ... L. e e e 1917
3552 Usingthecgimodule . . . .. ... .. .. ... 1917
35.5.3 Higher Level Interface . . . . . . . . . .. ... 1919
3554 Functions . . . . . . . . i e e e e e e e 1920
35.5.5 Caringabout SECUIity . . . . . v v v v i e e e e e e e e e e e e e e e 1921
35.5.6 Installing your CGI scriptona Unixsystem . . . . . . . . .. ... ... 1921
35.5.77 Testingyour CGIscript . . . . . . . . . . e 1921
35.5.8 Debugging CGIsCripts . . . . . . . o v v i vttt it e e e e e 1922
35.5.9 Common problems and SOIUtiONS . . . . . . . . . .. e e e e e e 1923
35.6 cgitb — Traceback manager for CGIscripts. . . . . . . . . v o v v i i v i et 1923
35.7 chunk —Read IFFchunkeddata . . . . . . .. ... ... . ... ... ... 1924
35.8 crypt — Function to check Unix passwords . . . . . . . . .. ... .. . o 1925
35.8.1 Hashing Methods . . . . . .. . ... L 1925
35.8.2 Module Attributes . . . . . ... L. e e e e 1926
35.8.3 Module Functions . . . . . . . . . .. e 1926
35.8.4 Examples . . . . ... e e e e e e e e 1927
35.9 imghdr — Determine the type of animage . . . . . . . . . .. ... ... oL 1927
35.10 imp — Access the importinternals . . . . . . ... L. oL oL 1928
35.10.1 Examples . . . . . e e e e e e 1932
35.11 mailcap — Mailcapfilehandling . . . . . . . . . . . . . . e 1933
35.12 msilib — Read and write Microsoft Installer files . . . . . . .. ... ... ... ... ..... 1934
35.12.1 Database Objects . . . . . . . . . . . e e e e 1935
35122 View ODbJECtS . . . . o o i o e e e e e e e e e e e e 1935
35.12.3 Summary Information Objects . . . . . . . . . ... L 1936
35.12.4 Record Objects . . . . . . o v v it e e e e e e 1936
35.12.5 EITOrS . o o o o o e e e e e e e e 1937
35.12.6 CABODbjects . . . . . o i i e e e e 1937
35.12.7 Directory Objects . . . . . . . . .. e e e 1937
35.12.8 Features . . . . . v v v it e e e e e e e e e e e e e e e e e e e e e e 1938
35.12.9 GUICIASSES . . . v v v v o it et e e e e e e e e 1938
35.12.10Precomputed tables . . . . . . . ... e e e e e e e e e 1939
35.13 nis — Interface to Sun’s NIS (Yellow Pages) . . . . . . . ... . .. ... ... ... . .... 1939
35.14 nntplib — NNTP protocol client . . . . . . . .. . ... . e 1940
35.14.1 NNTP Objects . . . . . . o o v v it e e e e e e e e e e e e e 1942
35.14.2 Utility functions . . . . . . . . . L L. e 1946
35.15 optparse — Parser for command lineoptions . . . . . . . . . ... ... e 1946
35.15.1 Background . . . . . . L. e e e e e e e 1947
35.15.2 Tutorial . . . . . L. e e e e 1949
35.15.3 Reference Guide . . . . . . . . . . oL e e e e 1956
35.15.4 Option Callbacks . . . . . . . . . . . 1965
35.15.5 Extending Optparse . . . .o i i e e e e e e e e 1968

XX



36

35.16 ossaudiodev — Access to OSS-compatible audiodevices . . . . . .. ... ... ... .... 1971

35.16.1 Audio Device Objects . . . . . . . o o v i i e e e e e e e e e 1972
35.16.2 Mixer Device Objects . . . . . . . . o o i i e e e e e e e e 1974
35.17 pipes — Interface toshell pipelines . . . . . . .. . ... L o o 1975
35.17.1 Template Objects . . . . . . . . . . . e 1976
35.18 smtpd — SMTP Server . . . . . . . o o e e e e e e e e e e e e e e e 1976
35.18.1 SMTPServer Objects . . . . . v v v v v e e e e e e e e e e e e e e e e e e 1977
35.18.2 DebuggingServer Objects . . . . . . . . o i i e e e e e e 1978
35.18.3 PureProxy Objects . . . . . . . . . . e e 1978
35.18.4 MailmanProxy Objects . . . . . . . . .. ... 1978
35.18.5 SMTPChannel Objects . . . . . . . . . . . . oo ittt e 1978
35.19 sndhdr — Determine type of soundfile . . . ... ... ... ... . ... ... .. .. ..., 1979
35.20 spwd — The shadow password database . . . . . . . . . . . . . .. e 1980
35.21 sunau — Read and write Sun AUfiles . . . . . .. ... .. ... o 1981
35.21.1 AU_read Objects . . . . . . o v v i i e e e e e e e e e e e 1982
35212 AU_write ObJects . . . . . . o v v vt i e e e e e e e e 1983
3522 telnetlib —Telnetclient . . . . . . . . . . . e 1983
35.22.1 Telnet ObJects . . . . . o v v i ot e e e e e e e e e e e e e e e e e 1984
35.22.2 Telnet Example . . . . . . . . . . e e e 1986
35.23 uu — Encode and decode uuencode files . . . . . .. ..o oo o oL 1986
35.24 xdrlib — Encode and decode XDR data . . . . . ... ... ... ... ... ... ... 1987
35.24.1 Packer Objects . . . . . . . . . L e e e 1987
35.24.2 Unpacker ObjJects . . . . . . o v v v i et e e e e e e e e e e e e e e 1988
35243 EXCEPLONS « . v v v v v i e e e e e e e e e e e e e e e e e e e e e e e 1989
Security Considerations 1991
Glossary 1993
About these documents 2007
B.1 Contributors to the Python Documentation . . . . . . . ... ... ... .. ............ 2007
History and License 2009
C.1 Historyof thesoftware . . . . . . . . . .. . e 2009
C.2 Terms and conditions for accessing or otherwise using Python . . . . . . .. ... ... ... 2010
C.2.1 PSFLICENSE AGREEMENT FOR PYTHON 3.10.18 . . . . . .. ... ... ..... 2010
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON20 . . ... ... ...... 2011
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 . . ... ... ... ....... 2012
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 . . ... ... .. 2013
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.10.18 DOCUMEN-
TATION . . . e e 2013
C.3 Licenses and Acknowledgements for Incorporated Software . . . . . . . . ... ... ... .... 2014
C3.1  Mersenne TWIStEI . . . . . . . v v v ittt e e e e e e e 2014
C3.2 Sockets . . . . . e 2015
C.3.3  Asynchronous SOCKEt SEIVICES . . . . . . . . . o vt v v i it e e 2015
C34 Cookiemanagement . . . . . . . . . . .. .. ... e 2016
C3.5 ExecutiontraCing . . . . . . . . .t v it e e e e e e 2016
C.3.6  UUencode and UUdecode functions . . . . . . . ... ... 2017
C3.7 XML Remote Procedure Calls . . . . . ... .. ... ... .. ... 2017
C.3.8 test_epoll . . . . L e e e e 2018
C39 Selectkqueue . . . . . . . ... 2018
C3.10 SipHash24 . . . . . . . 2019
C3.11 strtodanddtoa. . . . . . . ... L e e e 2019
C3.12 OpenSSL . . . . o e e e 2020
C3I3 eXpat. . . o vt e e e e e e e e e e e e e 2022
C3.14 Libfli . . . oo e e e 2022
C3.15 zlib . . o e e e 2023
C3.16 cfuhash . . . . . . .. e 2023
C3.17 Hbmpdec . . . . . o e e e e e e e e e 2024

XXi



C3.18 W3CCIANTeSt SUItE . . . . o v vttt et e e e e e e e e e e e e e e

C.3.19 Audioop
D Copyright
Bibliography
Python Module Index

Index

XXii



The Python Library Reference, Release 3.10.18

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages,
so it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the
optional components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1


https://pypi.org
https://pypi.org

The Python Library Reference, Release 3.10.18

2 CONTENTS



CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like
the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the
core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see module random) and read a section or two. Regardless
of the order in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the
remainder of the manual assumes familiarity with this material.

Let the show begin!

1.1 Notes on availability

o An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not make
any claims about its existence on a specific operating system.

« If not separately noted, all functions that claim “Availability: Unix” are supported on macOS, which builds on
a Unix core.




The Python Library Reference, Release 3.10.18

4 Chapter 1. Introduction



CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed

here in alphabetical order.

Built-in Functions

A E L R
abs () enumerate () len() range ()
aiter/() eval () 1list () repr ()
all() exec () locals () reversed ()
any () round ()
anext () F M
ascii() filter() map () S

float () max () set ()
B format () memoryview () setattr ()
bin{() frozenset () min () slice()
bool () sorted()
breakpoint () G N staticmethod ()
bytearray () getattr () next () str()
bytes () globals () sum ()

(0] super ()

C H object ()
callable () hasattr() oct () T
chr () hash () open () tuple ()
classmethod () help() ord() type ()
compile () hex ()
complex () P A\

1 pow () vars ()
D id() print ()
delattr () input () property () Z
dict () int () zip ()
dir() isinstance ()
divmod () issubclass () _

iter() __import__ ()

abs (x)

Return the absolute value of a number. The argument may be an integer, a floating point number, or an object

implementing ___abs___

aiter (async_iterable)

(). If the argument is a complex number, its magnitude is returned.

Return an asynchronous iterator for an asynchronous iterable. Equivalent to calling x.__aiter__ ().




The Python Library Reference, Release 3.10.18

Note: Unlike iter (), aiter () has no 2-argument variant.
New in version 3.10.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

awaitable anext (async_iterator[, default])
When awaited, return the next item from the given asynchronous iterator, or default if given and the iterator is
exhausted.

This is the async variant of the next () builtin, and behaves similarly.

This callsthe __anext__ () method of async_iterator, returning an awaitable. Awaiting this returns the next
value of the iterator. If default is given, it is returned if the iterator is exhausted, otherwise St opAsyncIt—
eration is raised.

New in version 3.10.

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u, or \U escapes. This generates a string similar to
that returned by repr () in Python 2.

bin (x)
Convert an integer number to a binary string prefixed with “Ob”. The result is a valid Python expression. If x is
not a Python int object, it has to define an ___index__ () method that returns an integer. Some examples:

>>> bin(3)
'Obl11"

>>> bin(-10)
'-0b1010"'

If the prefix “Ob” is desired or not, you can use either of the following ways.

>>> format (14, '#b'), format (14, 'b'")
('0Ob1110", '1110")

>>> f'{14:4b}"', £'{14:b}"'

('0Ob1110", '1110")

See also format () for more information.

class bool ([x])
Return a Boolean value, i.e. one of True or False. x is converted using the standard truth testing procedure.
If x is false or omitted, this returns False; otherwise, it returns True. The bool class is a subclass of int
(see Numeric Types — int, float, complex). It cannot be subclassed further. Its only instances are False and
True (see Boolean Values).

Changed in version 3.7: x is now a positional-only parameter.

6 Chapter 2. Built-in Functions



The Python Library Reference, Release 3.10.18

breakpoint (*args, **kws)

This function drops you into the debugger at the call site. Specifically, it calls sys.breakpointhook (),
passing args and kws straight through. By default, sys.breakpointhook () calls pdb.
set_trace () expecting no arguments. In this case, it is purely a convenience function so you don’t have to
explicitly import pdb or type as much code to enter the debugger. However, sys.breakpointhook ()
can be set to some other function and breakpoint () will automatically call that, allowing you to drop
into the debugger of choice. If sys.breakpointhook () is not accessible, this function will raise Run—
timeError.

Raises an auditing event builtins.breakpoint with argument breakpointhook.
New in version 3.7.

class bytearray ( [source[, encoding[, errors] ] ] )
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as
most methods that the byt es type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

o If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode ().

« If it is an infeger, the array will have that size and will be initialized with null bytes.

« Ifitis an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

« If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size 0 is created.
See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes ( [source[, encoding[, errors] ] ] )
Return a new “bytes” object which is an immutable sequence of integers in the range 0 <= x < 256. bytes
is an immutable version of bytearray - it has the same non-mutating methods and the same indexing and
slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().
Bytes objects can also be created with literals, see strings.

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytearray Op-
erations.

callable (object)
Return True if the object argument appears callable, F'alse if not. If this returns True, it is still possible
that a call fails, but if it is False, calling object will never succeed. Note that classes are callable (calling a
class returns a new instance); instances are callable if their classhasa _ call__ () method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string 'a ', while chr (8364) returns the string '€ '. This is the inverse of ord ().

The valid range for the argument is from O through 1,114,111 (Ox10FFFF in base 16). ValueError will be
raised if i is outside that range.

Qclassmethod
Transform a method into a class method.

A class method receives the class as an implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:




The Python Library Reference, Release 3.10.18

class C:
@classmethod
def f(cls, argl, arg2):

The @classmethod form is a function decorator — see function for details.

A class method can be called either on the class (such as C. £ () ) or on an instance (such as C () . £ ()). The
instance is ignored except for its class. If a class method is called for a derived class, the derived class object
is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in
this section. For more information on class methods, see types.

Changed in version 3.9: Class methods can now wrap other descriptors such as property ().

Changed in version 3.10: Class methods now inherit the method attributes (__module_ , _ name_ |,
_ _qualname_ ,_ doc__and __annotations_ )and have anew __ wrapped___ attribute.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=- 1)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source
can either be a normal string, a byte string, or an AST object. Refer to the ast module documentation for
information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (' <string>"' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single"' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which compiler options should be activated and which
future features should be allowed. If neither is present (or both are zero) the code is compiled with the same
flags that affect the code that is calling compile (). If the flags argument is given and dont_inherit is not
(or is zero) then the compiler options and the future statements specified by the flags argument are used in
addition to those that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it
— the flags (future features and compiler options) in the surrounding code are ignored.

Compiler options and future statements are specified by bits which can be bitwise ORed together to specify
multiple options. The bitfield required to specify a given future feature can be found as the compiler_ flag
attribute on the _Feature instance in the __ future__ module. Compiler flags can be found in ast
module, with PyCF__ prefix.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the op-
timization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; ___debug___
is true), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed t0o).

This function raises SyntaxError if the compiled source is invalid, and ValueFError if the source con-
tains null bytes.

If you want to parse Python code into its AST representation, see ast . parse ().

Raises an auditing event compile with arguments source and £ilename. This event may also be raised
by implicit compilation.

Note: When compiling a string with multi-line code in ' single' or 'eval' mode, input must be termi-
nated by at least one newline character. This is to facilitate detection of incomplete and complete statements
in the code module.

Warning: It is possible to crash the Python interpreter with a sufficiently large/complex string when
compiling to an AST object due to stack depth limitations in Python’s AST compiler.

8 Chapter 2. Built-in Functions



The Python Library Reference, Release 3.10.18

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also, input in 'exec' mode does not
have to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

New in version 3.8: ast .PyCF_ALLOW_TOP_LEVEL_AWAIT can now be passed in flags to enable support
for top-level await, async for,and async with.

class complex ( [real[, imag] ])
Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). If imag is omitted, it defaults to zero and the constructor serves as a numeric conversion
like int and f1oat. If both arguments are omitted, returns 0.

For a general Python object x, complex (x) delegates to x.___complex__ (). If _ _complex__ ()
is not defined then it falls back to ___float__ (). If _ float__ () is not defined then it falls back to
__index__ ().

Note: When converting from a string, the string must not contain whitespace around the central + or —
operator. For example, complex ('1+27") isfine, but complex ('l + 23') raises ValueError.

The complex type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.8: Falls back to __index__ () if _ _complex__ () and _ float__ () are not
defined.

delattr (object, name)
Thisis arelative of setattr (). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, 'foobar') isequivalenttodel x.foobar. name need notbe a Python identifier (see
setattr()).

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in 11 st, set, and tuple classes, as well as the col lect ions module.

dir( [object] )
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a
list of valid attributes for that object.

If the object has amethodnamed __dir__ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or __getattribute__ () function to
customize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

« If the object is a module object, the list contains the names of the module’s attributes.

« If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

» Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.




The Python Library Reference, Release 3.10.18

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace

['"__builtins_ ', '__name_ ', 'struct']

>>> dir (struct) # show the names 1in the struct module

['"Struct', '__all_ ', '_builtins__ ', '_ _cached__', '__doc__', '_ file_ "',
' initializing__', '__loader__', '__name__', '__package_ ',

' _clearcache', 'calcsize', 'error', 'pack', 'pack_into',

'unpack', 'unpack_from']
>>> class Shape:

def _ dir_ (self):

C return ['area', 'perimeter', 'location']
>>> s = Shape()
>>> dir (s)
["area', 'location', 'perimeter']

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of names,
and its detailed behavior may change across releases. For example, metaclass attributes are not in the result
list when the argument is a class.

divmod (a, b)

Take two (non-complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % b). For floating point numbers the result is
(q, a % b),wheregisusuallymath.floor (a / b) butmay be 1 less than that. Inany case g * b
+ a % bisveryclosetoa,if a % b isnon-zero it has the same signas b,and 0 <= abs(a $ b) <
abs (b).

enumerate (iterable, start=0)

Return an enumerate object. iterable must be a sequence, an iferator, or some other object which supports
iteration. The __next__ () method of the iterator returned by enumerate () returns a tuple containing
a count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list (enumerate (seasons))

[(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list (enumerate (seasons, start=1))

[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression[, globals[, locals] ])

The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present and
does not contain a value for the key __builtins__, a reference to the dictionary of the built-in module
builtins isinserted under that key before expression is parsed. That way you can control what builtins are
available to the executed code by inserting your own ___builtins__ dictionary into globals before passing
itto eval (). If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are
omitted, the expression is executed with the globals and locals in the environment where eval () is called.

10

Chapter 2. Built-in Functions




The Python Library Reference, Release 3.10.18

Note, eval() does not have access to the nested scopes (non-locals) in the enclosing environment.

The return value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval ('
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case, pass a code object instead of a string. If the code object has been compiled with 'exec' as the
mode argument, eval ()'s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and 1o-
cals () functions return the current global and local dictionary, respectively, which may be useful to pass
around for use by eval () or exec ().

If the given source is a string, then leading and trailing spaces and tabs are stripped.

See ast.literal eval () for afunction that can safely evaluate strings with expressions containing only
literals.

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

exec (object[, globals[, locals] ] )
This function supports dynamic execution of Python code. object must be either a string or a code object. If
it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error
occurs).! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to be
valid as file input (see the section file-input in the Reference Manual). Be aware that the nonlocal, yield,
and return statements may not be used outside of function definitions even within the context of code passed
to the exec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary (and not a subclass of dictionary), which will be used for both the global and
the local variables. If globals and locals are given, they are used for the global and local variables, respectively.
If provided, locals can be any mapping object. Remember that at the module level, globals and locals are the
same dictionary. If exec gets two separate objects as globals and locals, the code will be executed as if it were
embedded in a class definition.

If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins are
available to the executed code by inserting your own ___builtins__ dictionary into globals before passing
itto exec ().

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

Note: The built-in functions globals () and 1ocals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function 1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on
locals after function exec () returns.

filter (function, iterable)
Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

I Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

11



The Python Library Reference, Release 3.10.18

clas

sig
inf
nan
dig
num
exp
flo
flo

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function (item)) if functionis not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

s float ([x])
Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional sign may be '+' or '—"';a '"+"' sign has no effect on the value pro-
duced. The argument may also be a string representing a NaN (not-a-number), or positive or negative infinity.
More precisely, the input must conform to the £ 1oatvalue production rule in the following grammar, after
leading and trailing whitespace characters are removed:

n = "+" I n_nmn
inity = "Infinity" | "inf"
= "nan"
itpart = digit (["_"] digit)*
ber = [digitpart] "." digitpart | digitpart ["."]
onent = ("e" | "E") ["+" | "-"] digitpart
atnumber = number [exponent]
atvalue = [sign] (floatnumber | infinity | nan)

Here digit is a Unicode decimal digit (character in the Unicode general category Nd). Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY”, and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same
value (within Python’s floating point precision) is returned. If the argument is outside the range of a Python
float, an OverflowError will be raised.

For a general Python object x, float (x) delegatestox.__float__ ().If _ float__ () isnotdefined
then it falls back to __index__ ().

If no argument is given, 0. O is returned.

Examples:

>>> float ('+1.23")

1.23

>>> float (' -12345\n")
-12345.0

>>> float ('1e-003")
0.001

>>> float ('+1E6")
1000000.0

>>> float ('-Infinity'")
—-inf

The float type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.

Changed in version 3.8: Falls back to __index__ () if __float__ () is not defined.

format ( value[, format_spec ] )

Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument; however, there is a standard formatting syntax that is
used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st r (value).

12

Chapter 2. Built-in Functions




The Python Library Reference, Release 3.10.18

A callto format (value, format_spec) istranslated to type (value) ._ format__ (value,
format_spec) which bypasses the instance dictionary when searching for the value’s ___format__ ()
method. A TypeError exception is raised if the method search reaches object and the format_spec is
non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__ (format_spec) raises TypeError if format_spec
is not an empty string.

class frozenset ([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the collections
module.

getattr (object, name[, default] )
Return the value of the named attribute of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, 'foobar')
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised. name need not be a Python identifier (see setattr ()).

Note: Since private name mangling happens at compilation time, one must manually mangle a private at-
tribute’s (attributes with two leading underscores) name in order to retrieve it with getattr ().

globals ()
Return the dictionary implementing the current module namespace. For code within functions, this is set when
the function is defined and remains the same regardless of where the function is called.

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether
it raises an At t ributeError or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

Note: For objects with custom __hash__ () methods, note that hash () truncates the return value based
on the bit width of the host machine. See _ _hash__ () for details.

help ( [object ] )
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

Note that if a slash(/) appears in the parameter list of a function when invoking help (), it means that the
parameters prior to the slash are positional-only. For more info, see the FAQ entry on positional-only param-
eters.

This function is added to the built-in namespace by the s ite module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are
now more comprehensive and consistent.

hex (x)
Convert an integer number to a lowercase hexadecimal string prefixed with “Ox”. If x is not a Python int
object, it has to define an __index___ () method that returns an integer. Some examples:

13



The Python Library Reference, Release 3.10.18

>>> hex (255)
'Oxff!

>>> hex (-42)
'-0x2a'’

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you
can use either of the following ways:

>>> ! "% 255, ! ''% 255, ! "% 255

('oxff', '"f£f', 'FEF')

>>> format (255, '#x'), format (255, 'x'), format (255, 'X")
('Oxff', '"f£f', 'FEF')

>>> f£'{255:4x}"', £'{255:x}', £'{255:X}"'

('oxff', 'ff', 'FEF'")

o\
o

See also format () for more information.

See also int () for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)

Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

Raises an auditing event builtins. id with argument id.

input ( [prompt] )

If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is
read, EOFError is raised. Example:

>>> s = input('-—> ")
--> Monty Python's Flying Circus
>>> s

"Monty Python's Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

Raises an auditing event builtins . input with argument prompt before reading input

Raises an auditing event builtins.input/result with the result after successfully reading input.

class int ([x])
class int (x, base=10)

Return an integer object constructed from a number or string x, or return O if no arguments are given.
If x defines __int_ (), int (x) returns x.__int_ (). If x defines __index__ (), it returns x.
__index__ (). If xdefines __trunc__ (), itreturns x.__trunc__ (). For floating point numbers,
this truncates towards zero.

If x is not a number or if base is given, then x must be a string, by tes, or bytearray instance representing
an integer in radix base. Optionally, the string can be preceded by + or — (with no space in between), have
leading zeros, be surrounded by whitespace, and have single underscores interspersed between digits.

A base-n integer string contains digits, each representing a value from O to n-1. The values 0-9 can be repre-
sented by any Unicode decimal digit. The values 10-35 can be represented by a to z (or A to Z). The default
base is 10. The allowed bases are 0 and 2-36. Base-2, -8, and -16 strings can be optionally prefixed with
0b/0B, 00/00, or 0x/0X, as with integer literals in code. For base 0, the string is interpreted in a similar way
to an integer literal in code, in that the actual base is 2, 8, 10, or 16 as determined by the prefix. Base 0 also
disallows leading zeros: int ('010', 0) isnotlegal, while int ('010") and int ('010"', 8) are.

14

Chapter 2. Built-in Functions




The Python Library Reference, Release 3.10.18

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index_
method, that method is called to obtain an integer for the base. Previous versions used base.__int
instead of base._ _index_ .

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.
Changed in version 3.8: Falls back to __index__ () if __int__ () is not defined.

Changed in version 3.10.7: int string inputs and string representations can be limited to help avoid denial of
service attacks. A ValueFError israised when the limit is exceeded while converting a string x to an int or
when converting an int into a string would exceed the limit. See the integer string conversion length limitation
documentation.

isinstance (object, classinfo)
Return True if the object argument is an instance of the classinfo argument, or of a (direct, indirect, or virfual)
subclass thereof. If object is not an object of the given type, the function always returns False. If classinfo is a
tuple of type objects (or recursively, other such tuples) or a Union Type of multiple types, return True if object
is an instance of any of the types. If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised.

Changed in version 3.10: classinfo can be a Union Type.

issubclass (class, classinfo)
Return True if class is a subclass (direct, indirect, or virfual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects (or recursively, other such tuples) or a Union Type, in which
case return True if class is a subclass of any entry in classinfo. In any other case, a TypeError exception
is raised.

Changed in version 3.10: classinfo can be a Union Type.

iter (object[, sentinel] )

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the irer-
able protocol (the __iter__ () method), or it must support the sequence protocol (the _ _getitem__ ()
method with integer arguments starting at 0). If it does not support either of those protocols, TypeError is
raised. If the second argument, sentinel, is given, then object must be a callable object. The iterator created in
this case will call object with no arguments for each call toits ___next___ () method; if the value returned is
equal to sentinel, St opIteration will be raised, otherwise the value will be returned.

See also Iterator Types.

One useful application of the second form of iter () is to build a block-reader. For example, reading fixed-
width blocks from a binary database file until the end of file is reached:

from functools import partial
with open('mydata.db', 'rb') as f:
for block in iter (partial (f.read, 64), b''"):
process_block (block)

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

CPython implementation detail: len raises OverflowError on lengths larger than sys.maxsize,
such as range (2 ** 100).

class list ([iterable])
Rather than being a function, 11 st is actually a mutable sequence type, as documented in Lists and Sequence
Types — list, tuple, range.

15



The Python Library Reference, Release 3.10.18

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by 10—
cals () whenitis called in function blocks, but not in class blocks. Note that at the module level, Iocals ()
and globals () are the same dictionary.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables
in parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where
the function inputs are already arranged into argument tuples, see i tertools.starmap ().

max (iterable, *[ key, default])
max (argl, arg2, *args[, key] )
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If
two or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0]
and heapg.nlargest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.
Changed in version 3.8: The key can be None.

class memoryview (object)
Return a “memory view” object created from the given argument. See Memory Views for more information.

min (iterable, *[, key, default])
min (argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned.
If two or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted (iterable, key=keyfunc) [0] and heapqg.
nsmallest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.
Changed in version 3.8: The key can be None.

next (iterator[, default])
Retrieve the next item from the iterator by calling its __next__ () method. If default is given, it is returned
if the iterator is exhausted, otherwise StopIteration is raised.

class object
Return a new featureless object. object is a base for all classes. It has methods that are common to all
instances of Python classes. This function does not accept any arguments.

16 Chapter 2. Built-in Functions



The Python Library Reference, Release 3.10.18

Note: object does not have a ___dict__, so you can’t assign arbitrary attributes to an instance of the
object class.

oct (x)
Convert an integer number to an octal string prefixed with “00”. The result is a valid Python expression. If x
is not a Python int object, it has to definean ___index__ () method that returns an integer. For example:

>>> oct (8)
'0010"

>>> oct (-50)
'-0070"

If you want to convert an integer number to an octal string either with the prefix “00” or not, you can use either
of the following ways.

>>> ! ''% 10, 7 ''% 10

('"Oo12', "12")

>>> format (10, '#o0'), format (10, 'o'")
("0012', '12")

>>> f'{10:40}"'", £'{10:0}"'

('"Ool2', "12")

See also format () for more information.

open (file, mode=7', buffering=- 1, encoding=None, errors=None, newline=None, closefd=True,
opener=None)
Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised. See
tut-files for more examples of how to use this function.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of the file
to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed
when the returned I/O object is closed unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ' r' which means
open for reading in text mode. Other common values are 'w ' for writing (truncating the file if it already exists),
'x ' for exclusive creation, and 'a ' for appending (which on some Unix systems, means that all writes append
to the end of the file regardless of the current seek position). In text mode, if encoding is not specified the
encoding used is platform-dependent: locale.getpreferredencoding (False) is called to get the
current locale encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.)
The available modes are:

Character | Meaning

'r!' open for reading (default)

"w! open for writing, truncating the file first

'x! open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of file if it exists
'b! binary mode

"t text mode (default)

T open for updating (reading and writing)

The default mode is ' r' (open for reading text, a synonym of 'rt'). Modes 'w+"' and 'w+b' open and
truncate the file. Modes ' r+' and 'r+b' open the file with no truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b"' in the mode argument) return contents as byt es objects without any decoding. In text mode
(the default, or when 't ' is included in the mode argument), the contents of the file are returned as st r, the
bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.

17



The Python Library Reference, Release 3.10.18

There is an additional mode character permitted, 'U"', which no longer has any effect, and is considered
deprecated. It previously enabled universal newlines in text mode, which became the default behavior in Python
3.0. Refer to the documentation of the newline parameter for further details.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is
done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass O to switch buffering off (only allowed
in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size
in bytes of a fixed-size chunk buffer. Note that specifying a buffer size this way applies for binary buffered
I/0, but Text IOWrapper (i.e., files opened with mode="r+") would have another buffering. To disable
buffering in Text IOWrapper, consider using the write_through flag for io. Text TOWrapper.
reconfigure (). When no buffering argument is given, the default buffering policy works as follows:

« Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on i 0. DEFAULT BUFFER_SIZE.On
many systems, the buffer will typically be 4096 or 8192 bytes long.

o “Interactive” text files (files for which i satty () returns True) use line buffering. Other text files use
the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent (whatever locale.getpreferredencoding () returns),
but any text encoding supported by Python can be used. See the codecs module for the list of supported
encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be
used in binary mode. A variety of standard error handlers are available (listed under Error Handlers), though
any error handling name that has been registered with codecs. register_error () is also valid. The
standard names include:

e 'strict' toraisea ValueError exception if there is an encoding error. The default value of None
has the same effect.

e 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
e 'replace' causes areplacement marker (such as ' ? ') to be inserted where there is malformed data.

e 'surrogateescape' will represent any incorrect bytes as low surrogate code units ranging from
U+DC80 to U+DCFF. These surrogate code units will then be turned back into the same bytes when the
surrogateescape error handler is used when writing data. This is useful for processing files in an
unknown encoding.

e 'xmlcharrefreplace’ is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference & #nnn; .

e 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

e '"namereplace' (also only supported when writing) replaces unsupported characters with \N{ . . . }
escape sequences.

newline determines how to parse newline characters from the stream. It can be None, ' ', '\n"', '\r', and
"\r\n". It works as follows:

o When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in
the inputcanendin '\n', "\r',or '\r\n', and these are translated into ' \n ' before being returned
to the caller. If itis ' ', universal newlines mode is enabled, but line endings are returned to the caller
untranslated. If it has any of the other legal values, input lines are only terminated by the given string,
and the line ending is returned to the caller untranslated.

o When writing output to the stream, if newline is None, any ' \n' characters written are translated to
the system default line separator, os. Iinesep. If newlineis ' ' or '\n', no translation takes place.
If newline is any of the other legal values, any ' \n' characters written are translated to the given string.

18

Chapter 2. Built-in Functions



The Python Library Reference, Release 3.10.18

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will
be kept open when the file is closed. If a filename is given closefd must be True (the default); otherwise, an
error will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os . open
as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os . open () function to open a file relative to a given
directory:

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener (path, flags):
return os.open (path, flags, dir_fd=dir_f£fd)

(]

>>> with open('spamspam.txt', 'w', opener=opener) as f:

print ('This will be written to somedir/spamspam.txt', file=f)

>>> os.close (dir_fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used
to open a file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a subclass of io. TextIOBase
(specifically i 0. Text TOWrapper). When used to open a file in a binary mode with buffering, the returned
class is a subclass of i0.BufferedIOBase. The exact class varies: in read binary mode, it returns an
io.BufferedReader;in write binary and append binary modes, it returns an io.Bufferediriter,
and in read/write mode, it returns an io.BufferedRandom. When buffering is disabled, the raw stream,
asubclass of 10.RawIOBase, io.FileIO, isreturned.

See also the file handling modules, such as i leinput, io (where open () is declared), os, os.path,
tempfile,and shutil.

Raises an auditing event open with arguments £ile, mode, flags.
The mode and £1lags arguments may have been modified or inferred from the original call.
Changed in version 3.3:
o The opener parameter was added.
o The 'x' mode was added.
e TOError used to be raised, it is now an alias of OSError.
e FileExistsError is now raised if the file opened in exclusive creation mode ('x ") al-
ready exists.
Changed in version 3.4:

¢ The file is now non-inheritable.

Deprecated since version 3.4, removed in version 3.10: The 'U' mode.
Changed in version 3.5:

« If the system call is interrupted and the signal handler does not raise an exception, the function
now retries the system call instead of raising an TnterruptedError exception (see PEP
475 for the rationale).

e The 'namereplace"' error handler was added.

Changed in version 3.6:

« Support added to accept objects implementing os. PathLike.

19



https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.10.18

« On Windows, opening a console buffer may return a subclass of i 0. RawIOBase other than
io.FileIO.

ord (c)

Given a string representing one Unicode character, return an integer representing the Unicode code point of
that character. For example, ord ('a"') returns the integer 97 and ord ('€"') (Euro sign) returns 8364.
This is the inverse of chr ().

pow (base, exp[, mod])

Return base to the power exp; if mod is present, return base to the power exp, modulo mod (computed more
efficiently than pow (base, exp) % mod). The two-argument form pow (base, exp) is equivalent to
using the power operator: base* *exp.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, pow (10, 2) returns 100, but pow (10, -2) returns 0.01. For a negative base of type
int or f1loat and a non-integral exponent, a complex result is delivered. For example, pow (-9, 0.5)
returns a value close to 3 7.

For int operands base and exp, if mod is present, mod must also be of integer type and mod must be nonzero.
If mod is present and exp is negative, base must be relatively prime to mod. In that case, pow (inv_base,
—exp, mod) is returned, where inv_base is an inverse to base modulo mod.

Here’s an example of computing an inverse for 38 modulo 97:

>>> pow (38, -1, mod=97)
23

>>> 23 * 38 % 97 ==
True

Changed in version 3.8: For int operands, the three-argument form of pow now allows the second argument
to be negative, permitting computation of modular inverses.

Changed in version 3.8: Allow keyword arguments. Formerly, only positional arguments were supported.

print (*objects, sep="", end="\n', file=None, flush=False)

Print objects to the text stream file, separated by sep and followed by end. sep, end, file, and flush, if present,
must be given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no objects are given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None, sys.
stdout will be used. Since printed arguments are converted to text strings, print () cannot be used with
binary mode file objects. For these, use file.write (...) instead.

Output buffering is usually determined by file. However, if flush is true, the stream is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

class property (fget=None, fset=None, fdel=None, doc=None)

Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function
for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def _ init_ (self):
self. x = None

def getx(self):

(continues on next page)

20

Chapter 2. Built-in Functions




The Python Library Reference, Release 3.10.18

(continued from previous page)

return self._x

def setx(self, wvalue):
self. x = value

def delx(self):
del self._x

property (getx, setx, delx, "I'm the 'x' property.")

If c is an instance of C, c . x will invoke the getter, c.x = value will invoke the setter, and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fger’s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot:
def _ init__ (self):
self._voltage

= 100000
@property
def voltage(self):
"""Get the current voltage."""
return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with the
same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

class C:
def init_ (self):
self._x = None

@property

def x(self):
"""I'm the 'x' property."""
return self._x

@x.setter
def x(self, wvalue):
self._x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original property (x in this case.)

The returned property object also has the attributes fget, £set, and £del corresponding to the constructor
arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

class range (stop)

class range (start, stop[, step] )
Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and
Sequence Types — list, tuple, range.

21



The Python Library Reference, Release 3.10.18

repr (object)
Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval () ; otherwise,
the representation is a string enclosed in angle brackets that contains the name of the type of the object together
with additional information often including the name and address of the object. A class can control what this
function returns for its instances by defining a _ repr__ () method. If sys.displayhook () is not
accessible, this function will raise Runt imeError.

reversed (seq)
Return a reverse iferator. seq must be an object which has a __reversed__ () method or supports the
sequence protocol (the _ len__ () method and the _ getitem__ () method with integer arguments
starting at 0).

round (number[, ndigits] )
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns
the nearest integer to its input.

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example,
both round (0.5) and round (-0.5) are 0,and round (1.5) is 2). Any integer value is valid for ndigits
(positive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise, the return
value has the same type as number.

For a general Python object number, round delegates to number.___round__.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives
2. 67 instead of the expected 2 . 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t
be represented exactly as a float. See tut-fp-issues for more information.

class set ([iterable])
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set and
Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, 1ist, tuple, and dict classes, as well as the col—
lections module.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string, and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided
the object allows it. For example, setattr (x, 'foobar', 123) isequivalenttox.foobar = 123.

name need not be a Python identifier as defined in identifiers unless the object chooses to enforce that, for
example in a custom ___getattribute_ () orvia __slots__. An attribute whose name is not an
identifier will not be accessible using the dot notation, but is accessible through getattr () etc..

Note: Since private name mangling happens at compilation time, one must manually mangle a private at-
tribute’s (attributes with two leading underscores) name in order to set it with setattr ().

class slice (stop)

class slice (start, stop[, step])
Return a slice object representing the set of indices specified by range (start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop, and
step which merely return the argument values (or their default). They have no other explicit functionality;
however, they are used by NumPy and other third-party packages. Slice objects are also generated when
extended indexing syntax is used. For example: a [start:stop:step] ora[start:stop, 1i]. See
itertools.islice () for an alternate version that returns an iterator.

sorted (iterable, /, *, key=None, reverse=False)
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

22 Chapter 2. Built-in Functions



The Python Library Reference, Release 3.10.18

key specifies a function of one argument that is used to extract a comparison key from each element in iterable
(for example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

The sort algorithm uses only < comparisons between items. While definingan ___1t__ () method will suffice
for sorting, PEP 8 recommends that all six rich comparisons be implemented. This will help avoid bugs when
using the same data with other ordering tools such as max () that rely on a different underlying method. Im-
plementing all six comparisons also helps avoid confusion for mixed type comparisons which can call reflected
the __gt__ () method.

For sorting examples and a brief sorting tutorial, see sortinghowto.

@staticmethod
Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f (argl, arg2, ...):

The @staticmethod form is a function decorator — see function for details.

A static method can be called either on the class (such as C. f ()) or on an instance (such as C () . £ ()).
Moreover, they can be called as regular functions (such as £ () ).

Static methods in Python are similar to those found in Java or C++. Also, see c1assmethod () for a variant
that is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something with its
result. This is needed in some cases where you need a reference to a function from a class body and you want
to avoid the automatic transformation to instance method. For these cases, use this idiom:

def regular_function():

class C:
method = staticmethod (regular_function)

For more information on static methods, see types.

Changed in version 3.10: Static methods now inherit the method attributes (__module_ , _ name__ |,
__qualname_ ,__doc__and _ _annotations_ ), have a new __ wrapped___ attribute, and are
now callable as regular functions.

class str (object=")
class str (object=b", encoding="utf-8', errors='strict’)
Return a st r version of object. See st r () for details.

str is the built-in string class. For general information about strings, see Text Sequence Type — str.

sum (iterable, /, start=0)
Sums start and the items of an iterable from left to right and returns the total. The iferable’s items are normally
numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence
of strings is by calling ' ' . join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using i tertools.chain ().

Changed in version 3.8: The start parameter can be specified as a keyword argument.

23


https://www.python.org/dev/peps/pep-0008

The Python Library Reference, Release 3.10.18

class super ( [type[, object-or-type] ] )

Return a proxy object that delegates method calls to a parent or sibling class of #ype. This is useful for accessing
inherited methods that have been overridden in a class.

The object-or-type determines the method resolution order to be searched. The search starts from the class right
after the type.

For example, if __mro___ of object-or-typeisD -> B —> C —> A —> object and the value of type is
B, then super () searches C —> A -> object.

The _ _mro__ attribute of the object-or-type lists the method resolution search order used by both
getattr () and super (). The attribute is dynamic and can change whenever the inheritance hierarchy is
updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This
use case is unique to Python and is not found in statically compiled languages or languages that only support
single inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes im-
plement the same method. Good design dictates that such implementations have the same calling signature in
every case (because the order of calls is determined at runtime, because that order adapts to changes in the
class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super () .method (arg) # This does the same thing as:
# super (C, self).method(arg)

In addition to method lookups, super () also works for attribute lookups. One possible use case for this is
calling descriptors in a parent or sibling class.

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such
as super () .__getitem__ (name). It does so by implementing its own __getattribute__ ()
method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class
being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

class tuple ( [iterable] )

Rather than being a function, tuple is actually an immutable sequence type, as documented in 7uples and
Sequence Types — list, tuple, range.

class type (object)
class type (name, bases, dict, **kwds)

With one argument, return the type of an object. The return value is a type object and generally the same object
as returned by object.__class_ .

The isinstance () built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class statement.
The name string is the class name and becomes the ___name___ attribute. The bases tuple contains the base
classes and becomes the __bases___ attribute; if empty, ob ject, the ultimate base of all classes, is added.

24

Chapter 2. Built-in Functions



https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.10.18

The dict dictionary contains attribute and method definitions for the class body; it may be copied or wrapped
before becoming the ___dict___ attribute. The following two statements create identical t ype objects:

>>> class X:
a =1

>>> X = type('X', (), dict(a=1))

See also Type Objects.

Keyword arguments provided to the three argument form are passed to the appropriate metaclass machinery
(usually __init_subclass__ () ) in the same way that keywords in a class definition (besides metaclass)
would.

See also class-customization.

Changed in version 3.6: Subclasses of type which don’t override type._ _new__ may no longer use the
one-argument form to get the type of an object.

vars ( [object] )
Returnthe ___dict___ attribute for a module, class, instance, or any other object witha ___dict___ attribute.

Objects such as modules and instances have an updateable _ dict__ attribute; however, other ob-
jects may have write restrictions on their _ dict__ attributes (for example, classes use a types.
MappingProxyType to prevent direct dictionary updates).

Without an argument, vars () acts like Jocals (). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

A TypeError exception is raised if an object is specified but it doesn’t have a __dict__ attribute (for
example, if its class defines the __slots___ attribute).

zip ( *iterables, strict=False)
Iterate over several iterables in parallel, producing tuples with an item from each one.

Example:

>>> for item in zip([1, 2, 3], ['sugar', 'spice', 'everything nice']):
print (item)

(1, 'sugar')
(2, 'spice')
(3, 'everything nice')

More formally: zip () returns an iterator of tuples, where the i-th tuple contains the i-th element from each
of the argument iterables.

Another way to think of zip () is that it turns rows into columns, and columns into rows. This is similar to
transposing a matrix.
zip () is lazy: The elements won’'t be processed until the iterable is iterated on, e.g. by a for loop or by

wrappingina 1ist.

One thing to consider is that the iterables passed to zip () could have different lengths; sometimes by de-
sign, and sometimes because of a bug in the code that prepared these iterables. Python offers three different
approaches to dealing with this issue:

o By default, zip () stops when the shortest iterable is exhausted. It will ignore the remaining items in
the longer iterables, cutting off the result to the length of the shortest iterable:

>>> list(zip(range(3), ['fee', 'fi', 'fo', 'fum']))
[(0, '"fee'), (1, '"fi"), (2, '"fo')]

e zip () is often used in cases where the iterables are assumed to be of equal length. In such cases, it’s
recommended to use the st rict=True option. Its output is the same as regular zip ():

25



https://en.wikipedia.org/wiki/Transpose

The Python Library Reference, Release 3.10.18

>>> list(zip(('a', 'b', 'c'), (1, 2, 3), strict=True))
[(ra', 1), ('b', 2), ('c', 3)]

Unlike the default behavior, it raises a ValueError if one iterable is exhausted before the others:

>>> for item in zip(range(3), ['fee', 'fi', 'fo', 'fum'], strict=True):
print (item)

(0, 'fee')
(1, '"fi'")
(2, 'fo")
T

raceback (most recent call last):

ValueError: zip() argument 2 is longer than argument 1

Without the st rict=True argument, any bug that results in iterables of different lengths will be si-
lenced, possibly manifesting as a hard-to-find bug in another part of the program.

« Shorter iterables can be padded with a constant value to make all the iterables have the same length. This
isdone by itertools.zip_longest ().

Edge cases: With a single iterable argument, zip () returns an iterator of 1-tuples. With no arguments, it
returns an empty iterator.

Tips and tricks:

o The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for cluster-
ing a data series into n-length groups using zip (* [iter (s) ] *n, strict=True). This repeats
the same iterator n times so that each output tuple has the result of n calls to the iterator. This has the
effect of dividing the input into n-length chunks.

e zip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> vy = [4, 5, 6]

>>> list(zip(x, Vy))

[(1, 4), (2, 5), (3, 6)]

>>> x2, y2 = zip(*zip(x, Vv))
>>> x == list(x2) and y == list (y2)
True

Changed in version 3.10: Added the st rict argument.

__import__ (name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike import1ib.
import_module ().

This function is invoked by the import statement. It can be replaced (by importing the bui 1t ins module
and assigning to builtins.__import_ ) in order to change semantics of the import statement, but
doing so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same
goals and does not cause issues with code which assumes the default import implementation is in use. Direct
use of ___import__ () isalso discouraged in favor of importlib. import_module ().

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at
all and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the
module calling ___import__ () (see PEP 328 for the details).

26

Chapter 2. Built-in Functions


https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0328

The Python Library Reference, Release 3.10.18

When the name variable is of the form package.module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument
is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __import__ ('spam', globals(), locals(), [1, 0)

The statement import spam.ham results in this call:

spam = __import__ ('spam.ham', globals (), locals(), [], 0)

Note how ___import__ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = _ _import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage']l, 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam. ham module is returned from ___import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value
to 0).

Changed in version 3.9: When the command line options —E or —I are being used, the environment variable
PYTHONCASEOK is now ignored.

27




The Python Library Reference, Release 3.10.18

28 Chapter 2. Built-in Functions



CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the hooI type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
An object frequently used to represent the absence of a value, as when default arguments are not passed to
a function. Assignments to None are illegal and raise a SyntaxError. None is the sole instance of the
NoneType type.

NotImplemented
A special value which should be returned by the binary special methods (e.g. __eq__ (), 1t (),
_add__ (), rsub__ (), etc.) to indicate that the operation is not implemented with respect to the
other type; may be returned by the in-place binary special methods (e.g. __ _imul__ (), _ _iand__ (),

etc.) for the same purpose. It should not be evaluated in a boolean context. Not Implemented is the sole
instance of the t ypes.Not ImplementedType type.

Note: When a binary (or in-place) method returns Not Implemented the interpreter will try the reflected
operation on the other type (or some other fallback, depending on the operator). If all attempts return Not Im—
plemented, the interpreter will raise an appropriate exception. Incorrectly returning Not Implemented
will result in a misleading error message or the Not Implemented value being returned to Python code.

See Implementing the arithmetic operations for examples.

Note: NotImplementedError and NotImplemented are notinterchangeable, even though they have
similar names and purposes. See Not ImplementedError for details on when to use it.

Changed in version 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of
Python.

Ellipsis
The same as the ellipsis literal “. . .”. Special value used mostly in conjunction with extended slicing syntax
for user-defined container data types. E11ipsis is the sole instance of the t ypes.E11ipsisType type.

__debug___
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and ___debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

29



The Python Library Reference, Release 3.10.18

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not
be used in programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called,
raise SystemEx1t with the specified exit code.

copyright
credits
Objects that when printed or called, print the text of copyright or credits, respectively.

license
Object that when printed, prints the message “Type license() to see the full license text”, and when called,
displays the full license text in a pager-like fashion (one screen at a time).

30 Chapter 3. Built-in Constants



CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared for
equality, tested for truth value, and converted to a string (with the repr () function or the slightly different st r ()
function). The latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i f or whi 1e condition or as operand of the Boolean operations
below.

By default, an object is considered true unless its class defines either a ___bool__ () method that returns False
ora___len () method that returns zero, when called with the object.' Here are most of the built-in objects
considered false:

o constants defined to be false: None and False.
« zero of any numeric type: 0, 0.0, 0j, Decimal (0),Fraction (0, 1)
o empty sequences and collections: ' ', (), [], {}, set (), range (0)

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X Or y if x is true, then x, else y €))]
x and vy | if xis false, then x, else y 2)
not x if x is false, then True, else False | (3)

Notes:

(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.

! Additional information on these special methods may be found in the Python Reference Manual (customization).

31



The Python Library Reference, Release 3.10.18

(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

(3) not has a lower priority than non-Boolean operators, so not a == b isinterpreted as not (a == b),
and a == not b is asyntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= zisequivalenttox < y
and y <= z,except that y is evaluated only once (but in both cases z is not evaluated at all when x < vy is found
to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

1= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. The == operator is always defined
but for some object types (for example, class objects) is equivalent to is. The <, <=, > and >= operators are only
defined where they make sense; for example, they raise a TypeError exception when one of the arguments is a
complex number.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq__ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __1t__ (),__le_ (),__gt__ (),and __ge__ () (in general,
_1t__ () and __eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects
and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported by types that are iterable or
implement the __contains__ () method.

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: infegers, floating point numbers, and complex numbers. In addition, Booleans
are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using
double in C; information about the precision and internal representation of floating point numbers for the machine
on which your program is running is available in sys. f1oat_ info. Complex numbers have a real and imaginary
part, which are each a floating point number. To extract these parts from a complex number z, use z.real and
z . imag. (The standard library includes the additional numeric types fractions.Fraction, for rationals, and
decimal.Decimal, for floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an
exponent sign yield floating point numbers. Appending ' j ' or 'J' to a numeric literal yields an imaginary number
(a complex number with a zero real part) which you can add to an integer or float to get a complex number with real
and imaginary parts.

32 Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point,
which is narrower than complex. A comparison between numbers of different types behaves as though the exact
values of those numbers were being compared.”

The constructors int (), f1oat (),and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations (for priorities of the operations, see operator-

summary):
Operation Result Notes| Full documen-
tation
X +y sum of x and y
X -y difference of x and y
X *y product of x and y
x /vy quotient of x and y
x //y floored quotient of x and y D
X %y remainder of x / y 2)
-x x negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)®6)| int ()
float (x) x converted to floating point @) 6)| float ()
complex (re, a complex number with real part re, imaginary part im. im | (6) complex ()
im) defaults to zero.
c. conjugate of the complex number ¢
conjugate ()
divmod (x, V) the pair (x // vy, x % y) 2) divmod ()
pow (X, V) X to the power y 5) pow ()
X ** y X to the power y (®)]
Notes:

(1) Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//2is 0, (-=1) //2is=1,1// (-2)
is-1,and (-1)// (-2) is O.

(2) Not for complex numbers. Instead convert to floats using abs () if appropriate.

(3) Conversion from float to int truncates, discarding the fractional part. See functions math. floor ()
and math.ceil () for alternative conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

(5) Python defines pow (0,

0) and O ** 0 tobe 1, as is common for programming languages.

(6) The numeric literals accepted include the digits O to 9 or any Unicode equivalent (code points with the Nd
property).

See https://www.unicode.org/Public/13.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of
code points with the Nd property.

All numbers.Real types (int and f1oat) also include the following operations:

Operation

Result

math.trunc (x)

x truncated to Tntegral

round(x[, n])

x rounded to n digits, rounding half to even. If n is omitted, it defaults to 0.

math.floor (x)

the greatest Tntegral <=x

math.ceil (x)

the least Tntegral >=x

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex

33


https://www.unicode.org/Public/13.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.10.18

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out
in two’s complement with an infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bitwise operations sorted in ascending priority:

Notes:

Operation | Result Notes
X |y bitwise or of x and y %)

X Ny bitwise exclusive or of xand y | (4)

X &y bitwise and of x and y 4)

x << n x shifted left by n bits (H(©2)
X >> n x shifted right by n bits (H3)
~X the bits of x inverted

(1) Negative shift counts are illegal and cause a ValueError to be raised.

(2) A left shift by #n bits is equivalent to multiplication by pow (2, n).

(3) A right shift by n bits is equivalent to floor division by pow (2, n).

(4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement representa-

tion (a working bit-width of 1 + max (x.bit_length(), y.bit_length()) or more) is sufficient
to get the same result as if there were an infinite number of sign bits.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers. Integral abstract base class. In addition, it provides a few more methods:

int.bit_length()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin(n)
'-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, then x .bit_length () is the unique positive integer k such that 2** (k-
1) <= abs(x) < 2**k. Equivalently, when abs (x) is small enough to have a correctly rounded
logarithm, then k = 1 + int (log(abs(x), 2)).If xiszero, then x.bit_length () returns 0.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101") > 6

New in version 3.1.

34

Chapter 4. Built-in Types




The Python Library Reference, Release 3.10.18

int.bit_count ()
Return the number of ones in the binary representation of the absolute value of the integer. This is also known
as the population count. Example:

>> n = 19

>>> bin(n)

'0b10011"

>>> n.bit_count ()

3

>>> (-n) .bit_count ()
3

Equivalent to:

def bit_count (self):
return bin(self) .count ("1")

New in version 3.10.

int.to_bytes (length, byteorder, *, signed=False)
Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big')

b'\x04\x00"

>>> (1024) .to_bytes (10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='big', signed=True)
b\XfA\XEE\XEA\XEA\XEF\XEE\XEE\xEff\xfc\x00"

>>> x = 1000

>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03"'

The integer is represented using length bytes. An OverflowError israised if the integer is not representable
with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the
most significant byte is at the beginning of the byte array. If byteorderis "1itt1le", the most significant byte
is at the end of the byte array. To request the native byte order of the host system, use sys.byteorder as
the byte order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed isFalse
and a negative integer is given, an OverflowError is raised. The default value for signed is False.

New in version 3.2.

classmethod int.from_bytes (bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes (b'\x00\x10', byteorder='big'")

16

>>> int.from_bytes (b'\x00\x10', byteorder='little")

4096

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=False)
64512

>>> int.from_bytes ([255, 0, 0], byteorder='big')

16711680

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the
most significant byte is at the beginning of the byte array. If byteorderis "1ittle", the most significant byte

4.4. Numeric Types — int, float, complex 35



The Python Library Reference, Release 3.10.18

is at the end of the byte array. To request the native byte order of the host system, use sys.byteorder as
the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.
New in version 3.2.

int.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original integer and with a positive denominator.
The integer ratio of integers (whole numbers) is always the integer as the numerator and 1 as the denominator.

New in version 3.8.

4.4.3 Additional Methods on Float

The float type implements the numbers . Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.
Raises OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0) .is_integer()
True

>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

float.hex()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent.

classmethod float.fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace.

Note that f1oat .hex () is an instance method, while float . fromhex () is a class method.

A hexadecimal string takes the form:

[sign] ['0x"'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of f1oat.hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format
character or Java’s Double.toHexString are accepted by f1loat . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3 . a7p10 represents the floating-point number (3
+ 10./16 + 7./16**2) * 2.0**10,0r 3740.0:

>>> float.fromhex ('0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

36 Chapter 4. Built-in Types




The Python Library Reference, Release 3.10.18

>>> float.hex (3740.0)
'0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x
== vy (seethe _ _hash__ () method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number,
and hence applies to all instances of int and fractions.Fraction, and all finite instances of f1oat and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P
is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedisP = 2**31 - 1 on machines with 32-bit C longs
andP = 2**61 - 1 on machines with 64-bit C longs.

Here are the rules in detail:

« If x = m / nisanonnegative rational number and n is not divisible by P, define hash (x) asm *
invmod (n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

e If x = m / n isa nonnegative rational number and n is divisible by P (but m is not) then n has no
inverse modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value
sys.hash_info.inf.

e If x = m / nisanegative rational number define hash (x) as —hash (-x) . If the resulting hash is -1,
replace it with —2.

o The particular values sys.hash_info.inf and ~sys.hash_info.inf are used as hash values for
positive infinity or negative infinity (respectively).

e For a complex number z, the hash values of the real and imaginary parts are combined by comput-
ing hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2**sys.
hash_info.width so that it lies in range (-2** (sys.hash_info.width - 1), 2**(sys.
hash_info.width - 1)). Again, if the result is -1, it’s replaced with —2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash
of a rational number, f1oat, or complex:

import sys, math

def hash_fraction(m, n):
""r"Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

men

P = sys.hash_info.modulus
# Remove common factors of P. (Unnecessary if m and n already coprime.)
whilem $ P == n $ P ==
m, n m// P, n// P
if n % P ==
hash_value = sys.hash_info.inf
else:

# Fermat's Little Theorem: pow(n, P-1, P) is 1, so
# pow(n, P-2, P) gives the inverse of n modulo P.

hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
if m < O:

hash_value = -hash_value
if hash_value == -1:

(continues on next page)

4.4. Numeric Types — int, float, complex 37




The Python Library Reference, Release 3.10.18

(continued from previous page)

hash_value = -2
return hash_value

def hash_ float (x):
"""Compute the hash of a float x."""

if math.isnan (x):

return object.__hash__ (x)
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

def hash_complex(z):
"""Compute the hash of a complex number z."""

hash_value = hash_float (z.real) + sys.hash_info.imag * hash_float (z.imaqg)
# do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)

hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:
hash_value = -2

return hash_value

4.5 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iterable support:

container.__iter_ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for
those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure
which supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of
the type structure for Python objects in the Python/C APL

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter__ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APL

iterator.__next__ ()
Return the next item from the iterator. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
APL

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s ___next__ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

38 Chapter 4. Built-in Types




The Python Library Reference, Release 3.10.18

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (technically,
a generator object) supplying the __iter_ () and _ _next__ () methods. More information about generators
can be found in the documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for process-
ing of binary data and text strings are described in dedicated sections.

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations on
custom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and ¢ are sequences of the same
type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and
* (repetition) operations have the same priority as the corresponding numeric operations.”

Operation Result Notes
x in s True if an item of s is equal to x, else False (D)

x not in s False if an item of s is equal to x, else True (1)

s + t the concatenation of s and ¢ ©)(7)
S * norn * s equivalent to adding s to itself n times )7
s[1i] ith item of s, origin O 3)
s[i:J] slice of s from i to j 3@
s[i:3:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index (x[, i[, | index of the first occurrence of x in s (at or after index i and before index | (8)
j11) )

s.count (x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically
by comparing corresponding elements. This means that to compare equal, every element must compare equal and the
two sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Forward and reversed iterators over mutable sequences access values using an index. That index will continue to
march forward (or backward) even if the underlying sequence is mutated. The iterator terminates only when an
IndexErrorora StopIteration isencountered (or when the index drops below zero).

Notes:

(1) While the in and not in operations are used only for simple containment testing in the general case, some
specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:

>>> llgg" in "eggs"
True

3 They must have since the parser can't tell the type of the operands.

4.6. Sequence Types — list, tuple, range 39



The Python Library Reference, Release 3.10.18

2

3)

4)

®)

(6)

)

®)

Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note that
items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python
programmers; consider:

>>> lists = [[]] * 3
>>> lists

(01, 1, (11

>>> lists[0].append(3)
>>> lists

(es1, 31, (311

What has happened is that [ [] ] is a one-element list containing an empty list, so all three elements of [ [] ]
* 3 are references to this single empty list. Modifying any of the elements of 11 st s modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for 1 in range (3)]
>>> lists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

(31, s1, [71]

Further explanation is available in the FAQ entry fag-multidimensional-list.

If i or j is negative, the index is relative to the end of sequence s: len (s) + iorlen(s) + jissubstituted.
But note that —0 is still 0.

The slice of s from i to j is defined as the sequence of items with index k suchthat i <= k < j.Ifiorjis
greater than 1len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s).
If i is greater than or equal to j, the slice is empty.

The slice of s from i to j with step k is defined as the sequence of items with index x = i + n*k such that
0 <= n < (j-1i)/k. In other words, the indices are i, i+k, i+2*k, i+3*k and so on, stopping when
Jj is reached (but never including j). When k is positive, i and j are reduced to len (s) if they are greater.
When k is negative, i and j are reduced to 1en (s) — 1 if they are greater. If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is
treated like 1.

Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime
cost, you must switch to one of the alternatives below:

« if concatenating st r objects, you can build a list and use str. join () at the end or else write to an
io.StringIO instance and retrieve its value when complete

« if concatenating bytes objects, you can similarly use bytes. join () or io.BytesIO,or you can
do in-place concatenation with a bytearray object. bytearray objects are mutable and have an
efficient overallocation mechanism

« if concatenating t uple objects, extend a 11 st instead
« for other types, investigate the relevant class documentation

Some sequence types (such as range) only support item sequences that follow specific patterns, and hence
don’t support sequence concatenation or repetition.

index raises ValueError when x is not found in s. Not all implementations support passing the additional
arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra
arguments is roughly equivalent to using s [i: 7] .index (x), only without copying any data and with the
returned index being relative to the start of the sequence rather than the start of the slice.

40

Chapter 4. Built-in Types




The Python Library Reference, Release 3.10.18

4.6.2 Immutable Sequence Types
The only operation that immutable sequence types generally implement that is not also implemented by mutable
sequence types is support for the hash () built-in.

This support allows immutable sequences, such as t up1e instances, to be used as di ct keys and stored in set and
frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collections.abc.
MutableSequence ABC is provided to make it easier to correctly implement these operations on custom se-
quence types.

In the table s is an instance of a mutable sequence type, 7 is any iterable object and x is an arbitrary object that meets
any type and value restrictions imposed by s (for example, bytearray only accepts integers that meet the value
restriction 0 <= x <= 255).

Operation Result Notes

s[i] = x item i of s is replaced by x

s[i:j] =t slice of s from i to j is replaced by the contents of the iterable ¢

del s[i:7j] sameas s[i:3] = []

s[i:j:k] =t the elements of s [1i:7:k] are replaced by those of ¢ @))

del s[i:j:k] removes the elements of s [i:7:k] from the list

s.append (x) appends x to the end of the sequence (same as s[len(s) :len(s)] =

[x])

s.clear () removes all items from s (same as del s[:]) )

s.copy () creates a shallow copy of s (same as s[:]) ®))

s.extend (t) or s | extends s with the contents of ¢ (for the most part the same as

+= t s[len(s):len(s)] = t)

S *=n updates s with its contents repeated n times (6)

s.insert (i, x) inserts x into s at the index given by i (same as s [i:1] = [x])

s .pop () or s. | retrieves the item at i and also removes it from s )

pop (1)

S.remove (X) remove the first item from s where s [1] is equal to x 3)

s.reverse () reverses the items of s in place 4)
Notes:

(1) ¢ must have the same length as the slice it is replacing.
(2) The optional argument i defaults to —1, so that by default the last item is removed and returned.
(3) remove () raises ValueError when x is not found in s.

(4) The reverse () method modifies the sequence in place for economy of space when reversing a large se-
quence. To remind users that it operates by side effect, it does not return the reversed sequence.

(5) clear () and copy () are included for consistency with the interfaces of mutable containers that don’t
support slicing operations (such as dict and set). copy () is not part of the collections.abc.
MutableSequence ABC, but most concrete mutable sequence classes provide it.

New in version 3.3: clear () and copy () methods.

(6) The value n is an integer, or an object implementing ___index__ (). Zero and negative values of x clear the
sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n
under Common Sequence Operations.

4.6. Sequence Types — list, tuple, range 41



The Python Library Reference, Release 3.10.18

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of
similarity will vary by application).

class list( [itemble] )

Lists may be constructed in several ways:
o Using a pair of square brackets to denote the empty list: [ ]
« Using square brackets, separating items with commas: [a], [a, b, c]
» Using a list comprehension: [x for x in iterable]
« Using the type constructor: 1ist () or list (iterable)

The constructor builds a list whose items are the same and in the same order as iterable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is
made and returned, similar to iterable[:]. Forexample, 1ist ('abc') returns ['a', 'b', 'c']
and 1ist ( (1, 2, 3) ) returns [1, 2, 3].If noargument is given, the constructor creates a new
empty list, [].

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:

sort (*, key=None, reverse=False)
This method sorts the list in place, using only < comparisons between items. Exceptions are not sup-
pressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be
left in a partially modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element
(for example, key=str.lower). The key corresponding to each item in the list is calculated once
and then used for the entire sorting process. The default value of None means that list items are sorted
directly without calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key
function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted () to
explicitly request a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or
even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the
duration, and raises ValueError if it can detect that the list has been mutated during a sort.

42

Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples pro-
duced by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homogeneous
data is needed (such as allowing storage in a set or dict instance).

class tuple ([iterable] )
Tuples may be constructed in a number of ways:

« Using a pair of parentheses to denote the empty tuple: ()

« Using a trailing comma for a singleton tuple: a, or (a, )

o Separating items with commas: a, b, cor (a, b, c)

e Using the tuple () built-in: tuple () or tuple (iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iferable is already a tuple, it is
returned unchanged. For example, tuple ('abc') returns ('a', 'b', 'c') and tuple( [1, 2,
3] ) returns (1, 2, 3).If noargument is given, the constructor creates a new empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional,
except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, £ (a, b,
c) is a function call with three arguments, while £ ( (a, b, c)) isa function call with a 3-tuple as the sole
argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number
of times in for loops.

class range (stop)

class range (start, stop[, step] )
The arguments to the range constructor must be integers (either built-in int or any object that implements
the __index__ () special method). If the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r [1] = start + step*i
where i >= Oandr[i] < stop.

For a negative step, the contents of the range are still determined by the formular [1i] = start + step*i,
but the constraintsare i >= Oandr[i] > stop.

A range object will be empty if r [0] does not meet the value constraint. Ranges do support negative indices,
but these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as
len ())may raise OverflowError

Range examples:

>>> list (range (10))

o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

(continues on next page)

4.6. Sequence Types — list, tuple, range 43



The Python Library Reference, Release 3.10.18

(continued from previous page)

>>> list (range (0, -10, -1))
[Or _11 _21 _37 _41 _51 _67 _71 _81 _91
>>> list (range (0))

>>> list (range (1, 0))

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact
that range objects can only represent sequences that follow a strict pattern and repetition and concatenation
will usually violate that pattern).

start
The value of the start parameter (or 0 if the parameter was not supplied)

stop
The value of the sfop parameter

step
The value of the step parameter (or 1 if the parameter was not supplied)

The advantage of the range type over a regular 1 ist or tuple is that a range object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and
step values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range (0, 20, 2)
>>> r

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare equal
might have different start, stop and step attributes, for example range (0) == range (2, 1, 3) or
range (0, 3, 2) == range(0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test i nt objects for
membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘=="and ‘=" to compare range objects based on the sequence of values they define
(instead of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.
See also:

« The linspace recipe shows how to implement a lazy version of range suitable for floating point applications.

44 Chapter 4. Built-in Types



https://code.activestate.com/recipes/579000/

The Python Library Reference, Release 3.10.18

4.7 Text Sequence Type — str

Textual data in Python is handled with st r objects, or strings. Strings are immutable sequences of Unicode code
points. String literals are written in a variety of ways:

« Single quotes: 'allows embedded "double" quotes'
e Double quotes: "allows embedded 'single' quotes"
o Triple quoted: ' ' 'Three single quotes''',"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted
to a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”
prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st r constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty
string s, s[0] == s[0:1].

There is also no mutable string type, but str. join () or io.StringIO can be used to efficiently construct
strings from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted
on string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

class str (object=")

class str (object=b", encoding="utf-8', errors='strict’)
Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior
of str () depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, str (object) returns type (object) .__str__ (object),
which is the “informal” or nicely printable string representation of object. For string objects, this is the string
itself. If object does nothavea __str__ () method, then st () falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytesor bytearray).
In this case, if object is a bytes (or bytearray) object, then str (bytes, encoding, errors)
is equivalent to bytes.decode (encoding, errors). Otherwise, the bytes object underlying the
buffer object is obtained before calling bytes. decode (). See Binary Sequence Types — bytes, bytearray,
memoryview and bufferobjects for information on buffer objects.

Passing a bytes object to st () without the encoding or errors arguments falls under the first case of
returning the informal string representation (see also the —b command-line option to Python). For example:

>>> str(b'Zoot!")
"blzoot! ™

For more information on the st r class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the f-strings and Format String Syntax sections. In addition,
see the Text Processing Services section.

4.7. Text Sequence Type — str 45



The Python Library Reference, Release 3.10.18

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see
str.format (), Format String Syntax and Custom String Formatting) and the other based on C printf style
formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the
cases it can handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various
text related utilities (including regular expression support in the re module).

str.capitalize ()

Return a copy of the string with its first character capitalized and the rest lowercased.

Changed in version 3.8: The first character is now put into titlecase rather than uppercase. This means that
characters like digraphs will only have their first letter capitalized, instead of the full character.

str.casefold()

Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions
in a string. For example, the German lowercase letter ' 3 ' is equivalent to "ss". Since it is already lowercase,
lower () would do nothing to '3 '; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.

New in version 3.3.

str.center ( width[, fillchar ] )

Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII
space). The original string is returned if width is less than or equal to 1len (s) .

str.count (sub[, start[, end] ] )

Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional argu-
ments start and end are interpreted as in slice notation.

If sub is empty, returns the number of empty strings between characters which is the length of the string plus
one.

str.encode (encoding="utf-8', errors='strict’)

Return the string encoded to bytes.
encoding defaults to 'ut £-8"'; see Standard Encodings for possible values.

errors controls how encoding errors are handled. If 'strict' (the default), a UnicodeError excep-
tion is raised. Other possible values are ' ignore', 'replace’, 'xmlcharrefreplace’, 'back-
slashreplace' and any other name registered via codecs. register_error (). See Error Handlers
for details.

For performance reasons, the value of errors is not checked for validity unless an encoding error actually occurs,
Python Development Mode is enabled or a debug build is used.

Changed in version 3.1: Added support for keyword arguments.

Changed in version 3.9: The value of the errors argument is now checked in Python Development Mode and in
debug mode.

str.endswith (suﬁ‘ix[, start[, end] ] )

Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

str.expandtabs (fabsize=8)

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. Tab positions occur every tabsize characters (default is 8, giving tab
positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string

46

Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

is examined character by character. If the character is a tab (\ t), one or more space characters are inserted in
the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If
the character is a newline (\n) or return (\r), it is copied and the current column is reset to zero. Any other
character is copied unchanged and the current column is incremented by one regardless of how the character
is represented when printed.

>>> '01\t012\t0123\t01234"' .expandtabs ()

'01 012 0123 01234"
>>> '01\t012\t0123\t01234"' .expandtabs (4)
'01 012 0123 01234"

str.find (sub[, start[, end] ])
Return the lowest index in the string where substring sub is found within the slice s [start : end]. Optional
arguments start and end are interpreted as in slice notation. Return —1 if sub is not found.

Note: The £ind () method should be used only if you need to know the position of sub. To check if sub is
a substring or not, use the in operator:

>>> 'Py' in 'Python'
True

str.format (*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces { }. Each replacement field contains either the numeric index of a
positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement
field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 1is ".format (1+2)
'The sum of 1 + 2 is 3!

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

Note: When formatting a number (int, float, complex, decimal.Decimal and subclasses) with
the n type (ex: '{:n}"'.format (1234)), the function temporarily sets the LC_CTYPE locale to the
LC_NUMERIC locale to decode decimal_point and thousands_sep fields of 1localeconv () if
they are non-ASCII or longer than 1 byte, and the LC_NUMERIC locale is different than the LC_CTYPE
locale. This temporary change affects other threads.

Changed in version 3.7: When formatting a number with the n type, the function sets temporarily the
LC_CTYPE locale to the LC_NUMERIC locale in some cases.

str.format_map (mapping)
Similar to str.format (**mapping), except that mapping is used directly and not copied to a dict.
This is useful if for example mapping is a dict subclass:

>>> class Default (dict):
def _ missing__ (self, key):
return key

>>> ! was born in '.format_map (Default (name="'Guido"))

'Guido was born in country'

New in version 3.2.

str.index (sub[, start[, end] ] )
Like find (), but raise ValueError when the substring is not found.

4.7. Text Sequence Type — str 47



The Python Library Reference, Release 3.10.18

str

str.

str.

str.

str.

str.

str

str.

str

str.

.isalnum()

Return True if all characters in the string are alphanumeric and there is at least one character, False
otherwise. A character c is alphanumeric if one of the following returns True: c.isalpha(), c.
isdecimal (), c.isdigit (),or c.isnumeric().

isalpha ()

Return True if all characters in the string are alphabetic and there is at least one character, False otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those
with general category property being one of “Lm”, “Lt”, “Lu”, “LI”, or “Lo”. Note that this is different from
the “Alphabetic” property defined in the Unicode Standard.

isascii ()

Return True if the string is empty or all characters in the string are ASCII, False otherwise. ASCII char-
acters have code points in the range U+0000-U+007F.

New in version 3.7.

isdecimal ()

Return True if all characters in the string are decimal characters and there is at least one character, False
otherwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.
isdigit ()

Return True if all characters in the string are digits and there is at least one character, False otherwise.
Digits include decimal characters and digits that need special handling, such as the compatibility superscript
digits. This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

isidentifier ()
Return True if the string is a valid identifier according to the language definition, section identifiers.

Call keyword. iskeyword () to test whether string s is a reserved identifier, such as def and class.

Example:

>>> from keyword import iskeyword

>>> 'hello'.isidentifier (), iskeyword('hello')
(True, False)

>>> 'def'.isidentifier (), iskeyword('def")
(True, True)

.islower ()

Return True if all cased characters* in the string are lowercase and there is at least one cased character,
False otherwise.

isnumeric ()

Return True if all characters in the string are numeric characters, and there is at least one character, False
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

.isprintable ()

Return True if all characters in the string are printable or the string is empty, False otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting
the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those
which should not be escaped when repr () is invoked on a string. It has no bearing on the handling of strings
written to sys.stdout or sys.stderr.)

isspace ()
Return True if there are only whitespace characters in the string and there is at least one character, False
otherwise.

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase), or “Lt” (Letter,
titlecase).

48

Chapter 4. Built-in Types




The Python Library Reference, Release 3.10.18

str.

str.

str.

str.

str.

str

A character is whitespace if in the Unicode character database (see unicodedat a), either its general category
is Zs (“Separator, space”), or its bidirectional class is one of WS, B, or S.

istitle()

Return True if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return False
otherwise.

isupper ()
Return True if all cased characters* in the string are uppercase and there is at least one cased character,
False otherwise.

>>> 'BANANA'.isupper ()
True
>>> 'banana'.isupper ()

False

>>> 'baNana'.isupper ()
False

>>> ' ' _isupper ()
False

join (iterable)

Return a string which is the concatenation of the strings in iferable. A TypeError will be raised if there
are any non-string values in iterable, including byt es objects. The separator between elements is the string
providing this method.

ljust (width[, ﬁllchar] )
Return the string left justified in a string of length widrh. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1en (s).

lower ()
Return a copy of the string with all the cased characters* converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

.1strip( [chars] )

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious ".1lstrip()
'spacious !

>>> 'www.example.com'.lstrip('cmowz.")
'example.com'

See str.removeprefix () for a method that will remove a single prefix string rather than all of a set of
characters. For example:

>>> 'Arthur: three!'.lstrip('Arthur: ')

'eel!
>>> 'Arthur: three!'.removeprefix ('Arthur: ")
'three!'

static str.maketrans (x[, y[, z] ])

This static method returns a translation table usable for st r. t ranslate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted
to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character
in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to None in the result.

4.7. Text Sequence Type — str 49




The Python Library Reference, Release 3.10.18

str

str.

str.

str

str.

str.

str.

str.

str.

str.

.partition (sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings.

removeprefix (prefix, /)
If the string starts with the prefix string, return string[len (prefix) : ]. Otherwise, return a copy of the
original string:

>>> 'TestHook'.removeprefix ('Test'")
'Hook'

>>> 'BaseTestCase'.removeprefix ('Test')
'BaseTestCase'

New in version 3.9.

removesuffix (suffix, /)
If the string ends with the suffix string and that suffix is not empty, return string[:-len (suffix) ].
Otherwise, return a copy of the original string:

>>> 'MiscTests'.removesuffix ('Tests')
'Misc'

>>> "TmpDirMixin'.removesuffix ('Tests')
'TmpDirMixin'

New in version 3.9.

.replace (old, new[, count] )

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

rfind (sub[, start[, end] ] )
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return —1 on failure.

rindex (sub[, start[, end] ] )
Like rfind () butraises ValueError when the substring sub is not found.

rjust (width[, ﬁllchar] )
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1len (s).

rpartition (sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

rsplit (sep=None, maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaveslike split () which is described in detail below.

rstrip ( [chars] )

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.rstrip()

! spacious'

>>> 'mississippi'.rstrip('ipz')
'mississ’

See str.removesuffix () for a method that will remove a single suffix string rather than all of a set of
characters. For example:

50

Chapter 4. Built-in Types




The Python Library Reference, Release 3.10.18

>>> 'Monty Python'.rstrip(' Python')

lMl
>>> 'Monty Python'.removesuffix (' Python')
'Monty'

str.split (sep=None, maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1,
then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, '1,,2"'.split (', ") returns ['1', '', '2']). The sep argument may consist of multiple
characters (for example, '1<>2<>3"'.split ('<>"') returns ['1', '2', '3']). Splitting an empty
string with a specified separator returns [''].

For example:

>>> '1,2,3".split (', ")

['1" '2" '3':|

>>> '1,2,3".split (', "', maxsplit=1)
['1', '2,3'1

>>> '1,2,,3,".split (', ")

['1', '2" 'l, |3|, l‘]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].

For example:

>>> '1 2 3'.split ()

rrav, '2', '3']

>>> '1 2 3'.split (maxsplit=1)
[v1', '2 3']

>>> ! 1 2 3 '.split ()

['1', l2l’ '3'}

str.splitlines (keepends=False)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal
newlines.

Representation | Description

\n Line Feed

\r Carriage Return

\r\n Carriage Return + Line Feed
\v or \x0b Line Tabulation

\f or \x0c Form Feed

\xlc File Separator

\x1d Group Separator

\xle Record Separator

\x85 Next Line (C1 Control Code)
\u2028 Line Separator

\u2029 Paragraph Separator

Changed in version 3.2: \'v and \ £ added to list of line boundaries.

For example:

4.7. Text Sequence Type — str 51




The Python Library Reference, Release 3.10.18

str.

str

str.

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()

['ab ¢', ''", 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
['ab c\n', '\n', 'de fg\r', 'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> "" _splitlines{()

[]

>>> "One line\n".splitlines/()
['One line']

For comparison, split ('\n') gives:

>>> "' . split ('\n")

['"]

>>> 'Two lines\n'.split('\n")
["Two lines', '']

startswith (preﬁx[, start[, end] ])

Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string
at that position.

.strip( [chars] )

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.strip()
'spacious’

>>> 'www.example.com'.strip('cmowz.")
'example'

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed
from the leading end until reaching a string character that is not contained in the set of characters in chars. A
similar action takes place on the trailing end. For example:

>>> comment_string = "#....... Section 3.2.1 Issue #32 ....... !
>>> comment_string.strip('.#! ")
'Section 3.2.1 Issue #32'

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is
not necessarily true that s . swapcase () . swapcase () == s.

str.title()

Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

For example:

>>> 'Hello world'.title ()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

52

Chapter 4. Built-in Types




The Python Library Reference, Release 3.10.18

The string. capwords () function does not have this problem, as it splits words on spaces only.

Alternatively, a workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+ (' [A-Za—-z]+)?2",
lambda mo: mo.group(0) .capitalize(),
s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate (fable)
Return a copy of the string in which each character has been mapped through the given translation table. The
table must be an object that implements indexing via ___getitem__ (), typically a mapping or sequence.
When indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode
ordinal or a string, to map the character to one or more other characters; return None, to delete the character
from the return string; or raise a LookupErrozr exception, to map the character to itself.

You can use str.maketrans () to create a translation map from character-to-character mappings in dif-
ferent formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper ()
Return a copy of the string with all the cased characters* converted to uppercase. Note that s . upper () .
isupper () might be False if s contains uncased characters or if the Unicode category of the resulting
character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.zfill (width)
Return a copy of the string left filled with ASCII ' 0' digits to make a string of length width. A leading sign
prefix (' +'/'-") is handled by inserting the padding after the sign character rather than before. The original
string is returned if width is less than or equal to 1en (s).

For example:

>>> "42" z£fi11(5)
'00042"

>>> "—42" z£f111 (5)
'-0042"

4.7.2 print£-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). Using the newer formatted string literals, the st r.
format () interface, or template strings may help avoid these errors. Each of these alternatives provides their own
trade-offs and benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation: the $ operator (modulo). This is also known as the string formatting
or interpolation operator. Given format % values (where format is a string), $ conversion specifications in
format are replaced with zero or more elements of values. The effect is similar to using the sprintf () in the C

language.

If format requires a single argument, values may be a single non-tuple object.’ Otherwise, values must be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.7. Text Sequence Type — str 53



The Python Library Reference, Release 3.10.18

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%"' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ' *' (asterisk), the actual width is read from the next
element of the tuple in values, and the object to convert comes after the minimum field width and optional

precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' *' (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the '% ' character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print (' has quote types.' %
R {'language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

"4#' | The value conversion will use the “alternate form” (where defined below).

'0"' | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conver-
sion.

"+' | Asign character ('+' or '-"') will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical
to %d.

The conversion types are:

54 Chapter 4. Built-in Types




The Python Library Reference, Release 3.10.18

Con- Meaning Notes

version

'd’ Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. €))]

'u! Obsolete type - it is identical to 'd'. 6)

'x! Signed hexadecimal (lowercase). 2)

'X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E! Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

B Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'c! Single character (accepts integer or single character string).

'r' String (converts any Python object using repzr ()). 5)

's! String (converts any Python object using st r ()). )

'a' String (converts any Python object using ascii ()). &)

'y No argument is converted, results ina ' %' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier (' 0o ") to be inserted before the first digit.

(2) The alternate form causes a leading ' Ox ' or ' 0X"' (depending on whether the 'x ' or ' X' format was used)
to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.

(6) See PEP 237.

Since Python strings have an explicit length, $s conversions do not assume that '\ 0" is the end of the string.

Changed in version 3.1: % £ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g

conversions.

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by memo—
ryview which uses the buffer protocol to access the memory of other binary objects without needing to make a

copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

4.8. Binary Sequence Types — bytes, bytearray, memoryview

55


https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.10.18

4.8.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII
text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and
are closely related to string objects in a variety of other ways.

class bytes ([source[, encoding[, errors] ] ])

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:
» Single quotes: b'still allows embedded "double" quotes'
e Double quotes: b"still allows embedded 'single' quotes"
e Triple quoted: b' ' '3 single quotes''',b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any
binary values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See
strings for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to violate
this restriction will trigger ValueError). This is done deliberately to emphasise that while many binary
formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms,
this is not generally the case for arbitrary binary data (blindly applying text processing algorithms to binary
data formats that are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
« A zero-filled bytes object of a specified length: bytes (10)
« From an iterable of integers: bytes (range (20) )
» Copying existing binary data via the buffer protocol: bytes (ob3j)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytes type has an additional class method to read data in
that format:

classmethod fromhex (string)
This bytes class method returns a bytes object, decoding the given string object. The string must
contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex ('2Ef0 F1£f2 ")
b' A\xfO\xf1\xf2"

Changed in version 3.7: bytes. fromhex () now skips all ASCII whitespace in the string, not just
spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

hex ( [sep[, bytes _per_sep] ] )
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> b'\xf0\xf1\xf2' . .hex ()
'fOf1£2"

If you want to make the hex string easier to read, you can specify a single character separator sep param-
eter to include in the output. By default, this separator will be included between each byte. A second
optional byfes_per_sep parameter controls the spacing. Positive values calculate the separator position
from the right, negative values from the left.

56

Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

>>> value = b'\xf0\x£f1\x£f2'
>>> value.hex ('-")

'fO-f1-£f2"

>>> value.hex('_', 2)
'fO_f1£2"

>>> b'UUDDLRLRAB'.hex (' ', —4)
'55554444 4c524c52 4142"

New in version 3.5.

Changed in version 3.8: bytes.hex () now supports optional sep and bytes_per_sep parameters to
insert separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b [0] will be an integer, while
b[0:1] will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytes objects uses the literal format (b'...") since it is often more useful than e.g.
bytes ([46, 46, 46]). You can always convert a bytes object into a list of integers using 1ist (b).

4.8.2 Bytearray Objects

bytearray objects are a mutable counterpart to byt es objects.

class bytearray ( [source[, encoding[, errors] ] ] )
There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the con-
structor:

o Creating an empty instance: bytearray ()

« Creating a zero-filled instance with a given length: bytearray (10)

« From an iterable of integers: bytearray (range (20))

» Copying existing binary data via the buffer protocol: bytearray (b'Hi!")

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common
bytes and bytearray operations described in Byfes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytearray type has an additional class method to read data
in that format:

classmethod fromhex (siring)
This bytearray class method returns bytearray object, decoding the given string object. The string
must contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytearray.fromhex ('2Ef0 F1£f2 ")
bytearray (b' . \xf0\xf1\xf2")

Changed in version 3.7: bytearray. fromhex () now skips all ASCII whitespace in the string, not
just spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.

hex ( [sep[, bytes _per_sep] ] )
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray (b'\x£f0\x£f1\x£f2"') .hex ()
'fOf1£2"

4.8. Binary Sequence Types — bytes, bytearray, memoryview 57




The Python Library Reference, Release 3.10.18

New in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), bytearray.hex () now supports optional sep
and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b [0] will be an integer,
while b[0:1] will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and
slicing will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (oytearray (b' ... ")) since itis often more
useful than e.g. bytearray ([46, 46, 46]). You can always convert a bytearray object into a list of integers
using 1ist (b).

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands
of the same type, but with any bytes-like object. Due to this flexibility, they can be freely mixed in operations without
causing errors. However, the return type of the result may depend on the order of operands.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on
strings don’t accept bytes as their arguments. For example, you have to write:

a = "abc"

b = a.replace("a", "f")
and:

a = b"abc"

b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be
avoided when working with arbitrary binary data. These restrictions are covered below.

Note: Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format
may lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.

bytes.count (sub[, start[, end] ] )

bytearray.count (sub[, start[, end] ] )
Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

If sub is empty, returns the number of empty slices between characters which is the length of the bytes object
plus one.

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.removeprefix (prefix, /)

bytearray.removeprefix (prefix, /)
If the binary data starts with the prefix string, return bytes [len (prefix) : ]. Otherwise, return a copy
of the original binary data:

>>> b'TestHook'.removeprefix (b'Test")
b'Hook'

>>> pb'BaseTestCase'.removeprefix (b'Test"')
b'BaseTestCase'

58 Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

The prefix may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

New in version 3.9.

bytes.removesuffix (suffix, /)

bytearray.removesuffix (suffix, /)
If the binary data ends with the suffix string and that suffix is not empty, return bytes [:-len (suffix) ].
Otherwise, return a copy of the original binary data:

>>> b'MiscTests'.removesuffix(b'Tests")
b'Misc'

>>> p'TmpDirMixin'.removesuffix (b'Tests")
b'TmpDirMixin'

The suffix may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

New in version 3.9.

bytes.decode (encoding='utf-8', errors='strict’)
bytearray.decode (encoding="utf-8', errors='strict’)
Return the bytes decoded to a st r.

encoding defaults to 'ut £-8"; see Standard Encodings for possible values.

errors controls how decoding errors are handled. If 'strict ' (the default), a UnicodeError exception
is raised. Other possible values are ' ignore', 'replace’, and any other name registered via codecs.
register_error (). See Error Handlers for details.

For performance reasons, the value of errors is not checked for validity unless a decoding error actually occurs,
Python Development Mode is enabled or a debug build is used.

Note: Passing the encoding argument to st r allows decoding any bytes-like object directly, without needing
to make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

Changed in version 3.9: The value of the errors argument is now checked in Python Development Mode and in
debug mode.

bytes.endswith (suﬁix[, start[, end] ] )

bytearray.endswith (suﬁ‘ix[, start[, end] ] )
Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be
a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The suffix(es) to search for may be any bytes-like object.

bytes.find (sub[, start[, endﬂ ] )
bytearray.find (sub[, start|, end] ] )
Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is
not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 59



The Python Library Reference, Release 3.10.18

Note: The find () method should be used only if you need to know the position of sub. To check if sub is
a substring or not, use the in operator:

>>> b'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.index (sub[, start[, end ] )
bytearray.index (sub[, start| , end] ] )
Like find (), but raise ValueError when the subsequence is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.join (iterable)

bytearray.join (iterable)
Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A
TypeError will be raised if there are any values in iterable that are not bytes-like objects, including st r
objects. The separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes.maketrans (from, to)

static bytearray.maketrans (from, to)
This static method returns a translation table usable for bytes. translate () that will map each character
in from into the character at the same position in fo; from and to must both be byzes-like objects and have the
same length.

New in version 3.1.

bytes.partition (sep)

bytearray.partition (sep)
Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.replace (0ld, new[, count])

bytearray.replace (old, new[, count] )
Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.rfind (sub[, start[, end] ] )

bytearray.rfind (sub[, start[, end] ] )
Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within
s [start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rindex (sub[, start[, end] ] )
bytearray.rindex (sub[, start[, end] ] )
Like rfind () butraises ValueError when the subsequence sub is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

60 Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rpartition (sep)

bytearray.rpartition (sep)
Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing two empty bytes or bytearray objects, followed by a copy of the original sequence.

The separator to search for may be any bytes-like object.

bytes.startswith (preﬁx[, start[, end] ] )

bytearray.startswith (preﬁx[, start[, end] ] )
Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also be
a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The prefix(es) to search for may be any bytes-like object.

bytes.translate (table, /, delete=b")

bytearray.translate (table, /, delete=b")
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes
object of length 256.

You can use the bytes.maketrans () method to create a translation table.

Set the fable argument to None for translations that only delete characters:

>>> b'read this short text'.translate (None, b'aeiou')
b'rd ths shrt txt'

Changed in version 3.6: delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII com-
patible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that
all of the bytearray methods in this section do not operate in place, and instead produce new objects.

bytes.center (width[, fillbyte |)

bytearray.center (width[, ﬁllbyte] )
Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For byt es objects, the original sequence is returned if width is less than or equal
tolen(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.ljust ( width[, ﬁllbyte] )

bytearray.ljust (width[, ﬁllbyte] )
Return a copy of the object left justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For byt es objects, the original sequence is returned if width is less than
orequal to len (s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.lstrip( [charse )
bytearray.lstrip ( chars] )
Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 61



The Python Library Reference, Release 3.10.18

>>> b spacious '.lstrip()
b'spacious !

>>> b'www.example.com'.lstrip(b'cmowz.")
b'example.com'

The binary sequence of byte values to remove may be any bytes-like object. See removeprefix () for a
method that will remove a single prefix string rather than all of a set of characters. For example:

>>> p'Arthur: three!'.lstrip(b'Arthur: ")
b'ee!!

>>> b'Arthur: three!'.removeprefix(b'Arthur: ')
b'three!"'

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.rjust (width[, ﬁllbyte])
bytearray.rjust (width[,ﬁllbyte])

Return a copy of the object right justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For byt es objects, the original sequence is returned if width is less than
orequal to len (s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.rsplit (sep=None, maxsplit=- 1)
bytearray.rsplit (sep=None, maxsplit=- 1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is
given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or None, any subsequence
consisting solely of ASCII whitespace is a separator. Except for splitting from the right, rsplit () behaves
like split () which is described in detail below.

bytes.rstrip( [chars] )
bytearray.rstrip( [chars] )

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> b spacious
b!' spacious'
>>> b'mississippi'.rstrip(b'ipz'")
b'mississ'

.rstrip()

The binary sequence of byte values to remove may be any bytes-like object. See removesuffix () for a
method that will remove a single suffix string rather than all of a set of characters. For example:

>>> pb'Monty Python'.rstrip(b' Python')

blMl

>>> b'Monty Python'.removesuffix(b' Python')
b'Monty'

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.split (sep=None, maxsplit=- 1)

62

Chapter 4. Built-in Types




The Python Library Reference, Release 3.10.18

bytearray.split (sep=None, maxsplit=- 1)
Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit
is given and non-negative, at most maxsplit splits are done (thus, the list will have at most maxsplit+1
elements). If maxsplit is not specified or is —1, then there is no limit on the number of splits (all possible splits
are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences
(for example,b'1,,2"'.split (b', ') returns [b'1', b'', b'2']). The sep argument may consist
of a multibyte sequence (for example, b'1<>2<>3"' .split (b'<>") returns [b'1', b'2', b'3']).
Splitting an empty sequence with a specified separator returns [b' '] or [bytearray (b'"') ] depending
on the type of object being split. The sep argument may be any bytes-like object.

For example:

>>> p'1,2,3".split(b', ")

[b'1', b'2', b'3"]

>>> p'1,2,3".split(b', "', maxsplit=1)
[b'1', b'2,3"]

>>> b'1,2,,3,".split(b', ")

[b'1', b'2', b'', b'3"', b'"]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII whites-
pace are regarded as a single separator, and the result will contain no empty strings at the start or end if the
sequence has leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consist-
ing solely of ASCII whitespace without a specified separator returns [ ].

For example:

>>> p'l 2 3'.split ()

[b'1', b'2', b'3']

>>> b'l 2 3'.split (maxsplit=1)
[b'1', b'2 3']

>>> b' 1 2 3 '.split ()
[b'1', b'2', b'3"']

bytes.strip( [charsH )
bytearray.strip ( chars] )
Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a
binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is
usually used with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> b spacious '.strip()
b'spacious'

>>> b'www.example.com'.strip(b'cmowz.")
b'example'

The binary sequence of byte values to remove may be any byfes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should
not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place,
and instead produce new objects.

bytes.capitalize ()

bytearray.capitalize ()
Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized
and the rest lowercased. Non-ASCII byte values are passed through unchanged.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 63



The Python Library Reference, Release 3.10.18

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.expandtabs (fabsize=8)
bytearray.expandtabs (tabsize=8)

Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces,
depending on the current column and the given tab size. Tab positions occur every fabsize bytes (default is
8, giving tab positions at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to
zero and the sequence is examined byte by byte. If the byte is an ASCII tab character (b '\t '), one or more
space characters are inserted in the result until the current column is equal to the next tab position. (The tab
character itself is not copied.) If the current byte is an ASCII newline (b ' \n"') or carriage return (b ' \r "),
it is copied and the current column is reset to zero. Any other byte value is copied unchanged and the current
column is incremented by one regardless of how the byte value is represented when printed:

>>> p'01\t012\t0123\t01234" .expandtabs ()

b'01 012 0123 01234"
>>> p'01\t012\t0123\t01234"' .expandtabs (4)
b'01 012 0123 01234"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.isalnum()
bytearray.isalnum ()

Return True if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and
the sequence is not empty, False otherwise. Alphabetic ASCII characters are those byte values in the se-
quence b'abcdefghijklmnopgrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ'. ASCII decimal
digits are those byte values in the sequence b' 0123456789"'.

For example:

>>> p'ABCabcl'.isalnum/()
True

>>> b'ABC abcl'.isalnum/()
False

bytes.isalpha ()
bytearray.isalpha ()

Return True if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, False otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ'.

For example:

>>> p'ABCabc'.isalpha ()
True
>>> b'ABCabcl'.isalpha()
False

bytes.isascii ()
bytearray.isascii ()

Return True if the sequence is empty or all bytes in the sequence are ASCII, False otherwise. ASCII bytes
are in the range 0-Ox7F.

New in version 3.7.

bytes.isdigit ()

64

Chapter 4. Built-in Types




The Python Library Reference, Release 3.10.18

bytearray.isdigit ()
Return True if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, False
otherwise. ASCII decimal digits are those byte values in the sequence b'0123456789".

For example:

>>> p'1234" .isdigit ()
True
>>> b'1.23"'.isdigit ()
False

bytes.islower ()

bytearray.islower ()
Return True if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII
characters, False otherwise.

For example:

>>> b'hello world'.islower ()

True

>>> b'Hello world'.islower ()

False

Lowercase ASCII characters are those byte values in the sequence

b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.isspace ()

bytearray.isspace ()
Return True if all bytes in the sequence are ASCII whitespace and the sequence is not empty, False other-
wise. ASCII whitespace characters are those byte values in the sequence b' \t\n\r\x0b\f' (space, tab,
newline, carriage return, vertical tab, form feed).

bytes.istitle()

bytearray.istitle()
Return True if the sequence is ASCII titlecase and the sequence is not empty, False otherwise. See bytes.
title () for more details on the definition of “titlecase”.

For example:

>>> b'Hello World'.istitle()
True

>>> b'Hello world'.istitle ()
False

bytes.isupper ()

bytearray.isupper ()
Return True if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase
ASCII characters, False otherwise.

For example:

>>> p'HELLO WORLD'.isupper ()

True

>>> p'Hello world'.isupper ()

False

Lowercase ASCI characters are those byte values in the sequence

b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

bytes.lower ()

4.8. Binary Sequence Types — bytes, bytearray, memoryview 65



The Python Library Reference, Release 3.10.18

bytearray.lower ()
Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding low-
ercase counterpart.

For example:

>>> b'Hello World'.lower ()
b'hello world'

Lowercase ASCI characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

Note: The bytearray version of this method does nor operate in place - it always produces a new object, even
if no changes were made.

bytes.splitlines (keepends=False)

bytearray.splitlines (keepends=False)
Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the
universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends
is given and true.

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines/()

[b'ab c¢', b'', b'de fg', b'kl']

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike sp1it () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> b"" . split(b'\n'), b"Two lines\n".split(b'\n")
([b'"'], [b'Two lines', b''])

>>> b"".splitlines (), b"One line\n".splitlines ()
([1, [b'One line'])

bytes.swapcase ()

bytearray.swapcase ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart and vice-versa.

For example:

>>> b'Hello World'.swapcase()
b'"hELLO wORLD'

Lowercase ASCI characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

Unlike str.swapcase (), it is always the case that bin.swapcase () .swapcase () == bin for
the binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for
arbitrary Unicode code points.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.title()

66 Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

bytearray.title()
Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and
the remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()
b'Hello World'

Lowercase ASCI characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '. All other byte values are uncased.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> pb"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(rb" [A-Za-z]+ (' [A-Za-z]+)?2",
lambda mo: mo.group(0) [0:1] .upper () +
mo.group (0) [1:].lower (),
s)

>>> titlecase(b"they're bill's friends.")
b"They're Bill's Friends."

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.upper ()

bytearray.upper ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart.

For example:

>>> b'Hello World'.upper /()
b'HELLO WORLD'

Lowercase ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

Note: The bytearray version of this method does nor operate in place - it always produces a new object, even
if no changes were made.

bytes.z£ill (width)

bytearray.z£ill (width)
Return a copy of the sequence left filled with ASCII b ' 0 ' digits to make a sequence of length widrh. A leading
sign prefix (b'+'/b'-") is handled by inserting the padding affer the sign character rather than before. For
bytes objects, the original sequence is returned if width is less than or equal to len (seq) .

For example:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 67



The Python Library Reference, Release 3.10.18

>>> p"42" . zfill (5)
b'oo042"
>>> p"-42"  z£fill (5)
b'-0042"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

4.8.4 print£-style Bytes Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or dictionary,
wrap it in a tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also
known as the bytes formatting or interpolation operator. Given format % values (where format is a bytes
object), % conversion specifications in format are replaced with zero or more elements of values. The effect is similar
to using the sprint f () in the C language.

If format requires a single argument, values may be a single non-tuple object.’> Otherwise, values must be a tuple
with exactly the number of items specified by the format bytes object, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ' *' (asterisk), the actual width is read from the next
element of the tuple in values, and the object to convert comes after the minimum field width and optional

precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' *' (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include
a parenthesised mapping key into that dictionary inserted immediately after the '% ' character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print (b’ has quote types.' %
R {b'language': b"Python", b"number": 2})
b'Python has 002 quote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

68 Chapter 4. Built-in Types




The Python Library Reference, Release 3.10.18

Flag | Meaning

"#' | The value conversion will use the “alternate form” (where defined below).

'0" | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).

' ' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conver-
sion.

"+' | Asigncharacter ('+' or '-"') will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical

to %d.

The conversion types are:

D

Con- Meaning Notes

version

'd! Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. @))]

'u' Obsolete type — it is identical to 'd"'. ®)

'x! Signed hexadecimal (lowercase). 2)

X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E’ Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

B! Floating point decimal format. 3)

'g' Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'G! Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

‘¢! Single byte (accepts integer or single byte objects).

'b' Bytes (any object that follows the buffer protocol or has __bytes__ ()). 5)

's! 's' isan alias for 'b"' and should only be used for Python2/3 code bases. 6)

'a' Bytes (converts any Python object using repr (obj) .encode ('ascii', 'back- | (§)
slashreplace')).

'r! 'r' is an alias for 'a"' and should only be used for Python2/3 code bases. @)

'y No argument is converted, results in a ' %' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier (' 0o ") to be inserted before the first digit.

(2) The alternate form causes a leading ' Ox ' or ' 0X' (depending on whether the 'x' or 'X"' format was used)
to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as

they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.

6) b’
(7) b

[

%s ' is deprecated, but will not be removed during the 3.x series.

Q

$r' is deprecated, but will not be removed during the 3.x series.

(8) See PEP 237.

4.8. Binary Sequence Types — bytes, bytearray, memoryview

69


https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.10.18

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if no
changes were made.

See also:

PEP 461 - Adding % formatting to bytes and bytearray

New in version 3.5.

4.8.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying.

class memoryview (object)

Create a memoryview that references object. object must support the buffer protocol. Built-in objects that
support the buffer protocol include hytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object. For many simple types such as bytes and bytearray, an element is a single byte, but other types
such as array. array may have bigger elements.

len (view) is equal to the length of tolist. If view.ndim = 0, thelengthis 1. If view.ndim =
1, the length is equal to the number of elements in the view. For higher dimensions, the length is equal to
the length of the nested list representation of the view. The i temsi ze attribute will give you the number of
bytes in a single element.

A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in a
subview:

>>> v = memoryview (b'abcefg')
>>> v[1]

98

>>> v[-1]

103

>>> v[1:4]

<memory at 0x7£3ddc9£4350>
>>> bytes(v[1:4])

b'bce'

If format is one of the native format specifiers from the st ruct module, indexing with an integer or a tuple
of integers is also supported and returns a single element with the correct type. One-dimensional memoryviews
can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with
tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can
be indexed with the empty tuple.

Here is an example with a non-byte format:

>>> import array

>>> a = array.array('l', [-11111111, 22222222, —-33333333, 444444447)
>>> m = memoryview (a)

>>> m[0]

-11111111

>>> m[-1]

44444444

>>> m[::2].tolist ()

[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is
not allowed:

70

Chapter 4. Built-in Types



https://www.python.org/dev/peps/pep-0461

The Python Library Reference, Release 3.10.18

>>> data = bytearray(b'abcefg')

>>> v = memoryview (data)

>>> v.readonly

False

>>> v[0] = ord(b'z")

>>> data

bytearray (b'zbcefg')

>>> v[1:4] = b'123"

>>> data

bytearray (b'z123fg")

>>> v[2:3] = b'span'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: memoryview assignment: lvalue and rvalue have different structures

>>> v[2:6] = b'spam'

>>> data

bytearray (b'zlspam')

One-dimensional memoryviews of iashable (read-only) types with formats ‘B’, ‘b’ or ‘¢’ are also hashable. The

hash is defined as hash (m) == hash (m.tobytes ()):
>>> v = memoryview (b'abcefg')

>>> hash(v) == hash(b'abcefg'")

True

>>> hash(v[2:4]) == hash(b'ce')

True

>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memoryviews
with formats ‘B’, ‘D’ or ‘c’ are now hashable.

Changed in version 3.4: memoryview is now registered automatically with collections.abc.
Sequence

Changed in version 3.5: memoryviews can now be indexed with tuple of integers.
memoryview has several methods:

__eq _ (exporter)
A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding
values are equal when the operands’ respective format codes are interpreted using st ruct syntax.

For the subset of st ruct format strings currently supported by tolist (), v and w are equal if v.

tolist () == w.tolist():

>>> import array

>>> a = array.array('l', [1, 2, 3, 4, 5])

>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])
>>> ¢ = array.array('b', [5, 3, 1]

>>> x = memoryview(a)

>>> y = memoryview (b)

>>> x == a == y ==

True

>>> x.tolist () == a.tolist () == y.tolist () == b.tolist ()
True

>>> z = y[::-2]

>>> z == C

True

>>> z.tolist () == c.tolist ()

True

If either format string is not supported by the st ruct module, then the objects will always compare as
unequal (even if the format strings and buffer contents are identical):

4.8. Binary Sequence Types — bytes, bytearray, memoryview 71


https://www.python.org/dev/peps/pep-3118

The Python Library Reference, Release 3.10.18

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint (BigEndianStructure) :
_fields_ = [("x", c_long), ("y", c_long)]

>>> point = BEPoint (100, 200)

>>> a = memoryview (point)

>>> b = memoryview (point)

>>> a == point

False

>>> g ==

False

Note that, as with floating point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format and
the logical array structure.

tobytes (order=None)
Return the data in the buffer as a bytestring. This is equivalent to calling the byt es constructor on the
memoryview.

>>> m = memoryview (b"abc")
>>> m.tobytes ()

b'abc'

>>> bytes (m)

b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted
tobytes. tobytes () supports all format strings, including those that are not in st ruct module syntax.

New in version 3.8: order can be {‘C’, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is
converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory.
In particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to
C first. order=None is the same as order="C".

hex ( [sep[, bytes _per_sep] ] )
Return a string object containing two hexadecimal digits for each byte in the buffer.

>>> m = memoryview (b"abc")
>>> m.hex ()
'616263"

New in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), memoryview.hex () now supports optional sep
and bytes_per_sep parameters to insert separators between bytes in the hex output.

tolist ()
Return the data in the buffer as a list of elements.

>>> memoryview (b'abc') .tolist ()

[97, 98, 99]

>>> import array

>>> a = array.array('d', [1.1, 2.2, 3.31)
>>> m = memoryview(a)

>>> m.tolist ()

(1.1, 2.2, 3.3]

Changed in version 3.3: tolist () now supports all single character native formats in st ruct module
syntax as well as multi-dimensional representations.

toreadonly ()
Return a readonly version of the memoryview object. The original memoryview object is unchanged.

72 Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

>>> m = memoryview (bytearray(b'abc'))

>>> mm = m.toreadonly ()

>>> mm.tolist ()

[89, 98, 99]

>>> mm[0] = 42

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: cannot modify read-only memory

>>> m[0] = 43

>>> mm.tolist ()

[43, 98, 99]

New in version 3.8.

release ()
Release the underlying buffer exposed by the memoryview object. Many objects take special actions when
a view is held on them (for example, a byt earray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

After this method has been called, any further operation on the view raises a ValueError (except
release () itself which can be called multiple times):

>>> m = memoryview (b'abc')
>>> m.release()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview(b'abc') as m:
m[0]

97

>>> m[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.

cast (format[, shape] )
Cast a memoryview to a new format or shape. shape defaultsto [byte_length//new_itemsize],
which means that the result view will be one-dimensional. The return value is a new memoryview, but
the buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in st ruct syntax. One of the
formats must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the
original length.

Cast 1D/long to 1D/unsigned bytes:

>>> import array

>>> a = array.array('l', [1,2,31])
>>> X = memoryview(a)

>>> x.format

lll

>>> x.itemsize

8

>>> len (x)

3

>>> x.nbytes

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 73



The Python Library Reference, Release 3.10.18

(continued from previous page)

24

>>> y = x.cast ('B")
>>> y.format

'Bl

>>> y.itemsize

1

>>> len(y)

24

>>> y.nbytes

24

Cast 1D/unsigned bytes to 1D/char:

bytearray (b'ayz')

>>> b = bytearray(b'zyz")

>>> x = memoryview (b)

>>> x[0] = b'a'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: memoryview: invalid value for format
>>> y = x.cast('c")
>>> y[0] = b'a'
>>> Db

np"

Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct

buf = struct.pack("i"*12,
>>> x = memoryview (buf)
x.cast('i', shape=[2,2,3])
.tolist ()
1, 21, [3,
.format

>>> *list (range (12)
>>> y =
>>> y
[[[O,

>>> vy

v

10,
i )
>>> y.itemsize

>>> len(y)
>>>
48

>>> z =
>>>
b
>>>

y.nbytes

y.cast ('b")
z.format

z.ltemsize

>>>
48
>>>

48

len(z)

z .nbytes

))

11771

Cast 1D/unsigned long to 2D/unsigned long:

>>> buf = struct.pack ("L"*6, *list (range(6)))
>>> x = memoryview (buf)

>>> y = x.cast('L', shape=[2,3])

>>> len(y)

2

>>> y.nbytes

48

>>> y.tolist ()
(ro, 1, 21, [3, 4, 51]

74

Chapter 4. Built-in Types




The Python Library Reference, Release 3.10.18

New in version 3.3.
Changed in version 3.5: The source format is no longer restricted when casting to a byte view.
There are also several readonly attributes available:

obj
The underlying object of the memoryview:

>>> b = bytearray(b'xyz"')
>>> m = memoryview (b)

>>> m.obj is b

True

New in version 3.3.

nbytes
nbytes == product (shape) * itemsize == len (m.tobytes ()). Thisisthe amount
of space in bytes that the array would use in a contiguous representation. It is not necessarily equal to
len (m):
>>> import array
>>> a = array.array('i', [1,2,3,4,5])
>>> m = memoryview(a)
>>> len (m)
5
>>> m.nbytes
20
>>> y = m[::2]
>>> len(y)
3
>>> y.nbytes
12
>>> len(y.tobytes())
12

Multi-dimensional arrays:

>>> import struct

>>> buf = struct.pack ("d"*12, *[1.5*x for x in range(12)])

>>> x = memoryview (buf)

>>> y = x.cast('d', shape=[3,4])

>>> y.tolist ()

(.o, 1.5, 3.0, 4.51, [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]
>>> len(y)

3

>>> y.nbytes

96

New in version 3.3.

readonly
A bool indicating whether the memory is read only.

format
A string containing the format (in st ruct module style) for each element in the view. A memoryview
can be created from exporters with arbitrary format strings, but some methods (e.g. tolist ()) are
restricted to native single element formats.

Changed in version 3.3: format 'B"' is now handled according to the struct module syntax. This means
that memoryview (b'abc') [0] == b'abc'[0] == 97.

itemsize
The size in bytes of each element of the memoryview:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 75



The Python Library Reference, Release 3.10.18

>>> import array, struct

>>> m = memoryview (array.array ('H', [32000, 32001, 320021))
>>> m.itemsize

2

>>> m([0]

32000

>>> struct.calcsize('H') == m.itemsize

True

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension
of the array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets
Used internally for PIL-style arrays. The value is informational only.

c_contiguous
A bool indicating whether the memory is C-contiguous.

New in version 3.3.

f_contiguous
A bool indicating whether the memory is Fortran contiguous.

New in version 3.3.

contiguous
A bool indicating whether the memory is contiguous.

New in version 3.3.

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, differ-
ence, and symmetric difference. (For other containers see the built-in dict, 1ist, and tuple classes, and the
collections module.)

Like other collections, sets support x in set, len (set),and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: { ' jack', 'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

class set( [iterable] )

76 Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

class frozenset ([itemble])
Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Sets can be created by several means:
o Use a comma-separated list of elements within braces: { ' jack', 'sjoerd'}
o Use a set comprehension: {c¢ for ¢ in 'abracadabra' if ¢ not in 'abc'}
« Use the type constructor: set (), set ('foobar'),set(['a', 'b', 'foo'l)
Instances of set and frozenset provide the following operations:

len(s)
Return the number of elements in set s (cardinality of s).

X in s
Test x for membership in s.

X not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

issubset (other)
set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a proper superset of other, thatis, set >= other and set != other.

union ( *others)
set | other |
Return a new set with elements from the set and all others.

intersection (*others)
set & other &
Return a new set with elements common to the set and all others.

difference (*others)
set - other -
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set ~ other
Return a new set with elements in either the set or other but not both.

copy ()
Return a shallow copy of the set.

Note, the non-operator versions of union (), intersection(), difference(), symmet-—
ric_difference (), issubset (), and issuperset () methods will accept any iterable as an ar-
gument. In contrast, their operator based counterparts require their arguments to be sets. This precludes
error-prone constructions like set ('abc') & 'cbs' in favor of the more readable set ('abc') .
intersection('cbs').

4.9. Set Types — set, frozenset 77



The Python Library Reference, Release 3.10.18

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and only if
the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set
if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For exam-
ple, set ('abc") == frozenset ('abc') returns True and so does set ('abc') in
set ([frozenset ('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any two
nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return False:
a<b, a==b, or a>b.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ('ab') | set ('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update ( *others)
set |= other |
Update the set, adding elements from all others.

intersection_update (*others)
set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (*others)
set —= other |
Update the set, removing elements found in others.

symmetric_difference_update (other)
set “= other
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update (), intersection_update (), differ-—
ence_update (), and symmetric_difference_update () methods will accept any iterable
as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a set.
To support searching for an equivalent frozenset, a temporary one is created from elem.

78 Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

4.10 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. (For other containers see the built-in 1ist, set, and tuple classes,
and the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictio-
naries or other mutable types (that are compared by value rather than by object identity) may not be used as keys.
Values that compare equal (such as 1, 1.0, and True) can be used interchangeably to index the same dictionary
entry.

class dict (**kwargs)

class dict (mapping, **kwargs)

class dict (iterable, **kwargs)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword
arguments.

Dictionaries can be created by several means:

o Use a comma-separated list of key: value pairs within braces: { ' jack': 4098, 'sjoerd':
4127} or {4098: 'Jack', 4127: 'sjoerd'}

o Use a dict comprehension: {}, {x: x ** 2 for x in range (10)}

e Use the type constructor: dict (), dict([('foo', 100), ("bar', 200) 1),
dict (foo=100, bar=200)

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is
a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise,
the positional argument must be an iferable object. Each item in the iterable must itself be an iterable with
exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object
the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding
value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created
from the positional argument. If a key being added is already present, the value from the keyword argument
replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2,
"three": 3}:

>>> a = dict (one=1, two=2, three=3)

>> b = {'one': 1, 'two': 2, 'three': 3}

>>> ¢ = dict(zip(['one', 'two', 'three'l, [1, 2, 31))

>>> d = dict([('two', 2), ('one', 1), ('three', 3)1])

>>> e = dict ({'three': 3, 'one': 1, 'two': 2})

>>> f = dict({'one': 1, 'three': 3}, two=2)

>>> a == b == ¢ == == e ==

True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers.
Otherwise, any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):

list (d)
Return a list of all the keys used in the dictionary d.

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

4.10. Mapping Types — dict 79



The Python Library Reference, Release 3.10.18

If a subclass of dict defines a method __missing__ () and key is not present, the d [key] operation
calls that method with the key key as argument. The d [key] operation then returns or raises what-
ever is returned or raised by the __missing__ (key) call. No other operations or methods invoke
__missing__ (). If __missing__ () is not defined, KeyError israised. _ _missing__ ()
must be a method; it cannot be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):
.. return 0
>>> ¢ = Counter|()

>>> c['red']
0

>>> c['red'] += 1
>>> c['red']

The example above shows part of the implementation of collections.Counter. A different
_ _missing__ methodisused by collections.defaultdict.

d[key] = value
Set d[key] to value.

del dlkey]
Remove d [key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys () ).

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (iterable[, value])
Create a new dictionary with keys from iterable and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None. All of the values
refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as
an empty list. To get distinct values, use a dict comprehension instead.

get (key[, default] )
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None,
so that this method never raises a KeyError.

items ()
Return a new view of the dictionary’s items ( (key, value) pairs). See the documentation of view
objects.

keys ()
Return a new view of the dictionary’s keys. See the documentation of view objects.

pop (key[, default] )
If key is in the dictionary, remove it and return its value, else return default. If default is not given and
key is not in the dictionary, a KeyError is raised.

popitem ()

Remove and return a (key, wvalue) pair from the dictionary. Pairs are returned in LIFO (last-in,
first-out) order.

80

Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

Changed in version 3.7: LIFO order is now guaranteed. In prior versions, popitem () would return an
arbitrary key/value pair.

reversed (d)
Return a reverse iterator over the keys of the dictionary. This is a shortcut for reversed (d.keys () ).

New in version 3.8.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ( [other ] )
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See the documentation of view objects.

An equality comparison between one dict .values () view and another will always return False.
This also applies when comparing dict .values () to itself:

>> d = {'a': 1}
>>> d.values () == d.values|{()
False

d | other
Create a new dictionary with the merged keys and values of d and other, which must both be dictionaries.
The values of other take priority when d and other share keys.

New in version 3.9.

d |= other
Update the dictionary d with keys and values from other, which may be either a mapping or an iterable
of key/value pairs. The values of other take priority when d and other share keys.

New in version 3.9.

Dictionaries compare equal if and only if they have the same (key, value) pairs (regardless of ordering).
Order comparisons (‘<’, ‘<=’, >=’, >) raise TypeError.

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after
deletion are inserted at the end.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d
{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (d)
['one', '"two', 'three', 'four']
>>> list (d.values|())

(1, 2, 3, 4]
>>> d["one"] = 42
>>> d

{'one': 42, 'two': 2, 'three': 3, 'four': 4}
>>> del d["two"]

>>> d["two"] = None
>>> d
{'one': 42, 'three': 3, 'four': 4, 'two': None}

4.10. Mapping Types — dict 81



The Python Library Reference, Release 3.10.18

Changed in version 3.7: Dictionary order is guaranteed to be insertion order. This behavior was an implemen-
tation detail of CPython from 3.6.

Dictionaries and dictionary views are reversible.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d
{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (reversed(d))
["four', 'three', 'two', 'one']
>>> list (reversed(d.values()))

(4, 3, 2, 1]
>>> list (reversed(d.items()))
[("four', 4), ('three', 3), ('two', 2), ('one', 1)]

Changed in version 3.8: Dictionaries are now reversible.
See also:

types.MappingProxyType can be used to create a read-only view of a dict.

4.10.1 Dictionary view objects

The objects returned by dict . keys (), dict.values () and dict.items () are view objects. They provide
a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these
changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len(dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, wvalue))in the dictionary.

Keys and values are iterated over in insertion order. This allows the creation of (value, key) pairs using
zip():pairs = zip(d.values (), d.keys()). Another way to create the same listis pairs =
[(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to iterate
over all entries.

Changed in version 3.7: Dictionary order is guaranteed to be insertion order.

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

reversed (dictview)
Return a reverse iterator over the keys, values or items of the dictionary. The view will be iterated in reverse
order of the insertion.

Changed in version 3.8: Dictionary views are now reversible.

dictview.mapping
Return a types.MappingProxyType that wraps the original dictionary to which the view refers.

New in version 3.10.

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value)
pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since
the entries are generally not unique.) For set-like views, all of the operations defined for the abstract base class
collections.abc. Set are available (for example, ==, <, or ").

An example of dictionary view usage:

82 Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys ()
>>> values = dishes.values|()

>>> # iteration

>> n = 0

>>> for val in values:
n += val

>>> print (n)

504

>>> # keys and values are iterated over in the same order (insertion order)
>>> list (keys)

['eggs', 'sausage', 'bacon', 'spam']

>>> list (values)

[2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes|['eggs']

>>> del dishes|['sausage']

>>> list (keys)

['bacon', 'spam']

>>> # set operations

>>> keys & {'eggs', 'bacon', 'salad'}
{'bacon'}

>>> keys ©~ {'sausage', 'Jjuice'}
{'juice', 'sausage', 'bacon', 'spam'}

>>> # get back a read-only proxy for the original dictionary
>>> values.mapping

mappingproxy ({ 'bacon': 1, 'spam': 500})

>>> values.mapping['spam']

500

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is imple-
mented using a pair of methods that allow user-defined classes to define a runtime context that is entered before the
statement body is executed and exited when the statement ends:

contextmanager.__enter__ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext (). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body of the
with statement without affecting code outside the with statement.

contextmanager.__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be sup-
pressed. If an exception occurred while executing the body of the with statement, the arguments contain the
exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues

4.11. Context Manager Types 83




The Python Library Reference, Release 3.10.18

propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value
to indicate that the method completed successfully and does not want to suppress the raised exception. This
allows context management code to easily detect whether ornotan ___exit__ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated spe-
cially beyond their implementation of the context management protocol. See the context 11ib module for some
examples.

Python’s generators and the context1ib. contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the context1ib. contextmanager decorator, it will
return a context manager implementing the necessary __enter () and __exit__ () methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C
API. Extension types wanting to define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is
negligible.

4.12 Type Annotation Types — Generic Alias, Union

The core built-in types for type annotations are Generic Alias and Union.

4.12.1 Generic Alias Type

GenericAlias objects are generally created by subscripting a class. They are most often used with container
classes,suchas 1ist or dict. Forexample, 1ist [int] isa GenericAlias object created by subscripting the
1ist class with the argument int. GenericAlias objects are intended primarily for use with rype annotations.

Note: It is generally only possible to subscript a class if the class implements the special method
__class_getitem__ ().

A GenericAlias object acts as a proxy for a generic type, implementing parameterized generics.

For a container class, the argument(s) supplied to a subscription of the class may indicate the type(s) of the elements
an object contains. For example, set [bytes] can be used in type annotations to signify a set in which all the
elements are of type bytes.

For a class which defines __class_getitem__ () butisnot a container, the argument(s) supplied to a subscrip-
tion of the class will often indicate the return type(s) of one or more methods defined on an object. For example,
regular expressions can be used on both the st r data type and the bytes data type:

e If x = re.search('foo', 'foo'), x will be a re.Match object where the return values of x.
group (0) and x [0] will both be of type str. We can represent this kind of object in type annotations
with the GenericAlias re.Match[str].

e Ify = re.search(b'bar', b'bar'), (note the b for bytes), y will also be an instance of re.
Mat ch, but the return values of v .group (0) and y [0] will both be of type bytes. In type annotations,
we would represent this variety of re. Match objects with re .Match [bytes].

GenericAlias objects are instances of the class t ypes.GenericAlias, which can also be used to create
GenericAlias objects directly.

TIX, Y, ...]
Creates a GenericAlias representing a type T parameterized by types X, Y, and more depending on the T
used. For example, a function expecting a 1 i st containing £ 1oat elements:

84 Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

def average (values: list[float]) —-> float:
return sum(values) / len(values)

Another example for mapping objects, using a dict, which is a generic type expecting two type parameters
representing the key type and the value type. In this example, the function expects a dict with keys of type
st r and values of type int:

def send _post_request (url: str, body: dict[str, int]) -> None:

The builtin functions i sinstance () and issubclass () donotaccept GenericAlias types for their sec-
ond argument:

>>> isinstance([1, 2], list[str])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: isinstance () argument 2 cannot be a parameterized generic

The Python runtime does not enforce fype annotations. This extends to generic types and their type parameters.
When creating a container object from a GenericAlias, the elements in the container are not checked against
their type. For example, the following code is discouraged, but will run without errors:

>>> t = list[str]
>>> t([1, 2, 31)
(1, 2, 31

Furthermore, parameterized generics erase type parameters during object creation:

>>> t = list[str]
>>> type (t)
<class 'types.GenericAlias'>

>>> 1 = t ()
>>> type (1)
<class 'list'>

Calling repr () or str () on a generic shows the parameterized type:

>>> repr (list[int])
'list[int]"

>>> str(list[int])
'list[int]"’

The __getitem__ () method of generic containers will raise an exception to disallow mistakes like
dict[str] [str]:

>>> dict[str] [str]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: There are no type variables left in dict[str]

However, such expressions are valid when fype variables are used. The index must have as many elements as there
are type variable items in the GenericAlias object’s __args_ .

>>> from typing import TypeVar
>>> Y = TypeVar('y'")

>>> dict[str, Y][int]
dict[str, int]

4.12. Type Annotation Types — Generic Alias, Union 85




The Python Library Reference, Release 3.10.18

Standard Generic Classes

The following standard library classes support parameterized generics. This list is non-exhaustive.
e tuple
o list
e dict
e set
e frozenset
o type
e collections.deque
e collections.defaultdict
e collections.OrderedDict
e collections.Counter
e collections.ChainMap
e collections.abc.Awaitable
e collections.abc.Coroutine
e collections.abc.AsyncIterable
e collections.abc.AsyncIterator
e collections.abc.AsyncGenerator
e collections.abc.Iterable
e collections.abc.Iterator
e collections.abc.Generator
e collections.abc.Reversible
e collections.abc.Container
e collections.abc.Collection
e collections.abc.Callable
e collections.abc.Set
e collections.abc.MutableSet
e collections.abc.Mapping
e collections.abc.MutableMapping
e collections.abc.Sequence
e collections.abc.MutableSequence
e collections.abc.ByteString
e collections.abc.MappingView
e collections.abc.KeysView
e collections.abc.ItemsView
e collections.abc.ValuesView
e contextlib.AbstractContextManager

e contextlib.AbstractAsyncContextManager

86 Chapter 4. Built-in Types



The Python Library Reference, Release 3.10.18

e dataclasses.Field

e functools.cached_property
e functools.partialmethod

e 0s.PathLike

e queue.LifoQueue

e queue.Queue

e queue.PriorityQueue

e queue.SimpleQueue

e re.Pattern

o re.Match

e shelve.BsdDbShelf

e shelve.DbfilenameShelf

e shelve.Shelf

e types.MappingProxyType

e weakref.WeakKeyDictionary
e weakref.WeakMethod

o weakref.WeakSet

o weakref.WeakValueDictionary

Special Attributes of GenericAlias objects

All parameterized generics implement special read-only attributes.

genericalias.__origin_
This attribute points at the non-parameterized generic class:

>>> list[int].__origin___
<class 'list'>

genericalias.__args_
This attribute is a tuple (possibly of length 1) of generic types passed to the original
__class_getitem__ () of the generic class:

>>> dict[str, list[int]].__args__
(<class 'str'>, list[int])

genericalias.__ parameters_
This attribute is a lazily computed tuple (possibly empty) of unique type variables found in __args__:

>>> from typing import TypeVar

>>> T = TypeVar('T")
>>> 1ist[T].__parameters_
(NT/)

Note: A GenericAlias object with typing.ParamSpec parameters may not have correct __ pa-—
rameters___ after substitution because t yping.ParamSpec is intended primarily for static type check-
ing.

4.12. Type Annotation Types — Generic Alias, Union 87



The Python Library Reference, Release 3.10.18

See also:
PEP 484 - Type Hints Introducing Python’s framework for type annotations.

PEP 585 - Type Hinting Generics In Standard Collections Introducing the ability to natively parameterize
standard-library classes, provided they implement the special class method __class_getitem__ ().

Generics, user-defined generics and typing.Generic Documentation on how to implement generic classes
that can be parameterized at runtime and understood by static type-checkers.

New in version 3.9.

4.12.2 Union Type

A union object holds the value of the | (bitwise or) operation on multiple 7ype objects. These types are intended
primarily for type annotations. The union type expression enables cleaner type hinting syntax compared to t yping.
Union.

X1Y|
Defines a union object which holds types X, Y, and so forth. X | Y means either X or Y. It is equivalent to
typing.Union[X, Y].Forexample, the following function expects an argument of type int or float:

def square (number: int | float) —-> int | float:
return number ** 2

union_object == other
Union objects can be tested for equality with other union objects. Details:

o Unions of unions are flattened:

’(int | str) | float == int | str | float

« Redundant types are removed:

int | str | int == int | str

o When comparing unions, the order is ignored:

int | str == str | int

o Itis compatible with t yping. Union:

int | str == typing.Union[int, str]

« Optional types can be spelled as a union with None:

str | None == typing.Optionall[str]

isinstance (obj, union_object)

issubclass (obj, union_object)
Callsto isinstance () and issubclass () are also supported with a union object:

>>> isinstance("", int | str)
True

However, union objects containing parameterized generics cannot be used:

>>> isinstance(l, int | list[int])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: isinstance () argument 2 cannot contain a parameterized generic

88 Chapter 4. Built-in Types


https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

The Python Library Reference, Release 3.10.18

The user-exposed type for the union object can be accessed from types.UnionType and used for isin—
stance () checks. An object cannot be instantiated from the type:

>>> import types
>>> isinstance (int | str, types.UnionType)
True
>>> types.UnionType ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot create 'types.UnionType' instances

Note: The __or__ () method for type objects was added to support the syntax X | Y. If a metaclass implements
__or__ (), the Union may override it:

>>> class M(type):
def _ or_ (self, other):
return "Hello"

>>> class C(metaclass=M) :
pass

>>> C | int

'Hello'

>>> int | C
int | _ _main__ .C

See also:
PEP 604 - PEP proposing the X | Y syntax and the Union type.

New in version 3.10.

4.13 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.13.1 Modules

The only special operation on a module is attribute access: m. name, where m is a module and name accesses a name
defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist,
rather it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is ___dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the _ dict_
attribute is not possible (you can writem.__dict__['a'] = 1, which definesm. a to be 1, but you can’t write
m.__dict__ = {}). Modifying ___dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file,
they are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

4.13. Other Built-in Types 89



https://www.python.org/dev/peps/pep-0604

The Python Library Reference, Release 3.10.18

4.13.2 Classes and Class Instances

See objects and class for these.

4.13.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-1list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.13.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object: a
bound method (also called instance method) object. When called, it will add the se 1 f argument to the argument list.
Bound methods have two special read-only attributes: m.___self_ _ is the object on which the method operates,
and m.___func___ is the function implementing the method. Calling m (arg-1, arg-2, ..., arg-n) is
completely equivalent to callingm.__ func__ (m.__self , arg-1, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.__ func_ ), setting method attributes on bound methods
is disallowed. Attempting to set an attribute on a method results in an At t ributeError being raised. In order
to set a method attribute, you need to explicitly set it on the underlying function object:

>>> class C:
def method(self):
pass
>>> ¢ = C()
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'method' object has no attribute 'whoami'
>>> c.method. func .whoami = 'my name is method'
>>> c.method.whoami
'my name is method'

See types for more information.

4.13.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the built-in compile () function and can be extracted from function
objects through their ___code___ attribute. See also the code module.

Accessing ___code___raises an auditing event object .__getattr__ witharguments objand"___code__".

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval ()
built-in functions.

See types for more information.

920 Chapter 4. Built-in Types




The Python Library Reference, Release 3.10.18

4.13.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function t ype (). There
are no special operations on types. The standard module t ypes defines names for all standard built-in types.

Types are written like this: <class 'int'>.

4.13.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name). t ype (None) () produces the same singleton.

It is written as None.

4.13.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object, named £11ipsis (abuilt-in name). type (E11ipsis) () produces the E11ipsis singleton.

Itis writtenas E11ipsisor....

4.13.9 The Notimplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types
they don’t support. See comparisons for more information. There is exactly one Not Implemented object.
type (NotImplemented) () produces the singleton instance.

It is written as Not Implemented.

4.13.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function bool () can be used
to convert any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written as False and True, respectively.

4.13.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.14 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir () built-in function.

object.__dict___
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class___
The class to which a class instance belongs.

class.__bases___
The tuple of base classes of a class object.

4.14. Special Attributes 91



The Python Library Reference, Release 3.10.18

definition.___name___
The name of the class, function, method, descriptor, or generator instance.

definition._ _qualname_
The qualified name of the class, function, method, descriptor, or generator instance.

New in version 3.3.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is
called at class instantiation, and its result is stored in __mro

class.__subclasses__ ()
Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. The list is in definition order. Example:

>>> int._ subclasses__ ()
[<class 'bool'>]

4.15 Integer string conversion length limitation

CPython has a global limit for converting between int and st r to mitigate denial of service attacks. This limit
only applies to decimal or other non-power-of-two number bases. Hexadecimal, octal, and binary conversions are
unlimited. The limit can be configured.

The int type in CPython is an arbitrary length number stored in binary form (commonly known as a “bignum”).
There exists no algorithm that can convert a string to a binary integer or a binary integer to a string in linear time, unless
the base is a power of 2. Even the best known algorithms for base 10 have sub-quadratic complexity. Converting a
large value suchas int ('1' * 500_000) can take over a second on a fast CPU.

Limiting conversion size offers a practical way to avoid CVE-2020-10735.

The limit is applied to the number of digit characters in the input or output string when a non-linear conversion
algorithm would be involved. Underscores and the sign are not counted towards the limit.

When an operation would exceed the limit, a ValueError is raised:

>>> import sys

>>> gys.set_int_max_str_digits (4300) # Illustrative, this 1is the default.
>>> = int ('2' * 5432)

Traceback (most recent call last):

ValueError: Exceeds the limit (4300) for integer string conversion: value has 5432.
—~digits; use sys.set_int_max_str_digits() to increase the limit.

>>> 1 = int('2' * 4300)

>>> len(str(i))

4300

>>> 1 _squared = i*i

>>> len(str(i_squared))

Traceback (most recent call last):

ValueError: Exceeds the limit (4300) for integer string conversion: value has 8599.

—~digits; use sys.set_int_max_str_digits() to increase the limit.

>>> len (hex (i_squared))

7144

>>> assert int (hex (i_squared), base=16) == i*i # Hexadecimal is unlimited.

The default limit is 4300 digits as provided in sys. int_info.default_max_str_digits. Thelowestlimit
that can be configured is 640 digits as provided in sys. int_info.str _digits_check_threshold.

92 Chapter 4. Built-in Types



https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10735

The Python Library Reference, Release 3.10.18

Verification:

>>> import sys

>>> assert sys.int_info.default_max_str_digits == 4300, sys.int_info

>>> assert sys.int_info.str_digits_check_threshold == 640, sys.int_info

>>> msg = int ('578966293710682886880994035146873798396722250538762761564"
'9252925514383915483333812743580549779436104706260696366600"
'571186405732") .to_bytes (53, 'big')

New in version 3.10.7.

4.15.1 Affected APIs

The limitation only applies to potentially slow conversions between int and str or bytes:
e int (string) with default base 10.
e int (string, base) for all bases that are not a power of 2.
e str (integer).
e repr (integer).

« any other string conversion to base 10, for example £"{integer}", "{}".format (integer), or
b"%d" % integer.

The limitations do not apply to functions with a linear algorithm:
e int (string, base) with base 2, 4, 8, 16, or 32.
e int.from bytes () and int.to_bytes ().
e hex(),oct (),bin().
o Format Specification Mini-Language for hex, octal, and binary numbers.
e strto float.

e strtodecimal.Decimal.

4.15.2 Configuring the limit

Before Python starts up you can use an environment variable or an interpreter command line flag to configure the
limit:

e PYTHONINTMAXSTRDIGITS,e.g. PYTHONINTMAXSTRDIGITS=640 python3 to set the limit to 640
or PYTHONINTMAXSTRDIGITS=0 python3 to disable the limitation.

e —X int_max_str_digits,e.g python3 -X int_max_str_ digits=640

e sys.flags.int_max_str_digits contains the value of PYTHONINTMAXSTRDIGITS or —X
int_max_str_digits. If both the env var and the —X option are set, the —X option takes precedence. A
value of -/ indicates that both were unset, thus a value of sys.int_info.default_max_str_digits
was used during initialization.

From code, you can inspect the current limit and set a new one using these sys APIs:

e sys.get_int_max_str_digits() and sys.set_int_max_str_digits () are a getter and
setter for the interpreter-wide limit. Subinterpreters have their own limit.

Information about the default and minimum can be found in sys. int_info:
e sys.int_info.default_max_str_digits isthe compiled-in default limit.

e sys.int_info.str_digits_check_threshold is the lowest accepted value for the limit (other
than O which disables it).

4.15. Integer string conversion length limitation 93




The Python Library Reference, Release 3.10.18

New in version 3.10.7.

Caution: Setting a low limit can lead to problems. While rare, code exists that contains integer constants in
decimal in their source that exceed the minimum threshold. A consequence of setting the limit is that Python
source code containing decimal integer literals longer than the limit will encounter an error during parsing, usually
at startup time or import time or even at installation time - anytime an up to date . pyc does not already exist for
the code. A workaround for source that contains such large constants is to convert them to 0x hexadecimal form
as it has no limit.

Test your application thoroughly if you use a low limit. Ensure your tests run with the limit set early via the
environment or flag so that it applies during startup and even during any installation step that may invoke Python
to precompile . py sources to . pyc files.

4.15.3 Recommended configuration

The default sys.int_info.default_max_str_digits isexpected to be reasonable for most applications.
If your application requires a different limit, set it from your main entry point using Python version agnostic code as
these APIs were added in security patch releases in versions before 3.11.

Example:

>>> import sys
>>> if hasattr(sys, "set_int_max_ str digits"):
upper_bound = 68000
lower_bound = 4004
current_limit = sys.get_int_max_str_digits{()
if current_limit == 0 or current_limit > upper_bound:
sys.set_int_max_str_digits (upper_bound)
elif current_limit < lower_bound:
sys.set_int_max_str_digits (lower_bound)

If you need to disable it entirely, set it to O.

94 Chapter 4. Built-in Types



CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. Ina t ry statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from that
class (but not exception classes from which iz is derived). Two exception classes that are not related via subclassing
are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of several
items of information (e.g., an error code and a string explaining the code). The associated value is usually passed as
arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to derive new
exceptions from the Except i on class or one of its subclasses, and not from BaseExcept i on. More information
on defining exceptions is available in the Python Tutorial under tut-userexceptions.

5.1 Exception context

When raising a new exception while another exception is already being handled, the new exception’s ___context_
attribute is automatically set to the handled exception. An exception may be handled when an except or finally
clause, or a with statement, is used.

This implicit exception context can be supplemented with an explicit cause by using f rom with raise:

raise new_exc from original_exc

The expression following f rom must be an exception or None. It willbesetas __cause___ on the raised exception.
Setting __cause___ also implicitly sets the ___suppress_context__ attribute to True, so that using raise
new_exc from None effectively replaces the old exception with the new one for display purposes (e.g. converting
KeyErrorto AttributeError), while leaving the old exception available in ___context___ for introspection
when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the exception itself.
An explicitly chained exception in ___cause___is always shown when present. An implicitly chained exception in
__context__isshownonlyif _ _cause__ is Noneand __ _suppress_context__ is false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the traceback
always shows the last exception that was raised.

95



The Python Library Reference, Release 3.10.18

5.2 Inheriting from built-in exceptions

User code can create subclasses that inherit from an exception type. It’s recommended to only subclass one exception
type at a time to avoid any possible conflicts between how the bases handle the args attribute, as well as due to
possible memory layout incompatibilities.

CPython implementation detail: Most built-in exceptions are implemented in C for efficiency, see: Ob-
jects/exceptions.c. Some have custom memory layouts which makes it impossible to create a subclass that inherits
from multiple exception types. The memory layout of a type is an implementation detail and might change between
Python versions, leading to new conflicts in the future. Therefore, it’s recommended to avoid subclassing multiple
exception types altogether.

5.3 Base classes

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that, use Exception). If str () is called on an instance of this class, the representation of the argument(s)
to the instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like OSError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

with_traceback (1b)
This method sets #b as the new traceback for the exception and returns the exception object. It was more
commonly used before the exception chaining features of PEP 3134 became available. The following
example shows how we can convert an instance of SomeException into an instance of OtherEx-
cept ion while preserving the traceback. Once raised, the current frame is pushed onto the traceback
of the OtherExcept ion, as would have happened to the traceback of the original SomeException
had we allowed it to propagate to the caller.

try:

except SomeException:
tb = sys.exc_info() [2]
raise OtherException(...).with_traceback (tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs. Iookup ().

96 Chapter 5. Built-in Exceptions


https://github.com/python/cpython/tree/3.10/Objects/exceptions.c
https://github.com/python/cpython/tree/3.10/Objects/exceptions.c
https://www.python.org/dev/peps/pep-3134

The Python Library Reference, Release 3.10.18

5.4 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

The name and ob7j attributes can be set using keyword-only arguments to the constructor. When set they
represent the name of the attribute that was attempted to be accessed and the object that was accessed for said
attribute, respectively.

Changed in version 3.10: Added the name and ob7j attributes.

exception EOFError
Raised when the input () function hits an end-of-file condition (EOF) without reading any data. (N.B.:
the io.IO0Base.read () and io. IOBase. readline () methods return an empty string when they hit
EOF.)

exception FloatingPointError
Not currently used.

exception GeneratorExit
Raised when a generator or coroutine is closed; see generator.close () and coroutine.close ().
It directly inherits from BaseExcept ion instead of Except ion since it is technically not an error.

exception ImportError
Raised when the import statement has troubles trying to load a module. Also raised when the “from list” in
from ... import hasa name that cannot be found.

The name and path attributes can be set using keyword-only arguments to the constructor. When set they
represent the name of the module that was attempted to be imported and the path to any file which triggered
the exception, respectively.

Changed in version 3.3: Added the name and path attributes.

exception ModuleNotFoundError
A subclass of ImportError which is raised by import when a module could not be located. It is also
raised when None is found in sys.modules.

New in version 3.6.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check
for interrupts is made regularly. The exception inherits from BaseExcept ion so as to not be accidentally
caught by code that catches Except ion and thus prevent the interpreter from exiting.

Note: Catching a KeyboardInterrupt requires special consideration. Because it can be raised at un-
predictable points, it may, in some circumstances, leave the running program in an inconsistent state. It is
generally best to allow KeyboardInterrupt to end the program as quickly as possible or avoid raising it
entirely. (See Note on Signal Handlers and Exceptions.)

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).

5.4. Concrete exceptions 97



The Python Library Reference, Release 3.10.18

The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that
because of the underlying memory management architecture (C’s malloc () function), the interpreter may
not always be able to completely recover from this situation; it nevertheless raises an exception so that a stack
traceback can be printed, in case a run-away program was the cause.

exception NameError

Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

The name attribute can be set using a keyword-only argument to the constructor. When set it represent the
name of the variable that was attempted to be accessed.

Changed in version 3.10: Added the name attribute.

exception NotImplementedError

This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method, or while the class is being developed
to indicate that the real implementation still needs to be added.

Note: It should not be used to indicate that an operator or method is not meant to be supported at all — in that
case either leave the operator / method undefined or, if a subclass, set it to None.

Note: NotImplementedError and Not Implemented are not interchangeable, even though they have
similar names and purposes. See Not Implemented for details on when to use it.

exception OSError ( [arg] )
exception OSError (errno, strerror[, ﬁlename[, winerror[, ﬁlenameZ] ] ])

This exception is raised when a system function returns a system-related error, including I/O failures such as
“file not found” or “disk full” (not for illegal argument types or other incidental errors).

The second form of the constructor sets the corresponding attributes, described below. The attributes default
to None if not specified. For backwards compatibility, if three arguments are passed, the args attribute
contains only a 2-tuple of the first two constructor arguments.

The constructor often actually returns a subclass of OSError, as described in OS exceptions below. The par-
ticular subclass depends on the final errno value. This behaviour only occurs when constructing OSError
directly or via an alias, and is not inherited when subclassing.

errno
A numeric error code from the C variable errno.

winerror
Under Windows, this gives you the native Windows error code. The errno attribute is then an approx-
imate translation, in POSIX terms, of that native error code.

Under Windows, if the winerror constructor argument is an integer, the e rrno attribute is determined
from the Windows error code, and the errno argument is ignored. On other platforms, the winerror
argument is ignored, and the winerror attribute does not exist.

strerror
The corresponding error message, as provided by the operating system. It is formatted by the C functions
perror () under POSIX, and FormatMessage () under Windows.

filename

filename2
For exceptions that involve a file system path (such as open () or os.unlink ()), filename is
the file name passed to the function. For functions that involve two file system paths (such as os.
rename ()), £ilenameZ2 corresponds to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, IOError, WindowsError, socket.error,
select.error and mmap.error have been merged into OSError, and the constructor may return
a subclass.

98

Chapter 5. Built-in Exceptions



The Python Library Reference, Release 3.10.18

Changed in version 3.4: The £ 1 1ename attribute is now the original file name passed to the function, instead
of the name encoded to or decoded from the filesystem encoding and error handler. Also, the filename2
constructor argument and attribute was added.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for integers
(which would rather raise MemoryError than give up). However, for historical reasons, OverflowError is
sometimes raised for integers that are outside a required range. Because of the lack of standardization of
floating point exception handling in C, most floating point operations are not checked.

exception RecursionError
This exception is derived from Runt imeError. It is raised when the interpreter detects that the maximum
recursion depth (see sys.getrecursionlimit ()) is exceeded.

New in version 3.5: Previously, a plain Runt imeError was raised.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref. proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weakref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a string
indicating what precisely went wrong.

exception StoplIteration
Raised by built-in function next () and an iterator's __next___ () method to signal that there are no further
items produced by the iterator.

The exception object has a single attribute value, which is given as an argument when constructing the
exception, and defaults to None.

When a generator or coroutine function returns, a new StopIteration instance is raised, and the value
returned by the function is used as the value parameter to the constructor of the exception.

If a generator code directly or indirectly raises StopIteration, itis converted into a RuntimeError
(retaining the StopIteration as the new exception’s cause).

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to return a
value.

Changed in version 3.5: Introduced the RuntimeError transformation via from __future__ import
generator_stop, see PEP 479.

Changed in version 3.7: Enable PEP 479 for all code by default: a StopIteration error raised in a
generator is transformed into a Runt imeError.

exception StopAsyncIteration
Must be raised by ___anext__ () method of an asynchronous iterator object to stop the iteration.

New in version 3.5.

exception SyntaxError (message, details)
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call to the
built-in functions compile (), exec (), or eval (), or when reading the initial script or standard input
(also interactively).

The str () of the exception instance returns only the error message. Details is a tuple whose members are
also available as separate attributes.

filename
The name of the file the syntax error occurred in.

lineno
Which line number in the file the error occurred in. This is 1-indexed: the first line in the file has a
linenoof 1.

5.4. Concrete exceptions 99


https://www.python.org/dev/peps/pep-0479
https://www.python.org/dev/peps/pep-0479

The Python Library Reference, Release 3.10.18

offset
The column in the line where the error occurred. This is 1-indexed: the first character in the line has an
offset of 1.

text
The source code text involved in the error.

end_lineno
Which line number in the file the error occurred ends in. This is 1-indexed: the first line in the file has a
linenoof 1.

end_offset
The column in the end line where the error occurred finishes. This is 1-indexed: the first character in the
line has an of fset of 1.

For errors in f-string fields, the message is prefixed by “f-string: ” and the offsets are offsets in a text constructed
from the replacement expression. For example, compiling f’Bad {a b} field’ results in this args attribute: (‘f-
string: ..., (%, 1, 2, “(ab)n, 1, 5)).

Changed in version 3.10: Added the end_Ilinenoand end_offset attributes.

exception IndentationError

Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError

Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of Tndenta—
tionError.

exception SystemError

Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreter (sys.version;itis also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

exception SystemExit

This exception is raised by the sys.exit () function. It inherits from BaseExcept ion instead of Ex—
ception so that it is not accidentally caught by code that catches Except ion. This allows the exception
to properly propagate up and cause the interpreter to exit. When it is not handled, the Python interpreter exits;
no stack traceback is printed. The constructor accepts the same optional argument passed to sys.exit ().
If the value is an integer, it specifies the system exit status (passed to C’s exit () function); if it is None,
the exit status is zero; if it has another type (such as a string), the object’s value is printed and the exit status
is one.

Acallto sys.exit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately
(for example, in the child process after a call to os. fork ()).

code
The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError

Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

This exception may be raised by user code to indicate that an attempted operation on an object is not sup-
ported, and is not meant to be. If an object is meant to support a given operation but has not yet provided an
implementation, Not ImplementedError is the proper exception to raise.

Passing arguments of the wrong type (e.g. passing a 1ist when an int is expected) should result in a
TypeError, but passing arguments with the wrong value (e.g. a number outside expected boundaries) should
resultina ValueError.

100

Chapter 5. Built-in Exceptions



The Python Library Reference, Release 3.10.18

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclass of NameError.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

UnicodeError has attributes that describe the encoding or decoding error. For example, err.
object [err.start:err.end] gives the particular invalid input that the codec failed on.

encoding
The name of the encoding that raised the error.

reason
A string describing the specific codec error.

object
The object the codec was attempting to encode or decode.

start
The first index of invalid data in ob ject.

end
The index after the last invalid data in ob ject.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError
Raised when an operation or function receives an argument that has the right type but an inappropriate value,
and the situation is not described by a more precise exception such as TndexError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they are aliases
of OSError.

exception EnvironmentError
exception IOError

exception WindowsError
Only available on Windows.

5.4.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation. Corresponds
to errno EAGAIN, EALREADY, EWOULDBLOCK and ETNPROGRESS.

In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This attribute is
available when using the buffered I/O classes from the i 0 module.

5.4. Concrete exceptions 101



The Python Library Reference, Release 3.10.18

exception ChildProcessError
Raised when an operation on a child process failed. Corresponds to errno ECHILD.

exception ConnectionError
A base class for connection-related issues.

Subclasses are BrokenPipeError, ConnectionAbortedError, ConnectionRefusedError
and ConnectionResetError.

exception BrokenPipeError
A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been
closed, or trying to write on a socket which has been shutdown for writing. Corresponds to errno EPIPE
and ESHUTDOWN.

exception ConnectionAbortedError
A subclass of ConnectionError, raised when a connection attempt is aborted by the peer. Corresponds
to errno ECONNABORTED.

exception ConnectionRefusedError
A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds
to errno ECONNREFUSED.

exception ConnectionResetError
A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno
ECONNRESET.

exception FileExistsError
Raised when trying to create a file or directory which already exists. Corresponds to errno EEXIST.

exception FileNotFoundError
Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

exception InterruptedError
Raised when a system call is interrupted by an incoming signal. Corresponds to errno EINTR.

Changed in version 3.5: Python now retries system calls when a syscall is interrupted by a signal, except if the
signal handler raises an exception (see PEP 475 for the rationale), instead of raising TnterruptedError.

exception IsADirectoryError
Raised when a file operation (such as os. remove ()) is requested on a directory. Corresponds to errno
EISDIR.

exception NotADirectoryError
Raised when a directory operation (such as os. 1istdir ()) is requested on something which is not a di-
rectory. On most POSIX platforms, it may also be raised if an operation attempts to open or traverse a
non-directory file as if it were a directory. Corresponds to errno ENOTDIR.

exception PermissionError
Raised when trying to run an operation without the adequate access rights - for example filesystem permissions.
Corresponds to errno EACCES and EPERIM.

exception ProcessLookupError
Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

exception TimeoutError
Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.

New in version 3.3: All the above OSError subclasses were added.
See also:

PEP 3151 - Reworking the OS and IO exception hierarchy

102 Chapter 5. Built-in Exceptions


https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-3151

The Python Library Reference, Release 3.10.18

5.5 Warnings
The following exceptions are used as warning categories; see the Warning Categories documentation for more details.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features when those warnings are intended for other Python devel-
opers.

Ignored by the default warning filters, except in the __main__ module (PEP 565). Enabling the Python
Development Mode shows this warning.

The deprecation policy is described in PEP 387.

exception PendingDeprecationWarning
Base class for warnings about features which are obsolete and expected to be deprecated in the future, but are
not deprecated at the moment.

This class is rarely used as emitting a warning about a possible upcoming deprecation is unusual, and Dep—
recationWarning is preferred for already active deprecations.

Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.
The deprecation policy is described in PEP 387.

exception SyntaxWarning
Base class for warnings about dubious syntax.

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about deprecated features when those warnings are intended for end users of applica-
tions that are written in Python.

exception ImportWarning
Base class for warnings about probable mistakes in module imports.

Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.

exception UnicodeWarning
Base class for warnings related to Unicode.

exception EncodingWarning
Base class for warnings related to encodings.

See Opt-in Encoding Warning for details.
New in version 3.10.

exception BytesWarning
Base class for warnings related to bytes and bytearray.

exception ResourceWarning
Base class for warnings related to resource usage.

Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.

New in version 3.2.

5.5. Warnings 103


https://www.python.org/dev/peps/pep-0565
https://www.python.org/dev/peps/pep-0387
https://www.python.org/dev/peps/pep-0387

The Python Library Reference, Release 3.10.18

5.6 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException

+-— SystemExit

+—— KeyboardInterrupt

+-— GeneratorExit

+-— Exception
+-— Stoplteration
+-— StopAsynclteration
+-— ArithmeticError
| +-— FloatingPointError
| +—— OverflowError
| +—-— ZeroDivisionError
+-— AssertionError
+-— AttributeError

+-— BufferError

+—— EOFError

+-—— ImportError

| +—-— ModuleNotFoundError
+—— LookupError

| +—— IndexError

| +-— KeyError

+—— MemoryError

+—-— NameError

| +—-— UnboundLocalError
+—— OSError

| +-— BlockingIOError

-— RuntimeError
+—— NotImplementedError
+-— RecursionError
—-— SyntaxError
+-- IndentationError
| +—-— TabError
+—— SystemError
+—-— TypeError
+-— ValueError
| +—— UnicodeError
| +—— UnicodeDecodeError
\ +-— UnicodeEncodeError
| +—— UnicodeTranslateError
+-— Warning
+—— DeprecationWarning
+-— PendingDeprecationWarning
+-— RuntimeWarning
+-— SyntaxWarning

| +—— ChildProcessError

| +-— ConnectionError

| | +-— BrokenPipeError

| | +—— ConnectionAbortedError
| | +—— ConnectionRefusedError
| | +—-— ConnectionResetError

| +—— FileExistsError

| +-— FileNotFoundError

| +-— InterruptedError

| +-— IsADirectoryError

| +-— NotADirectoryError

| +—-— PermissionError

| +—— ProcessLookupError

| +-— TimeoutError

+-— ReferenceError

+

\

\

+

\

(continues on next page)

104

Chapter 5. Built-in Exceptions




The Python Library Reference, Release 3.10.18

(continued from previous page)

+—— UserWarning

+-— FutureWarning
+-— ImportWarning
+-— UnicodeWarning

+-— BytesWarning
+-— EncodingWarning
+-- ResourceWarning

5.6. Exception hierarchy 105




The Python Library Reference, Release 3.10.18

106 Chapter 5. Built-in Exceptions



CHAPTER
SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text process-
ing services.

The codecs module described under Binary Data Services is also highly relevant to text processing. In addition,
see the documentation for Python’s built-in string type in Text Sequence Type — str.

6.1 string — Common string operations

Source code: Lib/string.py

See also:
Text Sequence Type — str

String Methods

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercaseand ascii_uppercase constants described below. This
value is not locale-dependent.

string.ascii_lowercase
The lowercase letters 'abcdefghijklmnopgrstuvwxyz'. This value is not locale-dependent and will
not change.

string.ascii_uppercase
The uppercase letters ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '. This value is not locale-dependent and will
not change.

string.digits
The string '0123456789".

string.hexdigits
The string '0123456789abcdefABCDEF .

string.octdigits
The string '01234567".

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale: ! "#$%&"' () *+, —.
[p<=>2@ N1 { |}~

107


https://github.com/python/cpython/tree/3.10/Lib/string.py

The Python Library Reference, Release 3.10.18

string.printable
String of ASCII characters which are considered printable.  This is a combination of digits,
ascii_letters, punctuation,and whitespace.

string.whitespace
A string containing all ASCII characters that are considered whitespace. This includes the characters space,
tab, linefeed, return, formfeed, and vertical tab.

6.1.2 Custom String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the for—
mat () method described in PEP 3101. The Formatter class in the st ring module allows you to create and
customize your own string formatting behaviors using the same implementation as the built-in format () method.

class string.Formatter
The Formatter class has the following public methods:

format (format_string, /, *args, **kwargs)
The primary API method. It takes a format string and an arbitrary set of positional and keyword argu-
ments. It is just a wrapper that calls vformat ().

Changed in version 3.7: A format string argument is now positional-only.

vformat (format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where
you want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dic-
tionary as individual arguments using the *args and **kwargs syntax. vformat () does the work
of breaking up the format string into character data and replacement fields. It calls the various methods
described below.

In addition, the Format ter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)
Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, con-
version). This is used by vformat () to break the string into either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement
field. If there is no literal text (which can happen if two replacement fields occur consecutively), then
literal_text will be a zero-length string. If there is no replacement field, then the values of field name,
format_spec and conversion will be None.

get_field (field_name, args, kwargs)
Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as
“O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The return value used_key
has the same meaning as the key parameter to get_value ().

get_value (key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer,
it represents the index of the positional argument in args; if it is a string, then it represents a named
argument in kwargs.

The args parameter is set to the list of positional arguments to vformat (), and the kwargs parameter
is set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value () to be called with a key argu-
ment of 0. The name attribute will be looked up after get_value () returns by calling the built-in
getattr () function.

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError
should be raised.

108 Chapter 6. Text Processing Services


https://www.python.org/dev/peps/pep-3101
https://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 3.10.18

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The
set of unused args can be calculated from these parameters. check_unused_args () is assumed to
raise an exception if the check fails.

format_f£field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that sub-
classes can override it.

convert_field (value, conversion)
Converts the value (returned by get_field ()) given a conversion type (as in the tuple returned by the
parse () method). The default version understands ‘s’ (str), ‘t’ (repr) and ‘@’ (ascii) conversion types.

6.1.3 Format String Syntax

The str. format () method and the Format ter class share the same syntax for format strings (although in the
case of Format ter, subclasses can define their own format string syntax). The syntax is related to that of formatted
string literals, but it is less sophisticated and, in particular, does not support arbitrary expressions.

Format strings contain “replacement fields” surrounded by curly braces { }. Anything that is not contained in braces
is considered literal text, which is copied unchanged to the output. If you need to include a brace character in the
literal text, it can be escaped by doubling: { { and } }.

The grammar for a replacement field is as follows:

replacement_field = "{" [field name] ["!" conversion] [":" format_spec]
field name = arg_name ("." attribute_name | "[" element_index "]
arg_name = [identifier | digit+]

attribute_name = identifier

element_index
index_string
conversion

digit+ | index_string
<any source character except "]"> +
"r" | "S" ‘ "a"

format_spec = <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a
conversion field, which is preceded by an exclamation point ' ! ', and a format_spec, which is preceded by a colon
' : '. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to a
positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names in a
format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers 0, 1, 2, ... will be
automatically inserted in that order. Because arg_name is not quote-delimited, it is not possible to specify arbitrary
dictionary keys (e.g., the strings '10"' or ':—] ") within a format string. The arg_name can be followed by any
number of index or attribute expressions. An expression of the form ' .name"' selects the named attribute using
getattr (), while an expression of the form ' [index] ' does an index lookup using __getitem__ ().

Changed in version 3.1: The positional argument specifiers can be omitted for st r. format (),so "{} {}'.
format (a, b) isequivalentto '{0} {1}'.format (a, b).

Changed in version 3.4: The positional argument specifiers can be omitted for Formatter.

Some simple format string examples:

"First, thou shalt count to " # References first positional argument
"Bring me a " # Implicitly references the first positional.
—argument

(continues on next page)

6.1. string— Common string operations 109



The Python Library Reference, Release 3.10.18

(continued from previous page)

"From to " # Same as "From {0} to {1}"

"My quest is " # References keyword argument 'name'

"Weight in tons " # 'weight' attribute of first positional arg
"Units destroyed: " # First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done
by the _ format__ () method of the value itself. However, in some cases it is desirable to force a type to be
formatted as a string, overriding its own definition of formatting. By converting the value to a string before calling
_ format__ (), the normal formatting logic is bypassed.

Three conversion flags are currently supported: ' !'s' which calls st r () on the value, ' ! r' which calls repr ()
and '!a' whichcalls ascii ().

Some examples:

"Harold's a clever
"Bring out the holy " # Calls repr() on the argument first
"More " # Calls ascii() on the argument first

# Calls str() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-
language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields may contain
a field name, conversion flag and format specification, but deeper nesting is not allowed. The replacement fields
within the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a
value to be dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individ-
ual values are presented (see Format String Syntax and f-strings). They can also be passed directly to the built-in
format () function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format specification produces the same result as if you had called st~ () on
the value. A non-empty format specification typically modifies the result.

The general form of a standard format specifier is:

format_spec [[filllalign] [sign] [#][0] [width] [grouping option] [.precision] [tyr

fill = <any character>

align := "<" | ">" | nwm_mn | nmnAmn

Slgn = n + " | n_mn I " n

width = digit+

grouping_option = e

precision = digit+

type ::= "b" | "c" | "d" | "e" ‘ "E" | "f" ‘ "F" | "g" | "G" | "n" | "O" I

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults to a
space if omitted. It is not possible to use a literal curly brace ("{” or “}”) as the fill character in a formatted string
literal or when using the str. format () method. However, it is possible to insert a curly brace with a nested
replacement field. This limitation doesn’t affect the format () function.

110 Chapter 6. Text Processing Services



The Python Library Reference, Release 3.10.18

The meaning of the various alignment options is as follows:

Op- | Meaning

tion

'<' | Forces the field to be left-aligned within the available space (this is the default for most ob-
jects).

'>" | Forces the field to be right-aligned within the available space (this is the default for numbers).
="' | Forces the padding to be placed after the sign (if any) but before the digits. This is used
for printing fields in the form ‘+000000120°. This alignment option is only valid for numeric
types. It becomes the default for numbers when ‘0’ immediately precedes the field width.

'~ ' | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning
tion
T4 indicates that a sign should be used for both positive as well as negative numbers.

- indicates that a sign should be used only for negative numbers (this is the default behavior).
space | indicates that a leading space should be used on positive numbers, and a minus sign on
negative numbers.

The '#' option causes the “alternate form” to be used for the conversion. The alternate form is defined differently
for different types. This option is only valid for integer, float and complex types. For integers, when binary, octal,
or hexadecimal output is used, this option adds the respective prefix '0b', '0o', '0x "', or '0X"' to the output
value. For float and complex the alternate form causes the result of the conversion to always contain a decimal-point
character, even if no digits follow it. Normally, a decimal-point character appears in the result of these conversions
only if a digit follows it. In addition, for 'g"' and 'G' conversions, trailing zeros are not removed from the result.

The ', ' option signals the use of a comma for a thousands separator. For a locale aware separator, use the 'n'
integer presentation type instead.

Changed in version 3.1: Added the ', ' option (see also PEP 378).

The '_ ' option signals the use of an underscore for a thousands separator for floating point presentation types and
for integer presentation type 'd'. For integer presentation types 'b', 'o', 'x', and 'X"', underscores will be
inserted every 4 digits. For other presentation types, specifying this option is an error.

Changed in version 3.6: Added the ' _' option (see also PEP 515).

width is a decimal integer defining the minimum total field width, including any prefixes, separators, and other for-
matting characters. If not specified, then the field width will be determined by the content.

When no explicit alignment is given, preceding the width field by a zero (' 0 ') character enables sign-aware zero-
padding for numeric types. This is equivalent to a fill character of ' 0' with an alignment type of '=".

Changed in version 3.10: Preceding the width field by ' 0 ' no longer affects the default alignment for strings.

The precision is a decimal integer indicating how many digits should be displayed after the decimal point for pre-
sentation types 'f' and 'F', or before and after the decimal point for presentation types 'g' or 'G'. For string
presentation types the field indicates the maximum field size - in other words, how many characters will be used from
the field content. The precision is not allowed for integer presentation types.

Finally, the type determines how the data should be presented.

The available string presentation types are:

6.1. string — Common string operations 111


https://www.python.org/dev/peps/pep-0378
https://www.python.org/dev/peps/pep-0515

The Python Library Reference, Release 3.10.18

Type | Meaning
's! String format. This is the default type for strings and may be omitted.
None | Thesameas 's"'.

The available integer presentation types are:

Type Meaning

'b' | Binary format. Outputs the number in base 2.

'c' | Character. Converts the integer to the corresponding unicode character before printing.

'd' | Decimal Integer. Outputs the number in base 10.

'o' | Octal format. Outputs the number in base 8.

'x ' | Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9.
'X" | Hex format. Outputs the number in base 16, using upper-case letters for the digits above 9.
In case '# ' is specified, the prefix ' 0x ' will be upper-cased to ' 0X ' as well.

'n' | Number. This is the same as 'd"', except that it uses the current locale setting to insert the
appropriate number separator characters.

None| The same as 'd"'.

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed
below (except 'n' and None). When doing so, f1oat () is used to convert the integer to a floating point number
before formatting.

The available presentation types for £1oat and Decimal values are:

112 Chapter 6. Text Processing Services



The Python Library Reference, Release 3.10.18

Type Meaning

'e' | Scientific notation. For a given precision p, formats the number in scientific notation with the
letter ‘e’ separating the coefficient from the exponent. The coefficient has one digit before and
p digits after the decimal point, for a total of p + 1 significant digits. With no precision
given, uses a precision of 6 digits after the decimal point for £7oat, and shows all coefficient
digits for Decimal. If no digits follow the decimal point, the decimal point is also removed
unless the # option is used.

'E' | Scientific notation. Same as 'e ' except it uses an upper case ‘E’ as the separator character.

' £' | Fixed-point notation. For a given precision p, formats the number as a decimal number with
exactly p digits following the decimal point. With no precision given, uses a precision of
6 digits after the decimal point for f1oat, and uses a precision large enough to show all
coeflicient digits for Decimal. If no digits follow the decimal point, the decimal point is
also removed unless the # option is used.

'F' | Fixed-point notation. Same as ' £ ', but converts nan to NAN and inf to INF.

'g"' | General format. For a given precision p >= 1, this rounds the number to p significant digits
and then formats the result in either fixed-point format or in scientific notation, depending on
its magnitude. A precision of 0 is treated as equivalent to a precision of 1.

The precise rules are as follows: suppose that the result formatted with presentation type 'e'
and precision p—1 would have exponent exp. Then, if m <= exp < p, where mis -4
for floats and -6 for Decimals, the number is formatted with presentation type 'f' and
precision p—1-exp. Otherwise, the number is formatted with presentation type 'e' and
precision p—1. In both cases insignificant trailing zeros are removed from the significand,
and the decimal point is also removed if there are no remaining digits following it, unless the
"4 ' option is used.

With no precision given, uses a precision of 6 significant digits for f1oat. For Decimal,
the coefficient of the result is formed from the coefficient digits of the value; scientific notation
is used for values smaller than 1e-6 in absolute value and values where the place value of
the least significant digit is larger than 1, and fixed-point notation is used otherwise.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf, —
inf, 0, —0 and nan respectively, regardless of the precision.

'G' | General format. Same as 'g' except switches to 'E' if the number gets too large. The
representations of infinity and NaN are uppercased, too.

'n' | Number. This is the same as 'g', except that it uses the current locale setting to insert the
appropriate number separator characters.

%' | Percentage. Multiplies the number by 100 and displays in fixed (' £ ') format, followed by a
percent sign.

None For float this is the same as 'g', except that when fixed-point notation is used to format
the result, it always includes at least one digit past the decimal point. The precision used is as
large as needed to represent the given value faithfully.

For Decimal, this is the same as either 'g' or 'G' depending on the value of context.
capitals for the current decimal context.

The overall effect is to match the output of st () as altered by the other format modifiers.

Format examples

This section contains examples of the st r. format () syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old $-formatting, with the addition of the { } and with : used instead
of %. For example, '$03.2f" can be translatedto '{: 03.2f}"'.

The new format syntax also supports new and different options, shown in the following examples.

Accessing arguments by position:

>>> ! , , '.format('a', 'b', 'c")
'a, b, c'
>>> ! , , '.format('a', 'b', 'c'") # 3.1+ only

(continues on next page)

6.1. string— Common string operations 113



The Python Library Reference, Release 3.10.18

(continued from previous page)

'a, b, ¢’

>>> '"J/2), {1}, {0}".format('a', 'b', 'c")

'c, b, a'

>>> "2}, {1}, {0}".format (*'abc"') # unpacking argument sequence

'c, b, a'

>>> "/[0}{1}{0}" . format ('abra', 'cad') # arguments' indices can be repeated
'abracadabra’

Accessing arguments by name:

>>> 'Coordinates: {latitude}, {longitude}'.format (latitude='37.24N', longitude='-
—115.81W")

'Coordinates: 37.24N, -115.81W'

>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}

>>> 'Coordinates: {latitude}, {longitude}'.format (**coord)
'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> ('The complex number {0} is formed from the real part {0.real} '
'and the imaginary part {0.imag/}."').format (c)
'The complex number (3-57j) is formed from the real part 3.0 and the imaginary part.
‘—>_5 . O . '
>>> class Point:
def _ _init_ (self, x, y):
self.x, self.y = x, vy
def _ str_ (self):
return 'Point ({self.x}, {self.y})'.format (self=self)

>>> str(Point (4, 2))
'Point (4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: {0[0]}; Y: {0[1]}".format (coord)
'X: 3; Y: 5

Replacing $s and $r:

>>> "repr () shows quotes: {/r}; str() doesn't: {!s}".format ('testl', 'test2')
"repr () shows quotes: 'testl'; str() doesn't: test2"

Aligning the text and specifying a width:

>>> ' {:<30}"'".format ('left aligned')
'left aligned !

>>> ' {:>30}"' . format ('right aligned")
! right aligned'

>>> '{:730}" . format ('centered"')

! centered '

>>> '{:#730)" format ('centered") # use '"*' as a fill char
'***********centered***********'

Replacing $+£, $-f,and $ £ and specifying a sign:

>>> "{:4f}; {:+ .format (3.14, -3.14) # show it always

{41}
'+3.140000; -3.140000"
>>> "/ f); {: £} . format(3.14, -3.14) # show a space for positive numbers
' 3.140000; -3.140000"

(continues on next page)

114 Chapter 6. Text Processing Services




The Python Library Reference, Release 3.10.18

(continued from previous page)

>>> "/[:-f); {:-f}" . format(3.14, -3.14) # show only the minus —-—- same as '{:f};
—{:f}'
'3.140000; -3.140000"

Replacing $x and %o and converting the value to different bases:

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:0}; bin: {0:b}".format (42)
'int: 42; hex: 2a; oct: 52; Dbin: 101010"'

>>> # with 0x, 0o, or 0Ob as prefix:

>>> "int: {0:d}; hex: {0:#x}; oct: {0:#0}; bin: {0:#b}".format (42)
'int: 42; hex: 0x2a; oct: 0052; Dbin: 0b101010"

Using the comma as a thousands separator:

>>> '/, }'" format (1234567890)
'1,234,567,890'

Expressing a percentage:

>>> points = 19
>>> total = 22
>>> 'Correct answers: {:.2%}'.format (points/total)

'Correct answers: 86.36%"

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> '{:%Y-%m-%d SH:%M:%S}'.format (d)

'2010-07-04 12:15:58"

Nesting arguments and more complex examples:

>>> for align, text in zip('<">', ['left', 'center', 'right']):
"{0:{fill}{align}l6}"'.format (text, fill=align, align=align)

'left<<<<!

'ANAANcenter AN

'>>>>>>>>>>>right!’

>>>

>>> octets = [192, 168, 0, 1]

>>> "/ 02X 02X ) :02X){ 02X} . format (*octets)
'COAB0001"

>>> int (_, 16)

3232235521

>>>

>>> width = 5
>>> for num in range(5,12):
for base in 'dXob':
print ('{0: {width}{

print ()
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

>}} ' . format (num, base=base, width=width), end='

6.1. string — Common string operations

115




The Python Library Reference, Release 3.10.18

6.1.4 Template strings

Template strings provide simpler string substitutions as described in PEP 292. A primary use case for template
strings is for internationalization (i18n) since in that context, the simpler syntax and functionality makes it easier to
translate than other built-in string formatting facilities in Python. As an example of a library built on template strings

for 118n, see the flufl.i18n package.
Template strings support $-based substitutions, using the following rules:

e $$ is an escape; it is replaced with a single $.

e $identifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier" isrestricted to any case-insensitive ASCII alphanumeric string (including underscores) that
starts with an underscore or ASCII letter. The first non-identifier character after the $ character terminates

this placeholder specification.

e ${identifier} isequivalentto $identifier. Itisrequired when valid identifier characters follow the

placeholder but are not part of the placeholder, such as "${noun}ification™".

Any other appearance of $ in the string will result in a ValueError being raised.

The st ring module provides a Template class that implements these rules. The methods of Template are:

class string.Template (femplate)
The constructor takes a single argument which is the template string.

substitute (mapping={}, /, **kwds)

Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When both mapping and kwds are given and there are duplicates, the

placeholders from kwds take precedence.

safe_substitute (mapping={}, /, **kwds)

Like substitute (), except that if placeholders are missing from mapping and kwds, instead of rais-
ing a KeyError exception, the original placeholder will appear in the resulting string intact. Also,
unlike with substitute (), any other appearances of the $ will simply return $ instead of raising

ValueError.

While other exceptions may still occur, this method is called “safe” because it always tries to return a
usable string instead of raising an exception. In another sense, safe_substitute () may be any-
thing other than safe, since it will silently ignore malformed templates containing dangling delimiters,

unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template

This is the object passed to the constructor’s femplate argument. In general, you shouldn’t change it, but

read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template ('Swho likes S$what')

>>> s.substitute (who="'tim', what='kung pao')
'tim likes kung pao'

>>> d = dict (who="tim")

>>> Template ('Give Swho $100') .substitute (d)
Traceback (most recent call last):

ValueError: Invalid placeholder in string: line 1, col 11
>>> Template ('Swho likes Swhat') .substitute (d)

Traceback (most recent call last):

KeyError: 'what'

(continues on next page)

116 Chapter 6. Text Processing Services



https://www.python.org/dev/peps/pep-0292
https://flufli18n.readthedocs.io/en/latest/

The Python Library Reference, Release 3.10.18

(continued from previous page)

>>> Template ('Swho likes Swhat') .safe_substitute (d)
'tim likes S$what'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

o delimiter — This is the literal string describing a placeholder introducing delimiter. The default value is $. Note
that this should not be a regular expression, as the implementation will call re.escape () on this string as
needed. Note further that you cannot change the delimiter after class creation (i.e. a different delimiter must
be set in the subclass’s class namespace).

e idpattern — This is the regular expression describing the pattern for non-braced placeholders. The default value
is the regular expression (?a:[_a-z][_a-z0-9]*). If this is given and braceidpattern is None this
pattern will also apply to braced placeholders.

Note: Since default flags is re . IGNORECASE, pattern [a—z] can match with some non-ASCII characters.
That’s why we use the local a flag here.

Changed in version 3.7: braceidpattern can be used to define separate patterns used inside and outside the
braces.

e braceidpattern — This is like idpattern but describes the pattern for braced placeholders. Defaults to None
which means to fall back to idpattern (i.e. the same pattern is used both inside and outside braces). If given,
this allows you to define different patterns for braced and unbraced placeholders.

New in version 3.7.

o flags — The regular expression flags that will be applied when compiling the regular expression used for recog-
nizing substitutions. The default value is re . IGNORECASE. Note that re . VERBOSE will always be added
to the flags, so custom idpatterns must follow conventions for verbose regular expressions.

New in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you
do this, the value must be a regular expression object with four named capturing groups. The capturing groups
correspond to the rules given above, along with the invalid placeholder rule:

« escaped - This group matches the escape sequence, e.g. $$, in the default pattern.

» named - This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

e braced - This group matches the brace enclosed placeholder name; it should not include either the delimiter
or braces in the capturing group.

« invalid - This group matches any other delimiter pattern (usually a single delimiter), and it should appear last
in the regular expression.

6.1.5 Helper functions

string.capwords (s, sep=None)
Split the argument into words using str.split (), capitalize each word using str.capitalize (),
and join the capitalized words using st r. join (). If the optional second argument sep is absent or None,
runs of whitespace characters are replaced by a single space and leading and trailing whitespace are removed,
otherwise sep is used to split and join the words.

6.1. string — Common string operations 117




The Python Library Reference, Release 3.10.18

6.2 re — Regular expression operations

Source code: Lib/re.py

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings (st r) as well as 8-bit strings (bytes). However,
Unicode strings and 8-bit strings cannot be mixed: that is, you cannot match a Unicode string with a byte pattern
or vice-versa; similarly, when asking for a substitution, the replacement string must be of the same type as both the
pattern and the search string.

Regular expressions use the backslash character (' \ ') to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write ' \\\\ ' as the pattern
string, because the regular expression must be \ \, and each backslash must be expressed as \ \ inside a regular Python
string literal. Also, please note that any invalid escape sequences in Python’s usage of the backslash in string literals
now generate a DeprecationWarning and in the future this will become a SyntaxError. This behaviour
will happen even if it is a valid escape sequence for a regular expression.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with 'r'. So r"\n" is a two-character string containing '\ ' and 'n"', while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this
raw string notation.

It is important to note that most regular expression operations are available as module-level functions and methods
on compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

See also:

The third-party regex module, which has an API compatible with the standard library re module, but offers additional
functionality and a more thorough Unicode support.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string
pg will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and
B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book [Frie09], or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like 'A', 'a', or
'0 ', are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so last matches the string 'last'. (In the rest of this section, well write RE’s in this special style,
usually without quotes, and strings to be matched 'in single quotes'.)

Some characters, like ' | ' or ' (', are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted.

Repetition qualifiers (*, +, ?, {m, n}, etc) cannot be directly nested. This avoids ambiguity with the non-greedy
modifier suffix ?, and with other modifiers in other implementations. To apply a second repetition to an inner
repetition, parentheses may be used. For example, the expression (?:a{6}) * matches any multiple of six 'a'
characters.

118 Chapter 6. Text Processing Services


https://github.com/python/cpython/tree/3.10/Lib/re.py
https://pypi.org/project/regex/

The Python Library Reference, Release 3.10.18

The special characters are:

. (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been specified,
this matches any character including a newline.

~ (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each newline.

$ Matches the end of the string or just before the newline at the end of the string, and in MULTILINE mode also
matches before a newline. foo matches both ‘foo” and “foobar’, while the regular expression foo$ matches
only ‘foo’. More interestingly, searching for foo. $in ' fool\nfoo2\n' matches f002’ normally, but fool’
in MULTILINE mode; searching for a single $ in ' foo\n"' will find two (empty) matches: one just before
the newline, and one at the end of the string.

* Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab* will match ‘@, ‘ab’, or ‘@’ followed by any number of ‘b’s.

+ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘@’ followed by any
non-zero number of ‘b’s; it will not match just ‘@’

? Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. ab? will match either ‘@’ or ‘ab’.

*2,4?,2? The '*', '+',and ' ? ' qualifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <. *> is matched against ' <a> b <c>', it will match the entire string, and
not just '<a>"'. Adding ? after the qualifier makes it perform the match in non-greedy or minimal fashion; as
few characters as possible will be matched. Using the RE <. * 2> will match only '<a>".

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not
to match. For example, a{ 6 } will match exactly six 'a' characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, a{3, 5} will match from 3 to 5 'a' characters. Omitting m specifies
a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4, }b will match
'aaaab' orathousand 'a' characters followedbya 'b ', butnot 'aaab'. The comma may not be omitted
or the modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string 'aaaaaa',a{3,5} willmatch 5 'a"' characters, while a{ 3, 5} ? will only match 3 characters.

\ Either escapes special characters (permitting you to match characters like '* ', ' ? ', and so forth), or signals a
special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it’s highly
recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. In a set:
o Characters can be listed individually, e.g. [amk] will match 'a', 'm',or 'k'.

» Ranges of characters can be indicated by giving two characters and separating them bya ' - ', for example

[a—z] will match any lowercase ASCII letter, [0—-5] [0—-9] will match all the two-digits numbers from

00 to 59, and [0-9A-Fa-f] will match any hexadecimal digit. If - is escaped (e.g. [a\-z]) or if
it’s placed as the first or last character (e.g. [—a] or [a—]), it will match a literal ' —".

o Special characters lose their special meaning inside sets. For example, [ (+*) ] will match any of the
literal characters ' (', "+', "*',or ") '.

» Character classes such as \w or \ S (defined below) are also accepted inside a set, although the characters
they match depends on whether ASCTI T or LOCALE mode is in force.

o Characters that are not within a range can be matched by complementing the set. If the first character of
the setis '~ ', all the characters that are not in the set will be matched. For example, [~5] will match
any character except '5', and [ "] will match any character except '~ '. ~ has no special meaning if
it’s not the first character in the set.

6.2. re — Regular expression operations 119



The Python Library Reference, Release 3.10.18

o Tomatchaliteral '] ' inside a set, precede it with a backslash, or place it at the beginning of the set. For
example, both [ () [\]1{}] and [] () [{}] will match a right bracket, as well as left bracket, braces,
and parentheses.

« Support of nested sets and set operations as in Unicode Technical Standard #18 might be added in the
future. This would change the syntax, so to facilitate this change a FutureWarning will be raised in
ambiguous cases for the time being. That includes sets starting with a literal ' [ ' or containing literal
character sequences '——"', '&&"', '~~",and ' | | '. To avoid a warning escape them with a backslash.

Changed in version 3.7: FutureWarning is raised if a character set contains constructs that will change
semantically in the future.

| A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary
number of REs can be separated by the ' | ' in this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separated by ' | ' are tried from left to right. When one pattern completely
matches, that branch is accepted. This means that once A matches, B will not be tested further, even if it would
produce a longer overall match. In other words, the ' | ' operator is never greedy. To match a literal ' | ', use
\ |, or enclose it inside a character class, asin [ | ].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the \number special sequence, described below. To match the literals ' (' or ') ', use \ ( or
\\) , or enclose them inside a character class: [ (1, [) ].

(?...) This is an extension notation (a '?"' following a ' (' is not meaningful otherwise). The first character
after the ' ? ' determines what the meaning and further syntax of the construct is. Extensions usually do not
create anew group; (?P<name>. . .) isthe only exception to this rule. Following are the currently supported
extensions.

(?ailmsux) (One or more letters from the set 'a', 'i', 'L', 'm', 's"', '"u', 'x"'.) The group matches
the empty string; the letters set the corresponding flags: re . A (ASCII-only matching), re. I (ignore case),
re. L (locale dependent), re.M (multi-line), re. S (dot matches all), re . U (Unicode matching), and re.
X (verbose), for the entire regular expression. (The flags are described in Module Contents.) This is useful
if you wish to include the flags as part of the regular expression, instead of passing a flag argument to the
re.compile () function. Flags should be used first in the expression string.

(?:...) Anon-capturing version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the group cannot be retrieved after performing a match or referenced later
in the pattern.

(?ailmsux—-imsx:...) (Zero or more letters from theset 'a', 'i', 'L', 'm', 's', 'u', 'x', optionally
followed by ' —"' followed by one or more letters from the 'i', 'm', 's"', 'x"'.) The letters set or remove
the corresponding flags: re. A (ASCII-only matching), re. T (ignore case), re . L (locale dependent), re . M
(multi-line), re. S (dot matches all), re.U (Unicode matching), and re. X (verbose), for the part of the
expression. (The flags are described in Module Contents.)

The letters "a', 'L"' and 'u' are mutually exclusive when used as inline flags, so they can’t be combined
or follow '-"'. Instead, when one of them appears in an inline group, it overrides the matching mode in
the enclosing group. In Unicode patterns (?a:...) switches to ASCIl-only matching, and (?u:...)
switches to Unicode matching (default). In byte pattern (?L:...) switches to locale depending matching,
and (?a:...) switches to ASCIl-only matching (default). This override is only in effect for the narrow
inline group, and the original matching mode is restored outside of the group.

New in version 3.6.
Changed in version 3.7: The letters 'a', 'L"' and 'u"' also can be used in a group.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible via the
symbolic group name name. Group names must be valid Python identifiers, and each group name must be
defined only once within a regular expression. A symbolic group is also a numbered group, just as if the group
were not named.

Named groups can be referenced in three contexts. If the patternis (?P<quote>['"]) .*? (?P=quote)
(i.e. matching a string quoted with either single or double quotes):

120 Chapter 6. Text Processing Services


https://unicode.org/reports/tr18/

The Python Library Reference, Release 3.10.18

Context of reference to group “quote” Ways to reference it
in the same pattern itself

e (?P=quote) (as shown)
e \1

when processing match object m
e m.group ('quote')

e m.end ('quote') (etc.)

in a string passed to the repl argument of re.

sub () e \g<quote>

e \g<1>
e \1

(?P=name) A backreference to a named group; it matches whatever text was matched by the earlier group named

name.
(?#...) A comment; the contents of the parentheses are simply ignored.
(?=...) Matchesif ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.

For example, Isaac (?=Asimov) will match 'Isaac ' only if it’s followed by 'Asimov"'.

(?!...) Matchesif ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac (?!
Asimov) will match 'Isaac ' only if it’s not followed by 'Asimov'.

(?<=...) Matches if the current position in the string is preceded by a match for . . . that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc) def will find amatchin 'abcdef ', since
the lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern
must only match strings of some fixed length, meaning that abc or a | b are allowed, but a* and a{3, 4}
are not. Note that patterns which start with positive lookbehind assertions will not match at the beginning of
the string being searched; you will most likely want to use the search () function rather than the match ()
function:

>>> import re

>>> m re.search (' (?<=abc)def', 'abcdef')
>>> m.group (0)
'def'

This example looks for a word following a hyphen:

>>> m re.search (r' (?<=-)\w+', 'spam-egg')
>>> m.group (0)
leggl

Changed in version 3.5: Added support for group references of fixed length.

(?<!...) Matches if the current position in the string is not preceded by a match for . . .. This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(? (id/name) yes—pattern|no-pattern) Will try to match with yes-pattern if the group with given
id or name exists, and with no-pattern if it doesn’t. no—pattern is optional and can be omitted. For
example, (<) 2 (\w+@\w+ (?:\.\w+)+) (? (1)>]$) isapoor email matching pattern, which will match
with '<user@host.com>" as well as 'user@host.com', but not with '<user@host.com' nor
'user@host.com>".

The special sequences consist of '\ ' and a character from the list below. If the ordinary character is not an ASCII

digit or an ASCII letter, then the resulting RE will match the second character. For example, \ $ matches the character

] $ v

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example, (.+) \1 matches 'the the' or '55 55', but not 'thethe' (note the space after the

6.2. re — Regular expression operations 121



The Python Library Reference, Release 3.10.18

group). This special sequence can only be used to match one of the first 99 groups. If the first digit of number
is 0, or number is 3 octal digits long, it will not be interpreted as a group match, but as the character with octal
value number. Inside the ' [ ' and '] ' of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
word characters. Note that formally, \b is defined as the boundary between a \w and a \W character (or vice
versa), or between \w and the beginning/end of the string. This means that r ' \bfoo\b' matches 'foo",
'foo."', ' (foo) "', 'bar foo baz'butnot 'foobar' or 'foo3"'.

By default Unicode alphanumerics are the ones used in Unicode patterns, but this can be changed by using
the ASCTT flag. Word boundaries are determined by the current locale if the LOCALFE flag is used. Inside a
character range, \b represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is nor at the beginning or end of a word. This means that r ' py\B"'
matches 'python', 'py3', 'py2', butnot 'py"', 'py."',or 'py!'. \Bis just the opposite of \Db,
so word characters in Unicode patterns are Unicode alphanumerics or the underscore, although this can be
changed by using the ASCT T flag. Word boundaries are determined by the current locale if the LOCALE flag
is used.

\d

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode character
category [Nd]). This includes [0—-9], and also many other digit characters. If the ASCTIT flag is used
only [0-9] is matched.

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a decimal digit. This is the opposite of \d. If the ASCIT flag is used this
becomes the equivalent of [~0-9].

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [ \t\n\r\f\v],
and also many other characters, for example the non-breaking spaces mandated by typography rules in
many languages). If the ASCIT flagis used, only [ \t\n\r\f\v] is matched.

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this is
equivalentto [ \t\n\r\f\v].

\S Matches any character which is not a whitespace character. This is the opposite of \ s. If the ASCI I flag is used
this becomes the equivalent of [~ \t\n\r\f\v].

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes alphanumeric characters (as
defined by str. isalnum()) as well as the underscore (_). If the ASCT T flag is used, only [a—zA~-
70-9_1 is matched.

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set; this is
equivalent to [a—zA-20-9_]. If the LOCALFE flag is used, matches characters considered alphanu-
meric in the current locale and the underscore.

\W Matches any character which is not a word character. This is the opposite of \w. If the ASCIT flag is used
this becomes the equivalent of [*a-zA-20-9_]. If the LOCALE flag is used, matches characters which are
neither alphanumeric in the current locale nor the underscore.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\N \r \t \u
\U \v \x AR

122 Chapter 6. Text Processing Services




The Python Library Reference, Release 3.10.18

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)

"\u', "\U',and ' \N' escape sequences are only recognized in Unicode patterns. In bytes patterns they are errors.
Unknown escapes of ASCII letters are reserved for future use and treated as errors.

Octal escapes are included in a limited form. If the first digit is a 0, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits
in length.

Changed in version 3.3: The '\u' and '\U"' escape sequences have been added.
Changed in version 3.6: Unknown escapes consisting of '\ ' and an ASCII letter now are errors.

Changed in version 3.8: The ' \N{name} ' escape sequence has been added. As in string literals, it expands to the
named Unicode character (e.g. ' \N{EM DASH}").

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

Flags

Changed in version 3.6: Flag constants are now instances of RegexF lag, which is a subclass of enum. IntFlag.

re.A

re.ASCII
Make \w, \W, \b, \B, \d, \D, \'s and \ S perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode patterns, and is ignored for byte patterns. Corresponds to the inline flag
(?a).

Note that for backward compatibility, the re . U flag still exists (as well as its synonym re . UNICODE and its
embedded counterpart (?u) ), but these are redundant in Python 3 since matches are Unicode by default for
strings (and Unicode matching isn’t allowed for bytes).

re .DEBUG
Display debug information about compiled expression. No corresponding inline flag.

re.l

re .IGNORECASE
Perform case-insensitive matching; expressions like [A-Z] will also match lowercase letters. Full Unicode
matching (such as U matching 1) also works unless the re. ASCT T flag is used to disable non-ASCII matches.
The current locale does not change the effect of this flag unless the re . LOCALE flag is also used. Corresponds
to the inline flag (21).

Note that when the Unicode patterns [a—z] or [A-Z] are used in combination with the TGNORECASE flag,
they will match the 52 ASCII letters and 4 additional non-ASCII letters: ‘I’ (U+0130, Latin capital letter I with
dot above), 1’ (U+0131, Latin small letter dotless 1), 1" (U+017F, Latin small letter long s) and ‘K’ (U+212A,
Kelvin sign). If the ASCT T flag is used, only letters @’ to ‘2’ and ‘A’ to “Z’ are matched.

re.L

re.LOCALE
Make \w, \W, \b, \B and case-insensitive matching dependent on the current locale. This flag can be used
only with bytes patterns. The use of this flag is discouraged as the locale mechanism is very unreliable, it only
handles one “culture” at a time, and it only works with 8-bit locales. Unicode matching is already enabled by
default in Python 3 for Unicode (str) patterns, and it is able to handle different locales/languages. Corresponds
to the inline flag (?L) .

Changed in version 3.6: re. LOCALE can be used only with bytes patterns and is not compatible with re.
ASCII.

6.2. re — Regular expression operations 123



The Python Library Reference, Release 3.10.18

re.

Changed in version 3.7: Compiled regular expression objects with the re. LOCALE flag no longer depend on
the locale at compile time. Only the locale at matching time affects the result of matching.

M

re .MULTILINE

re.

When specified, the pattern character ' ~ ' matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ' $ ' matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, ' ~ ' matches only at the beginning
of the string, and ' $ ' only at the end of the string and immediately before the newline (if any) at the end of
the string. Corresponds to the inline flag (?m) .

re.DOTALL

re.

Make the ' . ' special character match any character at all, including a newline; without this flag, ' . ' will
match anything except a newline. Corresponds to the inline flag (?s) .

re .VERBOSE

This flag allows you to write regular expressions that look nicer and are more readable by allowing you to
visually separate logical sections of the pattern and add comments. Whitespace within the pattern is ignored,
except when in a character class, or when preceded by an unescaped backslash, or within tokens like *?, (?:
or (?P<...>. Forexample, (? : and * ? are not allowed. When a line contains a # that is not in a
character class and is not preceded by an unescaped backslash, all characters from the leftmost such # through
the end of the line are ignored.

This means that the two following regular expression objects that match a decimal number are functionally
equal:

a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d * # some fractional digits""", re.X)

b = re.compile (r"\d+\.\d*")

Corresponds to the inline flag (?x) .

Functions

re.compile (pattern, flags=0)

Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match (), search () and other methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

is equivalent to

result = re.match(pattern, string)

but using re. compile () and saving the resulting regular expression object for reuse is more efficient when
the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re. compile () and the module-level
matching functions are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

124

Chapter 6. Text Processing Services




The Python Library Reference, Release 3.10.18

re.search (pattern, string, flags=0)
Scan through string looking for the first location where the regular expression pattern produces a match, and
return a corresponding match object. Return None if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

re .match (pattern, string, flags=0)
If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding
match object. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

Note that even in MULTILINE mode, re.match () will only match at the beginning of the string and not
at the beginning of each line.

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

re . fullmatch (pattern, string, flags=0)
If the whole string matches the regular expression pattern, return a corresponding match object. Return None
if the string does not match the pattern; note that this is different from a zero-length match.

New in version 3.4.

re.split (pattern, string, maxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all
groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits
occur, and the remainder of the string is returned as the final element of the list.

>>> re.split(r'\W+', 'Words, words, words.')
['"Words', 'words', 'words', '']

>>> re.split(r' (\W+)', 'Words, words, words.')
['"Words', ', ', 'words', ', ', 'words', '.', '']

>>> re.split (r'\W+', 'Words, words, words.', 1)
['Words', 'words, words.']

>>> re.split('[a-f]+"', '0a3B9', flags=re.IGNORECASE)
[ro', 'z', '9']

If there are capturing groups in the separator and it matches at the start of the string, the result will start with
an empty string. The same holds for the end of the string:

>>> re.split(r' (\W+)', '...words, words...")
[*v, '...", 'words', ', ', 'words', '...', '']

That way, separator components are always found at the same relative indices within the result list.

Empty matches for the pattern split the string only when not adjacent to a previous empty match.

>>> re.split(r'\b', 'Words, words, words.')
['*+, 'Wwords', ', ', 'words', ', ', 'words', '.']

>>> re.split(r'\wW*', '...words...")

['l’ l', ’W', ’OV, lr’, ld’, ISl’ l', ’lJ

>>> re.split(r' (\W*)', '...words...")

['l’ l‘.-|, l', 'l, lwll 'l’ lol’ l', lr', ll, 'd', 'l, lSII '."I, l‘, l', '|:|

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.7: Added support of splitting on a pattern that could match an empty string.

re.findall (pattern, string, flags=0)
Return all non-overlapping matches of pattern in string, as a list of strings or tuples. The string is scanned
left-to-right, and matches are returned in the order found. Empty matches are included in the result.

The result depends on the number of capturing groups in the pattern. If there are no groups, return a list of
strings matching the whole pattern. If there is exactly one group, return a list of strings matching that group.
If multiple groups are present, return a list of tuples of strings matching the groups. Non-capturing groups do
not affect the form of the result.

6.2. re — Regular expression operations 125



The Python Library Reference, Release 3.10.18

>>> re.findall (r'\bf[a-z]*', 'which foot or hand fell fastest')
['foot', 'fell', 'fastest']

>>> re.findall (r' (\w+)=(\d+) "', 'set width=20 and height=10")

[ ('width', '20'), ('height', '10'")]

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re.finditer (pattern, string, flags=0)
Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string. The
string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the
result.

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re. sub (pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the
replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is, \n is converted to a single newline character,
\ r is converted to a carriage return, and so forth. Unknown escapes of ASCII letters are reserved for future
use and treated as errors. Other unknown escapes such as \ & are left alone. Backreferences, such as \ 6, are
replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(r'def\s+([a—-zA-Z_][a-zA-Z_0-9]1*)\s*\ (\s*\):"',
r'static PyObject*\npy_\1(void)\n{"',

C. 'def myfunc():")

'static PyObject*\npy_myfunc (void)\n{"

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :

if matchobj.group(0) == '-': return ' '
. else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro-———--gram-files')

'pro-—gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

The pattern may be a string or a pattern object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be
a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern
are replaced only when not adjacent to a previous empty match, so sub ('x*', '-', 'abxd') returns
'—a-b--d-'.

In string-type repl arguments, in addition to the character escapes and backreferences described above, \
g<name> will use the substring matched by the group named name, as defined by the (?P<name>...)
syntax. \g<number> uses the corresponding group number; \ g<2> is therefore equivalent to \ 2, but isn’t
ambiguous in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20, not a
reference to group 2 followed by the literal character ' 0 '. The backreference \ g<0> substitutes in the entire
substring matched by the RE.

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

Changed in version 3.6: Unknown escapes in pattern consisting of '\ ' and an ASCII letter now are errors.
Changed in version 3.7: Unknown escapes in repl consisting of '\ ' and an ASCII letter now are errors.

Changed in version 3.7: Empty matches for the pattern are replaced when adjacent to a previous non-empty
match.

re . subn (pattern, repl, string, count=0, flags=0)
Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).

126 Chapter 6. Text Processing Services



The Python Library Reference, Release 3.10.18

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

re.escape (pattern)
Escape special characters in pattern. This is useful if you want to match an arbitrary literal string that may
have regular expression metacharacters in it. For example:

>>> print (re.escape ('https://www.python.org'))
https://www\.python\.org

>>> legal_chars = string.ascii_lowercase + string.digits + "!#$%&"*+—-." " [~:"
>>> print ('[ ]+' % re.escape(legal_chars))
[abcdefghijklmnopgrstuvwxyz0123456789 ! \#\S$2\& "\ *\+\=\.\"_"\[\~:]1+

>>> operators = ['+', '=', '"*', v/, vkxl]
>>> print ('|'.Jjoin (map (re.escape, sorted(operators, reverse=True))))

JIN=INHINFAF A

This function must not be used for the replacement string in sub () and subn (), only backslashes should be
escaped. For example:

>>> digits_re = r'\d+'

>>> sample = '/usr/sbin/sendmail - 0 errors, 12 warnings'

>>> print (re.sub(digits_re, digits_re.replace('\\', r'\\'), sample))
/usr/sbin/sendmail - \d+ errors, \d+ warnings

Changed in version 3.3: The '_' character is no longer escaped.
Changed in version 3.7: Only characters that can have special meaning in a regular expression are escaped. As
aresult, "', g M oo rr =100 v@r Jand " " are no longer escaped.

re.purge ()
Clear the regular expression cache.

Exceptions

exception re.error (msg, pattern=None, pos=None)
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It
is never an error if a string contains no match for a pattern. The error instance has the following additional
attributes:

msg
The unformatted error message.

pattern
The regular expression pattern.

pos
The index in pattern where compilation failed (may be None).

lineno
The line corresponding to pos (may be None).

colno
The column corresponding to pos (may be None).

Changed in version 3.5: Added additional attributes.

6.2. re — Regular expression operations 127



The Python Library Reference, Release 3.10.18

6.2.3 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

Pattern.search (string[, pos[, endpos] ] )
Scan through string looking for the first location where this regular expression produces a match, and return
a corresponding match object. Return None if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to 0.
This is not completely equivalent to slicing the string; the ' ~ ' pattern character matches at the real beginning
of the string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos char-
acters long, so only the characters from pos to endpos — 1 will be searched for a match. If endpos is less than
pos, no match will be found; otherwise, if rx is a compiled regular expression object, rx . search (string,
0, 50) isequivalentto rx.search (string[:50], O0).

>>> pattern = re.compile("d")

>>> pattern.search ("dog") # Match at index 0

<re.Match object; span=(0, 1), match='d'>

>>> pattern.search ("dog", 1) # No match; search doesn't include the "d"

Pattern.match (string[, pos[, endpas] ] )
If zero or more characters at the beginning of string match this regular expression, return a corresponding match
object. Return None if the string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o")
>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".

<re.Match object; span=(1, 2), match='o'>

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

Pattern.fullmatch (string[, pos[, endpos] ] )
If the whole string matches this regular expression, return a corresponding match object. Return None if the
string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o[gh]")

>>> pattern.fullmatch ("dog") # No match as "o" is not at the start of "dog
>>> pattern.fullmatch ("ogre™) # No match as not the full string matches.
>>> pattern.fullmatch ("doggie", 1, 3) # Matches within given limits.
<re.Match object; span=(1, 3), match='og'>

New in version 3.4.

Pattern.split (string, maxsplit=0)
Identical to the sp1it () function, using the compiled pattern.

Pattern.findall (string[, pos[, endpos] ] )
Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for search ().

Pattern.finditer (string[, pos[, endpos] ] )
Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for search ().

Pattern.sub (repl, string, count=0)
Identical to the sub () function, using the compiled pattern.

128 Chapter 6. Text Processing Services



The Python Library Reference, Release 3.10.18

Pattern.subn (repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

Pattern.flags
The regex matching flags. This is a combination of the flags given to compile (), any (?...) inline flags
in the pattern, and implicit flags such as UNICODE if the pattern is a Unicode string.

Pattern.groups
The number of capturing groups in the pattern.

Pattern.groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

Pattern.pattern
The pattern string from which the pattern object was compiled.

Changed in version 3.7: Added supportof copy . copy () and copy . deepcopy (). Compiled regular expression
objects are considered atomic.

6.2.4 Match Objects

Match objects always have a boolean value of True. Since match () and search () return None when there is
no match, you can test whether there was a match with a simple i f statement:

match = re.search(pattern, string)
if match:
process (match)

Match objects support the following methods and attributes:

Match.expand (template)
Return the string obtained by doing backslash substitution on the template string template, as done by the
sub () method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences
(\1, \ 2) and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding
group.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

Match.group ( [group], ] )

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, groupl
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
an IndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

>>> m = re.match (r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group (0) # The entire match

'Isaac Newton'

>>> m.group (1) # The first parenthesized subgroup.
'Isaac’

>>> m.group (2) # The second parenthesized subgroup.
'Newton'

>>> m.group (1, 2) # Multiple arguments give us a tuple.

("Isaac', 'Newton')

If the regular expression uses the (?P<name>. . .) syntax, the groupN arguments may also be strings iden-
tifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

6.2. re — Regular expression operations 129



The Python Library Reference, Release 3.10.18

A moderately complicated example:

>>> m re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group ('first_name')
'Malcolm'

>>> m.group ('last_name')
'Reynolds"’

Named groups can also be referred to by their index:

>>> m.group (1)
'Malcolm'
>>> m.group (2)
'Reynolds’

If a group matches multiple times, only the last match is accessible:

>>> m re.match(r" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
|C3|

Match._ getitem__ (g)

This is identical to m. group (g) . This allows easier access to an individual group from a match:

>>> m re.match(r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m[0] # The entire match

'Isaac Newton'

>>> m[1] # The first parenthesized subgroup.

'Isaac’

>>> m[2] # The second parenthesized subgroup.
'Newton'

New in version 3.6.

Match.groups (default=None)

Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The default argument is used for groups that did not participate in the match; it defaults to None.

For example:

>>> m re.match (r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()

('24', '1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m re.match (r" (\d+) \.?2 (\d+) 2", "24")

>>> m.groups () # Second group defaults to None.

('24', None)

>>> m.groups('0") # Now, the second group defaults to '0'.
('24', '0")

Match.groupdict (default=None)

Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The default
argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m

re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()

{'first_name': 'Malcolm', 'last_name': 'Reynolds'}

Match.start ( [group] )

130

Chapter 6. Text Processing Services




The Python Library Reference, Release 3.10.18

Match.end ( [group] )
Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning the
whole matched substring). Return -1 if group exists but did not contribute to the match. For a match object m,
and a group g that did contribute to the match, the substring matched by group g (equivalent tom. group (g) )
is

m.string[m.start (g) :m.end(g) ]

Note that m. start (group) will equal m.end (group) if group matched a null string. For example,
afterm = re.search('b(c?)', 'cba'),m.start(0) isl,m.end(0) is2,m.start (1) and
m.end (1) are both 2, and m. start (2) raises an TndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start ()] + email[m.end() :]

'tony@tiger.net'

Match. span ( [gmup ] )
For a match m, return the 2-tuple (m.start (group), m.end(group)). Note that if group did not
contribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

Match.pos
The value of pos which was passed to the search () or match () method of a regex object. This is the index
into the string at which the RE engine started looking for a match.

Match.endpos
The value of endpos which was passed to the search () or match () method of a regex object. This is the
index into the string beyond which the RE engine will not go.

Match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example,
the expressions (a)b, ((a) (b)),and ( (ab)) willhave lastindex == 1 if applied to the string 'ab"',
while the expression (a) (b) will have lastindex == 2, if applied to the same string.

Match.lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

Match.re
The regular expression object whose match () or search () method produced this match instance.

Match.string
The string passed to match () or search ().

Changed in version 3.7: Added support of copy . copy () and copy.deepcopy (). Match objects are consid-
ered atomic.

6.2.5 Regular Expression Examples
Checking for a Pair

In this example, we'll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None
return '<Match: , groups=%r>' % (match.group (), match.groups())

6.2. re — Regular expression operations 131




The Python Library Reference, Release 3.10.18

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each

character representing a card, “a” for ace, “k” for king,

representing the card with that value.

© 9

q” for queen, “j” for jack, “t” for 10, and “2” through “9”

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r""[a2-9tjgk]
>>> displaymatch(valid.match ("akt5g"))
"<Match: 'aktb5qg', groups=()>"

>>> displaymatch (valid.match ("aktbe"))
>>> displaymatch(valid.match ("akt"))
>>> displaymatch (valid.match ("727ak"))

$")

# Valid.

# Invalid.
# Invalid.
# Valid.

"<Match: '727ak', groups=()>"

That last hand, " 727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> palr = re.compile(r".*(.).*\1")
>>> displaymatch (pair.match ("717ak"))
"<Match: '717', groups=('7',)>"

>>> displaymatch (pair.match ("718ak"))
>>> displaymatch (pair.match ("354aa"))
'354aa’',

# Pair of 7s.

# No pairs.
# Pair of aces.

"<Match: groups=('a',)>"

To find out what card the pair consists of, one could use the group () method of the match object in the following
manner:

>>> pair = re.compile(r".*(.).*\1")
>>> pair.match("717ak") .group (1)
l7l

# Error because re.match() returns None, which doesn't have a group() method:

>>> pair.match("718ak") .group (1)

Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match(r".*(.).*\1", "718ak") .group (1)

AttributeError: 'NoneType' object has no attribute 'group'

>>> pair.match("354aa") .group (1)
lal

Simulating scanf()

Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful, though
also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent mappings
between scanf () format tokens and regular expressions.

scanf () Token

%c .

$5c .{5

$d [

%e, 3E, 3f, 3g [—
[

Regular Expression

(\d+ (\.\d*) 2|\ .\d+) ([eE] [-+]2\d+)?
(0[xX] [\dA-Fa-£f1+|0[0-71*|\d+)
[

%1

o\
o
|

0]
~
n
+

o | oo oe
x|e
o\
=<
-
(o}
+

To extract the filename and numbers from a string like

132 Chapter 6. Text Processing Services



The Python Library Reference, Release 3.10.18

’/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf () format like

%$s — %d errors, %d warnings

The equivalent regular expression would be

’(\S+) - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers different primitive operations based on regular expressions:
e re.match () checks for a match only at the beginning of the string
e re.search () checks for a match anywhere in the string (this is what Perl does by default)
e re.fullmatch () checks for entire string to be a match

For example:

>>> re.match("c", "abcdef™) # No match

>>> re.search("c", "abcdef") # Match
<re.Match object; span=(2, 3), match='c'>

>>> re.fullmatch("p.*n", "python") # Match
<re.Match object; span=(0, 6), match='python'>
>>> re.fullmatch("r.*n", "python") # No match

Regular expressions beginning with ' ~ ' can be used with search () to restrict the match at the beginning of the
string:

>>> re.match("c", "abcdef") # No match
>>> re.search(""c", "abcdef") # No match
>>> re.search(""a", "abcdef™) # Match

<re.Match object; span=(0, 1), match='a'>

Note however that in MULTILINE mode match () only matches at the beginning of the string, whereas using
search () with a regular expression beginning with ' ~ ' will match at the beginning of each line.

>>> re.match("X", "A\nB\nX", re.MULTILINE) # No match
>>> re.search (""X", "A\nB\nX", re.MULTILINE) # Match
<re.Match object; span=(4, 5), match='X"'>

Making a Phonebook

split () splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example
that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

6.2. re — Regular expression operations 133



The Python Library Reference, Release 3.10.18

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split ("\n+", text)

>>> entries

['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[['"Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['"Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
["Heather', 'Albrecht', '548.326.4584', '919 Park Place']]

The : ? pattern matches the colon after the last name, so that it does not occur in the result list. With amaxsplit
of 4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[['"Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['"Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],
["Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
using sub () with a function to “munge” text, or randomize the order of all the characters in each word of a sentence
except for the first and last characters:

>>> def repl(m):
inner_word = list (m.group(2))
random.shuffle (inner_word)
return m.group(l) + "".join(inner_word) + m.group (3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if a writer
wanted to find all of the adverbs in some text, they might use findall () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\w+ly\b", text)
['carefully', 'quickly']

134 Chapter 6. Text Processing Services




The Python Library Reference, Release 3.10.18

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as it
provides match objects instead of strings. Continuing with the previous example, if a writer wanted to find all of the
adverbs and their positions in some text, they would use finditer () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\w+ly\b", text):
print (' - : ' % (m.start (), m.end(), m.group(0)))

07-16: carefully
40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash (' \ ') in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code are
functionally identical:

>>> re.match (r"\wW(.)\1\w", " ££f ")

<re.Match object; span=(0, 4), match=' ff '>
>>> re.match ("\\W (.)\\I\\w", " ££ ™)
<re.Match object; span=(0, 4), match=' ff '>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string nota-
tion, this means r" \\". Without raw string notation, one must use " \\\\ ", making the following lines of code
functionally identical:

>>> re.match (r"\\", r"\\")
<re.Match object; span=(0, 1), match="\\"'>
>>> re.match ("\\\\", r"\\")
<re.Match object; span=(0, 1), match="\\"'>

Writing a Tokenizer
A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a
compiler or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single master
regular expression and to loop over successive matches:

from typing import NamedTuple
import re

class Token (NamedTuple) :
type: str
value: str
line: int
column: int

def tokenize (code) :
keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
token_specification = [

('"NUMBER', r'\d+ (\.\d*)?2"), # Integer or decimal number
('ASSIGN', r':="), # Assignment operator
("END', r';"), # Statement terminator
('"ID"', r'[A-Za-z]+"), # Identifiers

('op’', r'[+\=-*/]1") # Arithmetic operators
('"NEWLINE', r'\n'"), # Line endings

('SKIP', r'[ \t]+"), # Skip over spaces and tabs

(continues on next page)

6.2. re — Regular expression operations 135



https://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.10.18

(continued from previous page)

('MISMATCH', r'."), # Any other character
]
tok_regex = '|'.join (' (?P<%s5>%s)' % palir for pair in token_specification)
line_num = 1
line_start = 0
for mo in re.finditer (tok_regex, code):
kind = mo.lastgroup
value = mo.group ()
column = mo.start () - line_start
if kind == 'NUMBER':
value = float (value) if '.' in value else int (value)
elif kind == 'ID' and value in keywords:
kind = value
elif kin == 'NEWLINE':

line_start = mo.end()
line_num += 1

continue
elif kind == 'SKIP':
continue
elif kind == 'MISMATCH':
raise RuntimeError (f'{value!/r} unexpected on line {line_num/}')

yield Token (kind, value, line_num, column)

statements = "'’
IF quantity THEN
total := total + price * quantity;
tax := price * 0.05;
ENDIF;

for token in tokenize (statements):
print (token)

The tokenizer produces the following output:

Token (type="IF', value='IF', line=2, column=4)

Token (type="'ID', value='quantity', line=2, column=7)
Token (type='THEN', value='THEN', line=2, column=16)
Token (type="'ID', value='total', line=3, column=38)

(

(

(

(
Token (type="ASSIGN', wvalue=':=', line=3, column=14)
Token (type="'ID', value='total', line=3, column=17)
Token (type='0OP', value='+', line=3, column=23)
Token (type="'ID', value='price', line=3, column=25)
Token (type='OP', value='*', line=3, column=31)
Token (type="'ID', value='quantity', line=3, column=33)
Token (type="'END', value=';', line=3, column=41)
Token (type="'ID', value='tax', line=4, column=38)
Token (type="ASSIGN', wvalue=':=', line=4, column=12)
Token (type="'ID', value='price', line=4, column=15)
Token (type='OP', value='*', line=4, column=21)
Token (type="'NUMBER', wvalue=0.05, line=4, column=23)
Token (type="END', value=';', line=4, column=27)
Token (type="ENDIF', wvalue='ENDIF', line=5, column=4)
Token (type="END', value=';', line=5, column=9)

136 Chapter 6. Text Processing Services




The Python Library Reference, Release 3.10.18

6.3 difflib — Helpers for computing deltas

Source code: Lib/difflib.py

This module provides classes and functions for comparing sequences. It can be used for example, for comparing files,
and can produce information about file differences in various formats, including HTML and context and unified diffs.
For comparing directories and files, see also, the i 1ecmp module.

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest
contiguous matching subsequence that contains no “junk” elements; these “junk” elements are ones that are
uninteresting in some sense, such as blank lines or whitespace. (Handling junk is an extension to the Ratcliff
and Obershelp algorithm.) The same idea is then applied recursively to the pieces of the sequences to the left
and to the right of the matching subsequence. This does not yield minimal edit sequences, but does tend to
yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is
linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain se-
quence items as junk. The heuristic counts how many times each individual item appears in the sequence.
If an item’s duplicates (after the first one) account for more than 1% of the sequence and the sequence is
at least 200 items long, this item is marked as “popular” and is treated as junk for the purpose of sequence
matching. This heuristic can be turned off by setting the aut o junk argument to False when creating the
SequenceMatcher.

New in version 3.2: The autojunk parameter.

class difflib.Differ
This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ uses SequenceMat cher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

Code | Meaning
'— ' | line unique to sequence 1

'+ ' | line unique to sequence 2
' line common to both sequences
'? ' | line not present in either input sequence

Lines beginning with ‘?” attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

class difflib.HtmlDiff
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

__init_ (tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Initializes instance of Htm1Di ff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

6.3. difflib — Helpers for computing deltas 137


https://github.com/python/cpython/tree/3.10/Lib/difflib.py

The Python Library Reference, Release 3.10.18

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff () (used by Html1Diff to
generate the side by side HTML differences). See ndi £ () documentation for argument default values
and descriptions.

The following methods are public:

make_file (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5, *, charset="utf-8")
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual dif-
ferences are to be shown, else the default is False to show the full files. numlines defaults to 5. When
context is True numlines controls the number of context lines which surround the difference highlights.
When context is F alse numlines controls the number of lines which are shown before a difference high-
light when using the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

Note: fromdesc and todesc are interpreted as unescaped HTML and should be properly escaped while
receiving input from untrusted sources.

Changed in version 3.5: charset keyword-only argument was added. The default charset of HTML doc-
ument changed from 'IS0O-8859-1"to 'utf-8".

make_table (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its
use.

difflib.context_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n")

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with *** or ——-) are created with a trailing newline. This is helpful
so that inputs created from io0. IOBase.readlines () result in diffs that are suitable for use with io.
IOBase.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineferm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> g1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines (context_diff(sl, s2, fromfile='before.py', tofile=
—'after.py'))

*** before.py

-—— after.py

kkhkhkkhkhkkkhkkkkhkkkk

* Kk K 1’4 * Kk kK

! bacon

(continues on next page)

138

Chapter 6. Text Processing Services




The Python Library Reference, Release 3.10.18

(continued from previous page)

! eggs
! ham
guido
-— 1,4 ——-
! python
! eggy
! hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches (word, possibilities, n=3, cutoff=0.6)
Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument # (default 3) is the maximum number of close matches to return; n must be greater than 0.

Optional argument cutoff (default O . 6) is a float in the range [0, 1]. Possibilities that don’t score at least that
similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches ('appel', ['ape', 'apple', 'peach', 'puppy'])
['apple', 'ape']

>>> import keyword

>>> get_close_matches ('wheel', keyword.kwlist)

['while']

>>> get_close_matches ('pineapple’', keyword.kwlist)

[]

>>> get_close_matches ('accept', keyword.kwlist)

["except']

difflib.ndiff (a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Compare a and b (lists of strings); return a D1 £ fer-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are filtering functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if not.
The default is None. There is also a module-level function 7S _IL.TNE _JUNK (), which filters out lines with-
out visible characters, except for at most one pound character (' # ') — however the underlying Sequence—
Matcher class does a dynamic analysis of which lines are so frequent as to constitute noise, and this usually
works better than using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level function 7S_CHARACTER_JUNK (), which filters out whitespace
characters (a blank or tab; it’s a bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
C. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> print (''.join(diff), end="")

- one

oA

+ ore

- two
- three

+ tree
+ emu

6.3. difflib — Helpers for computing deltas 139



The Python Library Reference, Release 3.10.18

difflib.restore (sequence, which)

Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1 or
2 (parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
. 'ore\ntree\nemu\n'.splitlines (keepends=True))

>>> diff = list(diff) # materialize the generated delta into a list

>>> print (''.join(restore(diff, 1)), end="")

one

two

three

>>> print (''.join (restore(diff, 2)), end="")

ore

tree

emu

difflib.unified_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n")

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in an inline style (instead of separate before/after blocks). The number of context lines is
set by n which defaults to three.

By default, the diff control lines (those with ———, +++, or @@) are created with a trailing newline. This is
helpful so that inputs created from io0. TOBase. readlines () result in diffs that are suitable for use with
io.IOBase.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
>>> sys.stdout.writelines (unified_diff(sl, s2, fromfile='before.py', tofile=
—'after.py'))

—-—— before.py

+++ after.py

@@ -1,4 +1,4 @@

-bacon

-eggs

—ham

+python

teggy

+hamster

guido

See A command-line interface to difflib for a more detailed example.

difflib.diff_bytes (dfunc, a, b, fromfile=b", tofile=b", fromfiledate=b", tofiledate=b", n=3,

lineterm=b'\n")
Compare a and b (lists of bytes objects) using dfunc; yield a sequence of delta lines (also bytes) in the format
returned by dfunc. dfunc must be a callable, typically either unified diff () or context_diff ().

Allows you to compare data with unknown or inconsistent encoding. All inputs except n must be bytes objects,
not str. Works by losslessly converting all inputs (except n) to str, and calling dfunc (a, b, fromfile,
tofile, fromfiledate, tofiledate, n, lineterm). The outputof dfunc is then converted
back to bytes, so the delta lines that you receive have the same unknown/inconsistent encodings as a and b.

140

Chapter 6. Text Processing Services




The Python Library Reference, Release 3.10.18

New in version 3.5.

difflib.IS_LINE_JUNK (l/ine)
Return True for ignorable lines. The line /ine is ignorable if /ine is blank or contains a single ' # ', otherwise
it is not ignorable. Used as a default for parameter linejunk in ndi £ () in older versions.

difflib.IS_CHARACTER_JUNK (ch)
Return True for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published in Dr. Dobb’s Journal in July, 1988.

6.3.1 SequenceMatcher Objects

The SequenceMat cher class has this constructor:

class difflib.SequenceMatcher (isjunk=None, a=", b=", autojunk=True)
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: False;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you're comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

The optional argument autojunk can be used to disable the automatic junk heuristic.
New in version 3.2: The autojunk parameter.

SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for which isjunk is True;
bpopular is the set of non-junk elements considered popular by the heuristic (if it is not disabled); b2j is a dict
mapping the remaining elements of b to a list of positions where they occur. All three are reset whenever b is
reset with set_seqgs () or set_seq2 ().

New in version 3.2: The bjunk and bpopular attributes.
SequenceMatcher objects have the following methods:

set_seqgs (a, b)
Set the two sequences to be compared.

SequenceMat cher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_segZ () to set the commonly used sequence once
and call set_seqgl () repeatedly, once for each of the other sequences.

set_seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo=0, ahi=None, blo=0, bhi=None)
Find longest matching block in a[alo:ahi] and b[blo:bhi].

If isjunk was omitted or None, find_longest_match () returns (i, j, k) suchthata [1:i+k]
isequaltob[j:j+k],where alo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi.
Forall (i', j', k') meeting those conditions, the additional conditions k >= k',i <= i',and
ifi == i',3 <= 7J' are also met. In other words, of all maximal matching blocks, return one that
starts earliest in a, and of all those maximal matching blocks that start earliest in a, return the one that
starts earliest in b.

6.3. difflib — Helpers for computing deltas 141


https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
https://www.drdobbs.com/

The Python Library Reference, Release 3.10.18

>>> s = SequenceMatcher (None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match (a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ' abcd' from
matching the ' abcd' at the tail end of the second sequence directly. Instead only the 'abcd' can
match, and matches the leftmost 'abcd' in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).
This method returns a named tuple Match (a, b, size).

Changed in version 3.9: Added default arguments.

get_matching_blocks ()

Return list of triples describing non-overlapping matching subsequences. Each triple is of the form (1,
j, n),andmeansthata[i:i+n] == b[J:J+n]. The triples are monotonically increasing in i and

J

The last triple is a dummy, and has the value (len(a), len(b), 0). Itis the only triple with n
== 0.If (1, j, n)and (i', 3J', n') areadjacent triples in the list, and the second is not the
last triple in the list, then i+n < 1' or j+n < 3';in other words, adjacent triples always describe
non-adjacent equal blocks.

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()

Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, 1i2,
31, 32). Thefirsttuplehas i1 == j1 == 0, and remaining tuples have i/ equal to the i2 from the
preceding tuple, and, likewise, jI equal to the previous j2.

The tag values are strings, with these meanings:

Value Meaning

'replace' | a[i1:12] should be replaced by b[j1:32].

'delete' a[il:12] should be deleted. Note that 71 == 72 in this case.

'insert' b[j1:732] should be insertedat a[11:11]. Note that 11 == 12 in this case.
'equal' alil:12] == b[jl:7j2] (the sub-sequences are equal).

For example:

>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, b)
>>> for tag, i1, i2, j1, j2 in s.get_opcodes():
print (' al : 1] ——> Db : ] -——> '.format (
. tag, 11, i2, 31, j2, alil:i2], b[jl:321))
delete al0:1] ——> b[0:0] 'q' > !
equal af[l:3] ——> b[0:2] 'ab' ——> 'ab'
replace al[3:4] ——> b[2:3] x> Ty

(continues on next page)

142

Chapter 6. Text Processing Services




The Python Library Reference, Release 3.10.18

(continued from previous page)

equal afd4:6] ——> b[3:5] 'ed' ——> 'cd!
insert al6:6] ——> b[5:6] Yo ——> ' f!

get_grouped_opcodes (n=3)
Return a generator of groups with up to n lines of context.

Starting with the groups returned by get_opcodes (), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get__opcodes ().

ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is
2.0*M/T. Note that this is 1 . 0 if the sequences are identical, and O . 0 if they have nothing in common.

This is expensive to compute if get_matching _blocks () or get_opcodes () hasn’t already
been called, in which case you may want to try quick_ratio () or real_quick_ratio () first
to get an upper bound.

Note: Caution: The resultof a ratio () call may depend on the order of the arguments. For instance:

>>> SequenceMatcher (None, 'tide', 'diet').ratio()
0.25
>>> SequenceMatcher (None, 'diet', 'tide').ratio()
0.5

quick_ratio ()
Return an upper bound on ratio () relatively quickly.

real_quick_ratio()
Return an upper bound on ratio () very quickly.

The three methods that return the ratio of matching to total characters can give different results due to differing
levels of approximation, although quick_ratio () and real_quick_ratio () are always at least as large as
ratio():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

6.3.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns afloat in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio () value
over 0.6 means the sequences are close matches:

>>> print (round(s.ratio(), 3))
0.866

6.3. difflib — Helpers for computing deltas 143




The Python Library Reference, Release 3.10.18

If you’re only interested in where the sequences match, get_matching_blocks () is handy:

>>> for block in s.get_matching_blocks():

.. print ("al ] and b][ ] match for elements" % block)
al0] and b[0] match for 8 elements
al[8] and b[17] match for 21 elements

al29] and b[38] match for 0 elements

Note that the last tuple returned by get_matching_blocks () is always a dummy, (len(a), len(b),
0), and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes () :

>>> for opcode in s.get_opcodes():

C. print (" al : 1 bl : 1" % opcode)
equal al[0:8] b[0:8]

insert af[8:8] b[8:17]

equal af8:29] b[17:38]

See also:

e The get_close_matches () function in this module which shows how simple code building on Se—
quenceMatcher can be used to do useful work.

« Simple version control recipe for a small application built with SequenceMatcher.

6.3.3 Differ Objects

Note that Di f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

The D1 ffer class has this constructor:

class difflib.Differ (linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

These junk-filtering functions speed up matching to find differences and do not cause any differing lines or
characters to be ignored. Read the description of the find longest_match () method’s isjunk parameter
for an explanation.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines () method of file-like objects. The delta generated also consists
of newline-terminated strings, ready to be printed as-is via the writelines () method of a file-like
object.

144 Chapter 6. Text Processing Services



https://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.10.18

6.3.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl = '''" 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
. '"".splitlines (keepends=True)
>>> len (textl)
4
>>> textl1[0][-1]
l\n'
>>> text2 = ''' 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.
""" .splitlines (keepends=True)

Next we instantiate a Differ object:

>>> d = Differ ()

Note that when instantiating a D1 f fer object we may pass functions to filter out line and character “junk.” See the
Differ () constructor for details.

Finally, we compare the two:

>>> result = list (d.compare (textl, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint (result)
[’ 1. Beautiful is better than ugly.\n',
2. Explicit is better than implicit.\n',
'— 3. Simple is better than complex.\n',
3

'+ Simple is better than complex.\n',

' ++\n',

' - 4. Complex is better than complicated.\n',
'? A P /\\nll
'+ 4. Complicated is better than complex.\n',
) et A “\n',

L 5. Flat is better than nested.\n']

As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines (result)
1. Beautiful is better than ugly.
2. Explicit is better than implicit.
- 3. Simple is better than complex.
3

+ Simple is better than complex.

? ++

- 4. Complex is better than complicated.
? el A
+ 4. Complicated is better than complex.
? ++++ ~
+ 5. Flat is better than nested.

6.3. difflib — Helpers for computing deltas 145




The Python Library Reference, Release 3.10.18

6.3.5 A command-line interface to difflib

This example shows how to use difflib to create a di f £-like utility. It is also contained in the Python source distri-
bution, as Tools/scripts/diff.py.

#!/usr/bin/env python3
""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

mmn

import sys, os, difflib, argparse
from datetime import datetime, timezone

def file _mtime (path):
t = datetime.fromtimestamp (os.stat (path) .st_mtime,
timezone.utc)
return t.astimezone () .isoformat ()

def main () :

parser = argparse.ArgumentParser ()
parser.add_argument ('-c', action='store true', default=False,
help='Produce a context format diff (default)"')
parser.add_argument ('-u', action='store_true', default=False,
help='Produce a unified format diff')
parser.add_argument ('-m', action='store_ true', default=False,
help='Produce HTML side by side diff '
'(can use -c and -1 in conjunction) ')
parser.add_argument ('-n', action='store_ true', default=False,
help='Produce a ndiff format diff'")
parser.add_argument ('-1', '--lines', type=int, default=3,
help='Set number of context lines (default 3)")
parser.add_argument ('fromfile')
parser.add_argument ('tofile')
options = parser.parse_args()

n = options.lines
fromfile = options.fromfile
tofile = options.tofile

fromdate = file_mtime (fromfile)
todate = file_mtime (tofile)
with open (fromfile) as ff:
fromlines = ff.readlines|()
with open(tofile) as tf:
tolines = tf.readlines/()

if options.u:
diff = difflib.unified_diff(fromlines, tolines, fromfile, tofile, fromdate,
— todate, n=n)
elif options.n:
diff = difflib.ndiff (fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff () .make_file (fromlines,tolines, fromfile,tofile,
—context=options.c,numlines=n)
else:
diff = difflib.context_diff (fromlines, tolines, fromfile, tofile, fromdate,
todate, n=n)

(continues on next page)

146 Chapter 6. Text Processing Services




The Python Library Reference, Release 3.10.18

(continued from previous page)

sys.stdout.writelines (diff)

if name_ == '_ _main__ ':
main ()

6.4 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The textwrap module provides some convenience functions, as well as TextWrapper, the class that does all
the work. If you’re just wrapping or filling one or two text strings, the convenience functions should be good enough;
otherwise, you should use an instance of TextWrapper for efficiency.

textwrap.wrap (fext, width=70, *, initial_indent=", subsequent indent=", expand_tabs=True, re-
place_whitespace=True, fix_sentence_endings=False, break_long_words=True,
drop_whitespace=True, break_on_hyphens=True, tabsize=8, max_lines=None, place-
holder="][...]")

Wraps the single paragraph in fext (a string) so every line is at most width characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.

See the TextWrapper.wrap () method for additional details on how wrap () behaves.

textwrap.£ill (text, width=70, *, initial_indent=", subsequent_indent=", expand_tabs=True, re-
place_whitespace=True, fix_sentence_endings=False, break_long_words=True,
drop_whitespace=True, break_on_hyphens=True, tabsize=8, max_lines=None, place-
holder="[...]")
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. £i11 () is
shorthand for
"\n".Jjoin (wrap (text, ...))

In particular, 7111 () accepts exactly the same keyword arguments as wrap ().

textwrap.shorten (text, width, * fix_sentence_endings=False, break_long_words=True,

break_on_hyphens=True, placeholder="][...]")
Collapse and truncate the given fext to fit in the given width.

First the whitespace in zext is collapsed (all whitespace is replaced by single spaces). If the result fits in the
width, it is returned. Otherwise, enough words are dropped from the end so that the remaining words plus the
placeholder fit within width:

>>> textwrap.shorten("Hello world!", width=12)

'Hello world!'

>>> textwrap.shorten("Hello world!", width=11)

'Hello [...]"

>>> textwrap.shorten("Hello world", width=10, placeholder="...")
'Hello...'

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
Note that the whitespace is collapsed before the text is passed to the TextWrapper £il1 () function, so
changing the value of tabsize, expand_tabs, drop_whitespace, and replace_whitespace
will have no effect.

New in version 3.4.

6.4. textwrap — Text wrapping and filling 147



https://github.com/python/cpython/tree/3.10/Lib/textwrap.py

The Python Library Reference, Release 3.10.18

textwrap.dedent (fext)

Remove any common leading whitespace from every line in zext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello" are considered to have no common leading whitespace.

Lines containing only whitespace are ignored in the input and normalized to a single newline character in the
output.

For example:

def test():
# end first line with \ to avoid the empty line!
s = """\
hello
world
print (repr(s)) # prints ' hello\n world\n !
print (repr (dedent (s))) # prints 'hello\n world\n'

textwrap.indent (fext, prefix, predicate=None)

Add prefix to the beginning of selected lines in fext.
Lines are separated by calling text .splitlines (True).
By default, prefix is added to all lines that do not consist solely of whitespace (including any line endings).

For example:

>>> s = 'hello\n\n \nworld'
>>> indent (s, ' ")
' hello\n\n \n world'

The optional predicate argument can be used to control which lines are indented. For example, it is easy to add
prefix to even empty and whitespace-only lines:

>>> print (indent (s, '+ ', lambda line: True))
+ hello

+

+

+ world

New in version 3.3.

wrap (), £i11 () and shorten () work by creating a TextWrapper instance and calling a single method on
it. That instance is not reused, so for applications that process many text strings using wrap () and/or £i11 (), it

may be more efficient to create your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words
be broken if necessary, unless TextWrapper.break_long_words is set to false.

class textwrap.TextWrapper (**kwargs)

The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argument

corresponds to an instance attribute, so for example

wrapper = TextWrapper (initial_indent="*

is the same as

wrapper = TextWrapper ()
wrapper.initial_ indent = "* "

148

Chapter 6. Text Processing Services




The Python Library Reference, Release 3.10.18

You can re-use the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer than width, TextWrapper guarantees that no output line will be longer than width
characters.

expand_tabs
(default: True) If true, then all tab characters in fext will be expanded to spaces using the ex—
pandtabs () method of fext.

tabsize
(default: 8) If expand_tabs is true, then all tab characters in fext will be expanded to zero or more
spaces, depending on the current column and the given tab size.

New in version 3.3.

replace_whitespace
(default: True) If true, after tab expansion but before wrapping, the wrap () method will replace each
whitespace character with a single space. The whitespace characters replaced are as follows: tab, newline,
vertical tab, formfeed, and carriage return (' \t\n\v\£f\r").

Note: If expand tabs is false and replace_whitespace is true, each tab character will be
replaced by a single space, which is not the same as tab expansion.

Note: If replace whitespace is false, newlines may appear in the middle of a line and cause
strange output. For this reason, text should be split into paragraphs (using str.splitlines () or
similar) which are wrapped separately.

drop_whitespace
(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but before
indenting) is dropped. Whitespace at the beginning of the paragraph, however, is not dropped if non-
whitespace follows it. If whitespace being dropped takes up an entire line, the whole line is dropped.

initial_indent
(default: ' ') String that will be prepended to the first line of wrapped output. Counts towards the length
of the first line. The empty string is not indented.

subsequent_indent
(default: ' ') String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix sentence_endings
(default: False)If true, Text Wrapper attempts to detect sentence endings and ensure that sentences
are always separated by exactly two spaces. This is generally desired for text in a monospaced font.
However, the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a

lowercase letter followed byoneof ' . ', ' ! ', or ' ? ', possibly followed byone of '" ' or " ' ", followed
by a space. One problem with this is algorithm is that it is unable to detect the difference between “Dr.”
in

’[...] Dr. Frankenstein's monster [...]

and “Spot.” in

’[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

6.4. textwrap — Text wrapping and filling 149



The Python Library Reference, Release 3.10.18

Since the sentence detection algorithm relies on st ring. lowercase for the definition of “lowercase
letter”, and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break_long_words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer than
width. (Long words will be put on a line by themselves, in order to minimize the amount by which
width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in com-
pound words, as it is customary in English. If false, only whitespaces will be considered as potentially
good places for line breaks, but you need to set break_long_words to false if you want truly inse-
cable words. Default behaviour in previous versions was to always allow breaking hyphenated words.

max_lines
(default: None) If not None, then the output will contain at most max_lines lines, with placeholder
appearing at the end of the output.

New in version 3.4.

placeholder
(default: " [...]") String that will appear at the end of the output text if it has been truncated.

New in version 3.4.
TextWrapper also provides some public methods, analogous to the module-level convenience functions:

wrap (fext)
Wraps the single paragraph in fext (a string) so every line is at most wi dt h characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines. If the wrapped output has no content, the returned list is empty.

£ill (text)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

6.5 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all
Unicode characters. The data contained in this database is compiled from the UCD version 13.0.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character
Database”. It defines the following functions:

unicodedata.lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding character.
If not found, KeyError is raised.

Changed in version 3.3: Support for name aliases' and named sequences’ has been added.

unicodedata.name (chr[, default] )
Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if not
given, ValueError is raised.

unicodedata.decimal (chr[, default] )
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

! https://www.unicode.org/Public/13.0.0/ucd/NameAliases.txt
2 https://www.unicode.org/Public/13.0.0/ucd/NamedSequences.txt

150 Chapter 6. Text Processing Services


https://www.unicode.org/Public/13.0.0/ucd
https://www.unicode.org/reports/tr44/
https://www.unicode.org/reports/tr44/
https://www.unicode.org/Public/13.0.0/ucd/NameAliases.txt
https://www.unicode.org/Public/13.0.0/ucd/NamedSequences.txt

The Python Library Reference, Release 3.10.18

unicodedata.digit (chr[, default] )
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.numeric (chr[, default] )
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.category (chr)
Returns the general category assigned to the character chr as string.

unicodedata.bidirectional (chr)
Returns the bidirectional class assigned to the character chr as string. If no such value is defined, an empty
string is returned.

unicodedata.combining (chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no combining class
is defined.

unicodedata.east_asian_width (chr)
Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored (chr)
Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been
identified as a “mirrored” character in bidirectional text, O otherwise.

unicodedata.decomposition (chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string is
returned in case no such mapping is defined.

unicodedata.normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’, ‘NFD’,
and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of
canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in vari-
ous way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be
expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility char-
acters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition,
followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining char-
acters and the other doesn’t, they may not compare equal.

unicodedata.is_normalized (form, unistr)
Return whether the Unicode string unistr is in the normal form form. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD’.

New in version 3.8.
In addition, the module exposes the following constant:

unicodedata.unidata_version
The version of the Unicode database used in this module.

6.5. unicodedata — Unicode Database 151



The Python Library Reference, Release 3.10.18

unicodedata.ued_3_2_0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>> import unicodedata

>>> unicodedata.lookup ('LEFT CURLY BRACKET')

l{l

>>> unicodedata.name('/")

'SOLIDUS'

>>> unicodedata.decimal ('9")

9

>>> unicodedata.decimal('a"')

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: not a decimal

>>> unicodedata.category ('A'") # 'L'etter, 'u'ppercase

lLul

>>> unicodedata.bidirectional ('\u0660') # 'A'rabic, 'N'umber
IAN'

6.6 stringprep — Internet String Preparation

Source code: Lib/stringprep.py

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of the st ringprep procedure are part of the profile. One example of a st ringprep profile
is nameprep, which is used for internationalized domain names.

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code
itself was generated using the mkstringprep . py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns True
if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.

stringprep.in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_table_b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).

stringprep.in_table_cl1 (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

152 Chapter 6. Text Processing Services



https://github.com/python/cpython/tree/3.10/Lib/stringprep.py
https://datatracker.ietf.org/doc/html/rfc3454.html
https://datatracker.ietf.org/doc/html/rfc3454.html

The Python Library Reference, Release 3.10.18

stringprep.in_table_cl2 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_cll_c12 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

stringprep.in_table_c21 (code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_ c22 (code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3 (code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4 (code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_c5 (code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6 (code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8 (code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9 (code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1 (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.7 readline — GNU readline interface

The readline module defines a number of functions to facilitate completion and reading/writing of history files
from the Python interpreter. This module can be used directly, or via the r1completer module, which supports
completion of Python identifiers at the interactive prompt. Settings made using this module affect the behaviour of
both the interpreter’s interactive prompt and the prompts offered by the built-in i nput () function.

Readline keybindings may be configured via an initialization file, typically . inputrc in your home directory. See
Readline Init File in the GNU Readline manual for information about the format and allowable constructs of that file,
and the capabilities of the Readline library in general.

Note: The underlying Readline library API may be implemented by the 1 ibedit library instead of GNU readline.
On macOS the readline module detects which library is being used at run time.

The configuration file for 1ibedit is different from that of GNU readline. If you programmatically load configu-
ration strings you can check for the text “libedit” in readline.__doc___to differentiate between GNU readline
and libedit.

If you use editline/1ibedit readline emulation on macOS, the initialization file located in your home directory
is named .editrc. For example, the following content in ~/.editrc will turn ON vi keybindings and TAB
completion:

6.7. readline — GNU readline interface 153


https://tiswww.cwru.edu/php/chet/readline/rluserman.html#SEC9

The Python Library Reference, Release 3.10.18

python:bind -v
python:bind "I rl_complete

6.7.1 Init file

The following functions relate to the init file and user configuration:

readline.parse_and_bind (string)
Execute the init line provided in the string argument. This calls r1_parse_and_bind () in the underlying
library.

readline.read_init_file ([ﬁlename] )
Execute a readline initialization file. The default filename is the last filename used. This calls
rl_read_init_file () in the underlying library.

6.7.2 Line buffer

The following functions operate on the line buffer:

readline.get_line_buffer ()
Return the current contents of the line buffer (r1_line_buffer in the underlying library).

readline.insert_text (string)
Insert text into the line buffer at the cursor position. This calls r1_insert_text () in the underlying
library, but ignores the return value.

readline.redisplay ()
Change what’s displayed on the screen to reflect the current contents of the line buffer. This calls
rl_redisplay () in the underlying library.

6.7.3 History file

The following functions operate on a history file:

readline.read_history file( [ﬁlename] )
Load a readline history file, and append it to the history list. The default filename is ~/ . history. This calls
read_history () in the underlying library.

readline.write_history_file( [ﬁlename ] )
Save the history list to a readline history file, overwriting any existing file. The default filename is ~/ .
history. Thiscalls write_history () in the underlying library.

readline.append_history file (nelements[, ﬁlename] )
Append the last nelements items of history to a file. The default filename is ~/ .history. The file must
already exist. This calls append_history () in the underlying library. This function only exists if Python
was compiled for a version of the library that supports it.

New in version 3.5.

readline.get_history_length(()

readline.set_history_ length (length)
Set or return the desired number of lines to save in the history file. The write history file () function
uses this value to truncate the history file, by calling history_truncate_file () in the underlying
library. Negative values imply unlimited history file size.

154 Chapter 6. Text Processing Services




The Python Library Reference, Release 3.10.18

6.7.4 History list

The following functions operate on a global history list:

readline.clear_history ()
Clear the current history. This calls clear_history () in the underlying library. The Python function
only exists if Python was compiled for a version of the library that supports it.

readline.get_current_history_length ()
Return the number of items currently in the history. (This is different from get_history_ length (),
which returns the maximum number of lines that will be written to a history file.)

readline.get_history_item (index)
Return the current contents of history item at index. The item index is one-based. This calls his-
tory_get () in the underlying library.

readline.remove_history_item (pos)
Remove history item specified by its position from the history. The position is zero-based. This calls re-
move_history () in the underlying library.

readline.replace_history_item (pos, line)
Replace history item specified by its position with line. The position is zero-based. This calls re-
place_history_entry () in the underlying library.

readline.add_history (line)
Append line to the history buffer, as if it was the last line typed. This calls add_history () inthe underlying
library.

readline.set_auto_history (enabled)
Enable or disable automatic calls to add_history () when reading input via readline. The enabled ar-
gument should be a Boolean value that when true, enables auto history, and that when false, disables auto
history.

New in version 3.6.

CPython implementation detail: Auto history is enabled by default, and changes to this do not persist across
multiple sessions.

6.7.5 Startup hooks

readline.set_startup_hook ( [function ] )
Set or remove the function invoked by the r1_startup_hook callback of the underlying library. If function
is specified, it will be used as the new hook function; if omitted or None, any function already installed is
removed. The hook is called with no arguments just before readline prints the first prompt.

readline.set_pre_input_hook ( [function] )
Set or remove the function invoked by the r1_pre_input_hook callback of the underlying library. If
function is specified, it will be used as the new hook function; if omitted or None, any function already
installed is removed. The hook is called with no arguments after the first prompt has been printed and just
before readline starts reading input characters. This function only exists if Python was compiled for a version
of the library that supports it.

6.7. readline — GNU readline interface 155



The Python Library Reference, Release 3.10.18

6.7.6 Completion

The following functions relate to implementing a custom word completion function. This is typically operated by the
Tab key, and can suggest and automatically complete a word being typed. By default, Readline is set up to be used
by r1completer to complete Python identifiers for the interactive interpreter. If the readline module is to be
used with a custom completer, a different set of word delimiters should be set.

readline.set_completer ( [function ] )
Set or remove the completer function. If function is specified, it will be used as the new completer function;
if omitted or None, any completer function already installed is removed. The completer function is called as
function (text, state),forstatein 0, 1, 2, ..., until it returns a non-string value. It should return the
next possible completion starting with fext.

The installed completer function 1is invoked by the entry_func callback passed to
rl_completion_matches () in the underlying library. The fext string comes from the first pa-
rameter to the r1_attempted_completion_function callback of the underlying library.

readline.get_completer ()
Get the completer function, or None if no completer function has been set.

readline.get_completion_type ()
Get the type of completion being attempted. This returns the r1_completion_type variable in the un-
derlying library as an integer.

readline.get_begidx ()

readline.get_endidx ()
Get the beginning or ending index of the completion scope. These indexes are the start and end arguments
passed to the r1_attempted_completion_ function callback of the underlying library. The values
may be different in the same input editing scenario based on the underlying C readline implementation. Ex:
libedit is known to behave differently than libreadline.

readline.set_completer_delims (string)

readline.get_completer_delims ()
Set or get the word delimiters for completion. These determine the start of the word
to be considered for completion (the completion scope). These functions access the
rl_completer_word_break_characters variable in the underlying library.

readline.set_completion_display_matches_hook ( [function] )
Set or remove the completion display function. If function is specified, it will be used as the new com-
pletion display function; if omitted or None, any completion display function already installed is re-
moved. This sets or clears the r1_completion_display_matches_hook callback in the underly-
ing library. The completion display function is called as function (substitution, [matches],
longest_match_length) once each time matches need to be displayed.

6.7.7 Example

The following example demonstrates how to use the readl ine module’s history reading and writing functions to
automatically load and save a history file named .python_history from the user’s home directory. The code
below would normally be executed automatically during interactive sessions from the user’s PYTHONSTARTUP file.

import atexit
import os
import readline

histfile = os.path.join(os.path.expanduser ("~"), ".python history")
try:
readline.read_history_file(histfile)
# default history len is -1 (infinite), which may grow unruly
readline.set_history_length (1000)
except FileNotFoundError:
pass

(continues on next page)

156 Chapter 6. Text Processing Services




The Python Library Reference, Release 3.10.18

(continued from previous page)

atexit.register (readline.write_history_file, histfile)

This code is actually automatically run when Python is run in interactive mode (see Readline configuration).

The following example achieves the same goal but supports concurrent interactive sessions, by only appending the
new history.

import atexit
import os
import readline

histfile = os.path.join(os.path.expanduser("~"), ".python history")
try:

readline.read_history_file(histfile)

h_len = readline.get_current_history_length()

except FileNotFoundError:
open (histfile, 'wb').close()
h_len = 0

def save(prev_h_len, histfile):
new_h_len readline.get_current_history_length ()
readline.set_history_length (1000)
readline.append_history_file(new_h_len - prev_h_len, histfile)
atexit.register(save, h_len, histfile)

The following example extends the code. InteractiveConsole class to support history save/restore.

import atexit
import code
import os
import readline

class HistoryConsole (code.InteractiveConsole) :

def _ init_ (self, locals=None, filename="<console>",
histfile=os.path.expanduser ("~/.console-history")):
code.InteractiveConsole.__init_ (self, locals, filename)

self.init_history(histfile)

def init_history(self, histfile):
readline.parse_and_bind("tab: complete")
if hasattr(readline, "read history_file"):
try:
readline.read_history_file(histfile)
except FileNotFoundError:
pass
atexit.register(self.save_history, histfile)

def save_history(self, histfile):
readline.set_history_length(1000)
readline.write_history_file(histfile)

6.7. readline — GNU readline interface 157




The Python Library Reference, Release 3.10.18

6.8 rlcompleter — Completion function for GNU readline

Source code: Lib/rlcompleter.py

The r1completer module defines a completion function suitable for the readl i ne module by completing valid
Python identifiers and keywords.

When this module is imported on a Unix platform with the readl i ne module available, an instance of the Com-
pleter class is automatically created and its complete () method is set as the readl i ne completer.

Example:

>>> import rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete™)
>>> readline. <TAB PRESSED>

readline._ _doc_ readline.get_line_buffer( readline.read_init_file(
readline._file readline.insert_text ( readline.set_completer (
readline._ name_ readline.parse_and_bind(

>>> readline.

The rl1completer module is designed for use with Python’s interactive mode. Unless Python is run with the —S
option, the module is automatically imported and configured (see Readline configuration).

On platforms without readline, the Completer class defined by this module can still be used for custom pur-
poses.

6.8.1 Completer Objects

Completer objects have the following method:

Completer.complete (fext, state)
Return the stateth completion for zext.

If called for fext that doesn’t include a period character (' . '), it will complete from names currently defined
in__main__, builtins and keywords (as defined by the ke yword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will not be
evaluated, but it can generate calls to __getattr__ ()) up to the last part, and find matches for the rest
via the dir () function. Any exception raised during the evaluation of the expression is caught, silenced and
None is returned.

158 Chapter 6. Text Processing Services



https://github.com/python/cpython/tree/3.10/Lib/rlcompleter.py

CHAPTER
SEVEN

BINARY DATA SERVICES

The modules described in this chapter provide some basic services operations for manipulation of binary data. Other
operations on binary data, specifically in relation to file formats and network protocols, are described in the relevant
sections.

Some libraries described under 7ext Processing Services also work with either ASCII-compatible binary formats (for
example, re) or all binary data (for example, di f£11ib).

In addition, see the documentation for Python’s built-in binary data types in Binary Sequence Types — bytes, bytearray,
memoryview.

7.1 struct — Interpret bytes as packed binary data

Source code: Lib/struct.py

This module converts between Python values and C structs represented as Python by tes objects. Compact format
strings describe the intended conversions to/from Python values. The module’s functions and objects can be used for
two largely distinct applications, data exchange with external sources (files or network connections), or data transfer
between the Python application and the C layer.

Note: When no prefix character is given, native mode is the default. It packs or unpacks data based on the platform
and compiler on which the Python interpreter was built. The result of packing a given C struct includes pad bytes
which maintain proper alignment for the C types involved; similarly, alignment is taken into account when unpacking.
In contrast, when communicating data between external sources, the programmer is responsible for defining byte
ordering and padding between elements. See Byte Order, Size, and Alignment for details.

Several st ruct functions (and methods of St ruct) take a buffer argument. This refers to objects that implement
the bufferobjects and provide either a readable or read-writable buffer. The most common types used for that purpose
are bytes and bytearray, but many other types that can be viewed as an array of bytes implement the buffer
protocol, so that they can be read/filled without additional copying from a byt es object.

7.1.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct.error
Exception raised on various occasions; argument is a string describing what is wrong.

struct .pack (format, vi, v2,...)
Return a bytes object containing the values vI, v2, ... packed according to the format string format. The
arguments must match the values required by the format exactly.

159


https://github.com/python/cpython/tree/3.10/Lib/struct.py

The Python Library Reference, Release 3.10.18

struct .pack_into (format, buffer, offset, vi, v2, ...)
Pack the values v1, v2, ... according to the format string format and write the packed bytes into the writable
buffer buffer starting at position offset. Note that offset is a required argument.

struct .unpack (format, buffer)
Unpack from the buffer buffer (presumably packed by pack (format, ...))according to the format string
format. The result is a tuple even if it contains exactly one item. The buffer’s size in bytes must match the size
required by the format, as reflected by calcsize ().

struct .unpack_£from (format, /, buffer, offset=0)
Unpack from buffer starting at position offset, according to the format string format. The result is a tuple even
if it contains exactly one item. The buffer’s size in bytes, starting at position offset, must be at least the size
required by the format, as reflected by calcsize ().

struct .iter_unpack (format, buffer)
Iteratively unpack from the buffer buffer according to the format string format. This function returns an iterator
which will read equally sized chunks from the buffer until all its contents have been consumed. The buffer’s
size in bytes must be a multiple of the size required by the format, as reflected by calcsize ().

Each iteration yields a tuple as specified by the format string.
New in version 3.4.

struct.calcsize (format)
Return the size of the struct (and hence of the bytes object produced by pack (format, ...)) corre-
sponding to the format string format.

7.1.2 Format Strings

Format strings describe the data layout when packing and unpacking data. They are built up from format characters,
which specify the type of data being packed/unpacked. In addition, special characters control the byte order, size and
alignment. Each format string consists of an optional prefix character which describes the overall properties of the
data and one or more format characters which describe the actual data values and padding.

Byte Order, Size, and Alignment

By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler). This behavior is chosen so that the bytes of
a packed struct correspond exactly to the memory layout of the corresponding C struct. Whether to use native byte
ordering and padding or standard formats depends on the application.

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size Alignment
@ native native native

= native standard | none

< little-endian standard | none

> big-endian standard | none

! network (= big-endian) | standard | none

If the first character is not one of these, '@ "' is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86, AMD64 (x86-
64), and Apple M1 are little-endian; IBM z and many legacy architectures are big-endian. Use sys.byteorder
to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

160 Chapter 7. Binary Data Services



The Python Library Reference, Release 3.10.18

Note the difference between '@' and '=": both use native byte order, but the size and alignment of the latter is
standardized.

The form ' ! ' represents the network byte order which is always big-endian as defined in IETF RFC 1700.
There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of '<' or '>"'.
Notes:

(1) Padding is only automatically added between successive structure members. No padding is added at the be-
ginning or the end of the encoded struct.

5 6_

(2) No padding is added when using non-native size and alignment, e.g. with ‘<’, >, =", and ‘!.

(3) To align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types. The ‘Standard size’ column refers to the size of the packed value in bytes when using standard size; that
is, when the format string starts with one of '<', '>", ' I'* or '=". When using native size, the size of the packed
value is platform-dependent.

Format | C Type Python type Standard size | Notes
X pad byte no value @)
c char bytes of length 1 | 1

b signed char integer 1 D), (2)
B unsigned char integer 1 2)
? _Bool bool 1 (1)
h short integer 2 2)
H unsigned short integer 2 2)
i int integer 4 2)
I unsigned int integer 4 2)
1 long integer 4 2)
L unsigned long integer 4 2)
q long long integer 8 2)
Q unsigned long long | integer 8 2)
n ssize_t integer 3)
N size_t integer 3)
e (6) float 2 )
f float float 4 )
d double float 8 “4)
S char[] bytes ©)]
o) char[] bytes (8)
P void* integer 5)

Changed in version 3.3: Added support for the 'n' and 'N' formats.
Changed in version 3.6: Added support for the 'e ' format.
Notes:

(1) The '? ' conversion code corresponds to the _Bool type defined by C99. If this type is not available, it is
simulated using a char. In standard mode, it is always represented by one byte.

(2) When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer has a
__index__ () method then that method is called to convert the argument to an integer before packing.

Changed in version 3.2: Added use of the __index__ () method for non-integers.

7.1. struct — Interpret bytes as packed binary data 161


https://tools.ietf.org/html/rfc1700

The Python Library Reference, Release 3.10.18

(3) The 'n' and 'N' conversion codes are only available for the native size (selected as the default or with the
'@"' byte order character). For the standard size, you can use whichever of the other integer formats fits your
application.

(4) Forthe 'f£', 'd' and 'e ' conversion codes, the packed representation uses the IEEE 754 binary32, binary64
or binary16 format (for '£', 'd"' or 'e' respectively), regardless of the floating-point format used by the
platform.

(5) The 'P' format character is only available for the native byte ordering (selected as the default or with the '@ "'
byte order character). The byte order character '="' chooses to use little- or big-endian ordering based on the
host system. The struct module does not interpret this as native ordering, so the 'P ' format is not available.

(6) The IEEE 754 binary16 “half precision” type was introduced in the 2008 revision of the IEEE 754 standard. It
has a sign bit, a 5-bit exponent and 11-bit precision (with 10 bits explicitly stored), and can represent numbers
between approximately 6.1e-05 and 6.5e+04 at full precision. This type is not widely supported by C
compilers: on a typical machine, an unsigned short can be used for storage, but not for math operations. See
the Wikipedia page on the half-precision floating-point format for more information.

(7) When packing, 'x' inserts one NUL byte.

(8) The 'p' format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed
number of bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is
smaller. The bytes of the string follow. If the string passed in to pack () is too long (longer than the count
minus 1), only the leading count -1 bytes of the string are stored. If the string is shorter than count -1, it
is padded with null bytes so that exactly count bytes in all are used. Note that for unpack (), the 'p ' format
character consumes count bytes, but that the string returned can never contain more than 255 bytes.

(9) Forthe 's' format character, the count is interpreted as the length of the bytes, not a repeat count like for the
other format characters; for example, ' 10s ' means a single 10-byte string mapping to or from a single Python
byte string, while ' 10c' means 10 separate one byte character elements (e.g., cccccccccc) mapping to
or from ten different Python byte objects. (See Examples for a concrete demonstration of the difference.) If a
count is not given, it defaults to 1. For packing, the string is truncated or padded with null bytes as appropriate
to make it fit. For unpacking, the resulting bytes object always has exactly the specified number of bytes. As
a special case, ' Os ' means a single, empty string (while ' Oc' means O characters).

A format character may be preceded by an integral repeat count. For example, the format string ' 4h ' means exactly
the same as 'hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.
When packing a value x using one of the integer formats ('b', 'B', 'h', 'H', 'i','I','1','L', 'q','Q"),
if x is outside the valid range for that format then st ruct . error is raised.

Changed in version 3.1: Previously, some of the integer formats wrapped out-of-range values and raised Depre—
cationWarning instead of st ruct.error.

For the '?' format character, the return value is either True or False. When packing, the truth value of the
argument object is used. Either 0 or 1 in the native or standard bool representation will be packed, and any non-zero
value will be True when unpacking.

Examples

Note: Native byte order examples (designated by the '@ ' format prefix or lack of any prefix character) may not
match what the reader’s machine produces as that depends on the platform and compiler.

Pack and unpack integers of three different sizes, using big endian ordering:

>>> from struct import *

>>> pack (">bhl", 1, 2, 3)
b'"\x01\x00\x02\x00\x00\x00\x03"

>>> unpack ('>bhl', b'\x01\x00\x02\x00\x00\x00\x03")

(continues on next page)

162 Chapter 7. Binary Data Services



https://en.wikipedia.org/wiki/IEEE_754-2008_revision
https://en.wikipedia.org/wiki/Half-precision_floating-point_format

The Python Library Reference, Release 3.10.18

(continued from previous page)

(1, 2, 3)
>>> calcsize ('>bhl")
7

Attempt to pack an integer which is too large for the defined field:

>>> pack (">h", 99999)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
struct.error: 'h' format requires -32768 <= number <= 32767

Demonstrate the difference between 's' and 'c' format characters:

>>> pack ("@ccc", b'1', b'2', b'3")
b'123"

>>> pack ("@3s", b'123")

b'123"

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = b'raymond \x32\x12\x08\x01\x08"
>>> name, serialnum, school, gradelevel = unpack('<10sHHb', record)

>>> from collections import namedtuple

>>> Student = namedtuple ('Student', 'name serialnum school gradelevel')
>>> Student._make (unpack ('<10sHHb', record))
Student (name=b'raymond ', serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size in native mode since padding is implicit. In standard
mode, the user is responsible for inserting any desired padding. Note in the first pack call below that three NUL
bytes were added after the packed ' # ' to align the following integer on a four-byte boundary. In this example, the
output was produced on a little endian machine:

>>> pack ('@ci', b'#', 0x12131415)
b'#\x00\x00\x00\x15\x14\x13\x12"
>>> pack('@ic', 0x12131415, b'#")
b'\x15\x14\x13\x12#"

>>> calcsize('@ci')

8

>>> calcsize('@ic")

5

The following format '11h01 "' results in two pad bytes being added at the end, assuming the platform’s longs are
aligned on 4-byte boundaries:

>>> pack('@l1hO1"', 1, 2, 3)
b'\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00"

See also:
Module array Packed binary storage of homogeneous data.
Module json JSON encoder and decoder.

Module pickle Python object serialization.

7.1. struct — Interpret bytes as packed binary data 163




The Python Library Reference, Release 3.10.18

7.1.3 Applications

Two main applications for the st ruct module exist, data interchange between Python and C code within an ap-
plication or another application compiled using the same compiler (native formats), and data interchange between
applications using agreed upon data layout (standard formats). Generally speaking, the format strings constructed
for these two domains are distinct.

Native Formats

When constructing format strings which mimic native layouts, the compiler and machine architecture determine byte
ordering and padding. In such cases, the @ format character should be used to specify native byte ordering and data
sizes. Internal pad bytes are normally inserted automatically. It is possible that a zero-repeat format code will be
needed at the end of a format string to round up to the correct byte boundary for proper alignment of consective
chunks of data.

Consider these two simple examples (on a 64-bit, little-endian machine):

>>> calcsize('@1hl")
24
>>> calcsize('@11h")
18

Data is not padded to an 8-byte boundary at the end of the second format string without the use of extra padding. A
zero-repeat format code solves that problem:

>>> calcsize('@1l1h01l")
24

The 'x ' format code can be used to specify the repeat, but for native formats it is better to use a zero-repeat format
like "01"'.

By default, native byte ordering and alignment is used, but it is better to be explicit and use the ' @ ' prefix character.

Standard Formats

When exchanging data beyond your process such as networking or storage, be precise. Specify the exact byte order,
size, and alignment. Do not assume they match the native order of a particular machine. For example, network byte
order is big-endian, while many popular CPUs are little-endian. By defining this explicitly, the user need not care
about the specifics of the platform their code is running on. The first character should typically be < or > (or !).
Padding is the responsibility of the programmer. The zero-repeat format character won't work. Instead, the user
must explicitly add 'x' pad bytes where needed. Revisiting the examples from the previous section, we have:

>>> calcsize ('<gh6xqg')

24

>>> pack ('<ghéxg', 1, 2, 3) == pack('@lhl', 1, 2, 3)
True

>>> calcsize('@1l1h")

18

>>> pack ('@llh', 1, 2, 3) == pack('<qggh', 1, 2, 3)
True

>>> calcsize ('<gghéx'")

24

>>> calcsize('@1l1h01l")

24

>>> pack ('@11h01', 1, 2, 3) == pack('<ggh6x', 1, 2, 3)
True

The above results (executed on a 64-bit machine) aren’t guaranteed to match when executed on different machines.
For example, the examples below were executed on a 32-bit machine:

164 Chapter 7. Binary Data Services




The Python Library Reference, Release 3.10.18

>>> calcsize ('<gghé6x'")

24

>>> calcsize('@11h01")

12

>>> pack ('@11h01', 1, 2, 3) == pack('<ggh6x', 1, 2, 3)
False

7.1.4 Classes

The st ruct module also defines the following type:

class struct.Struct (format)
Return a new Struct object which writes and reads binary data according to the format string format. Creating
a Struct object once and calling its methods is more efficient than calling module-level functions with the
same format since the format string is only compiled once.

Note: The compiled versions of the most recent format strings passed to St ruct and the module-level
functions are cached, so programs that use only a few format strings needn’t worry about reusing a single
Struct instance.

Compiled Struct objects support the following methods and attributes:

pack (vl,v2,...)
Identical to the pack () function, using the compiled format. (len (result) will equal size.)

pack_into (buffer, offset, vi, v2,...)
Identical to the pack_into () function, using the compiled format.

unpack (buffer)
Identical to the unpack () function, using the compiled format. The buffer’s size in bytes must equal
size.

unpack_from (buffer, offset=0)
Identical to the unpack_from() function, using the compiled format. The buffer’s size in bytes,
starting at position offset, must be at least size.

iter_unpack (buffer)
Identical to the i ter_unpack () function, using the compiled format. The buffer’s size in bytes must
be a multiple of size.

New in version 3.4.

format
The format string used to construct this Struct object.

Changed in version 3.7: The format string type is now st r instead of bytes.

size
The calculated size of the struct (and hence of the bytes object produced by the pack () method) cor-
responding to format.

7.1. struct — Interpret bytes as packed binary data 165




The Python Library Reference, Release 3.10.18

7.2 codecs — Codec registry and base classes

Source code: Lib/codecs.py

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry, which manages the codec and error handling lookup process. Most standard codecs
are fext encodings, which encode text to bytes (and decode bytes to text), but there are also codecs provided that
encode text to text, and bytes to bytes. Custom codecs may encode and decode between arbitrary types, but some
module features are restricted to be used specifically with fext encodings or with codecs that encode to by tes.

The module defines the following functions for encoding and decoding with any codec:

codecs . encode (0bj, encoding='utf-8', errors='strict’)
Encodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handleris ' strict ' meaning
that encoding errors raise ValueError (or a more codec specific subclass, such as UnicodeEncodeEr—
ror). Refer to Codec Base Classes for more information on codec error handling.

codecs .decode (0bj, encoding='utf-8', errors='strict’")
Decodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handleris ' strict ' meaning
that decoding errors raise Va lueError (or a more codec specific subclass, such as UnicodeDecodeEr—
ror). Refer to Codec Base Classes for more information on codec error handling.

The full details for each codec can also be looked up directly:

codecs . lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined below.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no CodecInfoobjectisfound, a LookupError israised. Otherwise, the CodecInfo object
is stored in the cache and returned to the caller.

class codecs.CodecInfo (encode, decode, streamreader=None, streamwriter=None, incrementalen-

coder=None, incrementaldecoder=None, name=None)
Codec details when looking up the codec registry. The constructor arguments are stored in attributes of the

same name:

name
The name of the encoding.

encode

decode
The stateless encoding and decoding functions. These must be functions or methods which have the
same interface as the encode () and decode () methods of Codec instances (see Codec Interface).
The functions or methods are expected to work in a stateless mode.

incrementalencoder

incrementaldecoder
Incremental encoder and decoder classes or factory functions. These have to provide the interface defined
by the base classes TncrementalEncoder and IncrementalDecoder, respectively. Incremen-
tal codecs can maintain state.

streamwriter

streamreader
Stream writer and reader classes or factory functions. These have to provide the interface defined by the
base classes St reamiriter and St reamReader, respectively. Stream codecs can maintain state.

To simplify access to the various codec components, the module provides these additional functions which use
lookup () for the codec lookup:

166 Chapter 7. Binary Data Services


https://github.com/python/cpython/tree/3.10/Lib/codecs.py

The Python Library Reference, Release 3.10.18

codecs .getencoder (encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

codecs .getdecoder (encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder (encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder.

codecs.getincrementaldecoder (encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder.

codecs .getreader (encoding)
Look up the codec for the given encoding and return its St reamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.getwriter (encoding)
Look up the codec for the given encoding and return its St reamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.
Custom codecs are made available by registering a suitable codec search function:

codecs.register (search_function)
Register a codec search function. Search functions are expected to take one argument, being the encoding
name in all lower case letters with hyphens and spaces converted to underscores, and return a CodecInfo
object. In case a search function cannot find a given encoding, it should return None.

Changed in version 3.9: Hyphens and spaces are converted to underscore.

codecs .unregister (search_function)
Unregister a codec search function and clear the registry’s cache. If the search function is not registered, do
nothing.

New in version 3.10.

While the builtin open () and the associated i o module are the recommended approach for working with encoded
text files, this module provides additional utility functions and classes that allow the use of a wider range of codecs
when working with binary files:

codecs . open (filename, mode="r', encoding=None, errors='strict’, buffering=- 1)
Open an encoded file using the given mode and return an instance of St reamReaderWriter, providing
transparent encoding/decoding. The default file mode is ' r ', meaning to open the file in read mode.

Note: If encoding is not None, then the underlying encoded files are always opened in binary mode. No
automatic conversion of '\n' is done on reading and writing. The mode argument may be any binary mode
acceptable to the built-in open () function; the 'b' is automatically added.

encoding specifies the encoding which is to be used for the file. Any encoding that encodes to and decodes
from bytes is allowed, and the data types supported by the file methods depend on the codec used.

errors may be given to define the error handling. It defaults to ' strict ' which causes a ValueError to
be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to -1 which means that the
default buffer size will be used.

7.2. codecs — Codec registry and base classes 167



The Python Library Reference, Release 3.10.18

codecs .EncodedFile (file, data_encoding, file_encoding=None, errors='strict’)

Return a St reamRecoder instance, a wrapped version of file which provides transparent transcoding. The
original file is closed when the wrapped version is closed.

Data written to the wrapped file is decoded according to the given data_encoding and then written to the original
file as bytes using file_encoding. Bytes read from the original file are decoded according to file_encoding, and
the result is encoded using data_encoding.

If file_encoding is not given, it defaults to data_encoding.

errors may be given to define the error handling. It defaults to 'strict', which causes ValueError to
be raised in case an encoding error occurs.

codecs.iterencode (iterator, encoding, errors='strict’, **kwargs)

Uses an incremental encoder to iteratively encode the input provided by iterator. This function is a generator.
The errors argument (as well as any other keyword argument) is passed through to the incremental encoder.

This function requires that the codec accept text st r objects to encode. Therefore it does not support bytes-
to-bytes encoders such as base64_codec.

codecs.iterdecode (iferator, encoding, errors='strict’, **kwargs)

Uses an incremental decoder to iteratively decode the input provided by iterator. This function is a generator.
The errors argument (as well as any other keyword argument) is passed through to the incremental decoder.

This function requires that the codec accept byt es objects to decode. Therefore it does not support text-to-
text encoders such as rot_ 13, although rot_ 13 may be used equivalently with i terencode ().

The module also provides the following constants which are useful for reading and writing to platform dependent

files:

codecs .BOM

codecs .BOM_BE
codecs .BOM_LE
codecs .BOM_UTF8
codecs .BOM_UTF16
codecs .BOM_UTF16_BE
codecs.BOM_UTF16_LE
codecs .BOM_UTF32
codecs .BOM_UTF32_BE
codecs.BOM_UTF32_LE

These constants define various byte sequences, being Unicode byte order marks (BOMs) for several encod-
ings. They are used in UTF-16 and UTF-32 data streams to indicate the byte order used, and in UTF-§ as
a Unicode signature. BOM_UTE16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the plat-
form’s native byte order, BOM is an alias for BOM_UTF16, BOM_LE for BOM_UTF16_LE and BOM_BE for
BOM_UTF16_BE. The others represent the BOM in UTF-8 and UTF-32 encodings.

7.2.1 Codec Base Classes

The codecs module defines a set of base classes which define the interfaces for working with codec objects, and
can also be used as the basis for custom codec implementations.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols. Codec authors also need to define how the codec will handle encoding and decoding
errors.

168

Chapter 7. Binary Data Services



The Python Library Reference, Release 3.10.18

Error Handlers

To simplify and standardize error handling, codecs may implement different error handling schemes by accepting the
errors string argument:

>>> 'German B, #'.encode(encoding='ascii', errors='backslashreplace')
b'German \\xdf, \\u266c’
>>> 'German B, #&'.encode(encoding='ascii', errors='xmlcharrefreplace')
b'German &#223;, &#9836;"'

The following error handlers can be used with all Python Standard Encodings codecs:

Value Meaning

'strict’ Raise UnicodeError (or a subclass), this is the default. Implemented in
strict_errors ().

'ignore' Ignore the malformed data and continue without further notice. Implemented in
ignore_errors ().

'replace’ Replace with a replacement marker. On encoding, use ? (ASCII character). On

decoding, use @ (U+FFFD, the official REPLACEMENT CHARACTER).
Implemented in replace_errors ().

'backslashreplace' | Replace with backslashed escape sequences. On encoding, use hexadecimal form
of Unicode code point with formats \xhh \uxxxx \Uxxxxxxxx. On
decoding, use hexadecimal form of byte value with format \ xhh. Implemented
in backslashreplace_errors ().

'surrogateescape’ On decoding, replace byte with individual surrogate code ranging from U+DC80
to U+DCFF. This code will then be turned back into the same byte when the
'surrogateescape' error handler is used when encoding the data. (See
PEP 383 for more.)

The following error handlers are only applicable to encoding (within fext encodings):

Value Meaning

'xmlchar— Replace with XML/HTML numeric character reference, which is a decimal form of Unicode
refre-— code point with format & #num; Implemented in xmIcharrefreplace_errors ().
place'

'namere-— Replace with \N{ . ..} escape sequences, what appears in the braces is the Name property
place' from Unicode Character Database. Implemented in namereplace_errors ().

In addition, the following error handler is specific to the given codecs:

Value Codecs Meaning

'sur-— utf-8, utf-16, utf-32, | Allow encoding and decoding surrogate code point (U+D800 - U+DFFF)
ro- utf-16-be, utf-16-le, | as normal code point. Otherwise these codecs treat the presence of sur-
gatepasg|sutf-32-be, utf-32-le rogate code point in st r as an error.

New in version 3.1: The ' surrogateescape' and 'surrogatepass' error handlers.

Changed in version 3.4: The ' surrogatepass' error handler now works with utf-16* and utf-32* codecs.
New in version 3.5: The 'namereplace' error handler.

Changed in version 3.5: The 'backslashreplace’' error handler now works with decoding and translating.
The set of allowed values can be extended by registering a new named error handler:

codecs.register_error (name, error_handler)
Register the error handling function error_handler under the name name. The error_handler argument will be
called during encoding and decoding in case of an error, when name is specified as the errors parameter.

7.2. codecs — Codec registry and base classes 169



https://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.10.18

For encoding, error_handler will be called with a UnicodeEncodeError instance, which contains infor-
mation about the location of the error. The error handler must either raise this or a different exception, or
return a tuple with a replacement for the unencodable part of the input and a position where encoding should
continue. The replacement may be either st r or bytes. If the replacement is bytes, the encoder will simply
copy them into the output buffer. If the replacement is a string, the encoder will encode the replacement. En-
coding continues on original input at the specified position. Negative position values will be treated as being
relative to the end of the input string. If the resulting position is out of bound an TndexError will be raised.

Decoding and translating works similarly, except UnicodeDecodeError or UnicodeTranslateEr—
ror will be passed to the handler and that the replacement from the error handler will be put into the output
directly.

Previously registered error handlers (including the standard error handlers) can be looked up by name:

codecs.lookup_error (name)

Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.

The following standard error handlers are also made available as module level functions:

codecs.strict_errors (exception)

Implements the 'strict ' error handling.

Each encoding or decoding error raises a UnicodeError.

codecs.ignore_errors (exception)

Implements the ' ignore' error handling.

Malformed data is ignored; encoding or decoding is continued without further notice.

codecs.replace_errors (exception)

Implements the ' replace' error handling.

Substitutes ? (ASCII character) for encoding errors or € (U+FFFD, the official REPLACEMENT CHAR-
ACTER) for decoding errors.

codecs .backslashreplace_errors (exception)

Implements the 'backslashreplace’' error handling.

Malformed data is replaced by a backslashed escape sequence. On encoding, use the hexadecimal form of
Unicode code point with formats \xhh \uxxxx \Uxxxxxxxx. On decoding, use the hexadecimal form of
byte value with format \xhh.

Changed in version 3.5: Works with decoding and translating.

codecs.xmlcharrefreplace_errors (exception)

Implements the ' xmlcharrefreplace’ error handling (for encoding within fext encoding only).

The unencodable character is replaced by an appropriate XML/HTML numeric character reference, which is
a decimal form of Unicode code point with format & #num; .

codecs.namereplace_errors (exception)

Implements the 'namereplace’ error handling (for encoding within fext encoding only).

The unencodable character is replaced by a \N{ . . . } escape sequence. The set of characters that appear in
the braces is the Name property from Unicode Character Database. For example, the German lowercase letter
' " will be converted to byte sequence \N{LATIN SMALL LETTER SHARP S}.

New in version 3.5.

170

Chapter 7. Binary Data Services



The Python Library Reference, Release 3.10.18

Stateless Encoding and Decoding

The base Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

Codec.encode (input, errors='strict')
Encodes the object input and returns a tuple (output object, length consumed). For instance, text encoding
converts a string object to a bytes object using a particular character set encoding (e.g., cp1252 or iso-—
8859-1).

The errors argument defines the error handling to apply. It defaults to ' strict ' handling.

The method may not store state in the Codec instance. Use St reamiriter for codecs which have to keep
state in order to make encoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in
this situation.

Codec .decode (input, errors='strict’)
Decodes the object input and returns a tuple (output object, length consumed). For instance, for a text encoding,
decoding converts a bytes object encoded using a particular character set encoding to a string object.

For text encodings and bytes-to-bytes codecs, input must be a bytes object or one which provides the read-only
buffer interface — for example, buffer objects and memory mapped files.

The errors argument defines the error handling to apply. It defaults to ' st rict ' handling.

The method may not store state in the Codec instance. Use St reamReader for codecs which have to keep
state in order to make decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in
this situation.

Incremental Encoding and Decoding

The TncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremen-
tal encoding and decoding. Encoding/decoding the input isn’'t done with one call to the stateless encoder/decoder
function, but with multiple calls to the encode ()/decode () method of the incremental encoder/decoder. The
incremental encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode ()/decode () method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

The TncrementalEncoder class is used for encoding an input in multiple steps. It defines the following methods
which every incremental encoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalEncoder (errors='strict’)
Constructor for an TncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors key-
word argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the TncrementalEn—
coder object.

encode (object, final=False)
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode () final must be true (the default is false).

7.2. codecs — Codec registry and base classes 171



The Python Library Reference, Release 3.10.18

reset ()
Reset the encoder to the initial state. The output is discarded: call .encode (object, fi-
nal=True), passing an empty byte or text string if necessary, to reset the encoder and to get the
output.

getstate ()
Return the current state of the encoder which must be an integer. The implementation should make sure
that 0 is the most common state. (States that are more complicated than integers can be converted into
an integer by marshaling/pickling the state and encoding the bytes of the resulting string into an integer.)

setstate (stare)
Set the state of the encoder to state. state must be an encoder state returned by getstate ().

IncrementalDecoder Objects

The TncrementalDecoder class is used for decoding an input in multiple steps. It defines the following methods
which every incremental decoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalDecoder (errors='strict’)

Constructor for an TncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providing the errors key-
word argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the TncrementalDe—
coder object.

decode (object, final=False)
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode () final must be true (the default is false). If final is true the
decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of
incomplete byte sequences at the end of the input) it must initiate error handling just like in the stateless
case (Which might raise an exception).

reset ()
Reset the decoder to the initial state.

getstate ()

Return the current state of the decoder. This must be a tuple with two items, the first must be the
buffer containing the still undecoded input. The second must be an integer and can be additional state
info. (The implementation should make sure that O is the most common additional state info.) If this
additional state info is O it must be possible to set the decoder to the state which has no input buffered
and 0O as the additional state info, so that feeding the previously buffered input to the decoder returns it
to the previous state without producing any output. (Additional state info that is more complicated than
integers can be converted into an integer by marshaling/pickling the info and encoding the bytes of the
resulting string into an integer.)

setstate (state)
Set the state of the decoder to state. state must be a decoder state returned by getstate ().

172

Chapter 7. Binary Data Services



The Python Library Reference, Release 3.10.18

Stream Encoding and Decoding

The St reamWriter and St reamReader classes provide generic working interfaces which can be used to im-
plement new encoding submodules very easily. See encodings.utf_8 for an example of how this is done.

StreamWriter Objects

The Streamiriter class is a subclass of Codec and defines the following methods which every stream writer
must define in order to be compatible with the Python codec registry.

class codecs.StreamWriter (stream, errors='strict')
Constructor for a St reamiVriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for writing text or binary data, as appropriate for the
specific codec.

The St reamiriter may implement different error handling schemes by providing the errors keyword ar-
gument. See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes
it possible to switch between different error handling strategies during the lifetime of the St reamiriter
object.

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated iterable of strings to the stream (possibly by reusing the write () method).
Infinite or very large iterables are not supported. The standard bytes-to-bytes codecs do not support this
method.

reset ()
Resets the codec buffers used for keeping internal state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the St reamiriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects

The St reamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class codecs.StreamReader (stream, errors='strict’)
Constructor for a St reamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for reading text or binary data, as appropriate for the
specific codec.

The St reamReader may implement different error handling schemes by providing the errors keyword ar-
gument. See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes
it possible to switch between different error handling strategies during the lifetime of the St reamReader
object.

7.2. codecs — Codec registry and base classes 173



The Python Library Reference, Release 3.10.18

The set of allowed values for the errors argument can be extended with register_error().

read (size=- 1, chars=- 1, firstline=False)
Decodes data from the stream and returns the resulting object.

The chars argument indicates the number of decoded code points or bytes to return. The read ()
method will never return more data than requested, but it might return less, if there is not enough available.

The size argument indicates the approximate maximum number of encoded bytes or code points to read
for decoding. The decoder can modify this setting as appropriate. The default value -1 indicates to read
and decode as much as possible. This parameter is intended to prevent having to decode huge files in one
step.

The firstline flag indicates that it would be sufficient to only return the first line, if there are decoding
errors on later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed
within the definition of the encoding and the given size, e.g. if optional encoding endings or state markers
are available on the stream, these should be read too.

readline (size=None, keepends=True)
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s read () method.
If keepends is false line-endings will be stripped from the lines returned.

readlines (sizehint=None, keepends=True)
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decode () method and are included in the list entries
if keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

reset ()
Resets the codec buffers used for keeping internal state.

Note that no stream repositioning should take place. This method is primarily intended to be able to
recover from decoding errors.

In addition to the above methods, the St reamReader must also inherit all other methods and attributes from the
underlying stream.

StreamReaderWriter Objects

The St reamReaderWriter is a convenience class that allows wrapping streams which work in both read and
write modes.

The design is such that one can use the factory functions returned by the Iookup () function to construct the
instance.

class codecs.StreamReaderWriter (stream, Reader, Writer, errors='strict')
Creates a St reamReaderWriter instance. stream must be a file-like object. Reader and Writer must
be factory functions or classes providing the St reamReader and St reamiWriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReadeririter instances define the combined interfaces of St reamReader and St reamiriter
classes. They inherit all other methods and attributes from the underlying stream.

174 Chapter 7. Binary Data Services



The Python Library Reference, Release 3.10.18

StreamRecoder Objects

The St reamRecoder translates data from one encoding to another, which is sometimes useful when dealing with
different encoding environments.

The design is such that one can use the factory functions returned by the Iookup () function to construct the
instance.

class codecs.StreamRecoder (stream, encode, decode, Reader, Writer, errors='strict’)
Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work on
the frontend — the data visible to code calling read () and write (), while Reader and Writer work on the
backend — the data in stream.

You can use these objects to do transparent transcodings, e.g., from Latin-1 to UTF-8 and back.
The stream argument must be a file-like object.

The encode and decode arguments must adhere to the Codec interface. Reader and Writer must be factory
functions or classes providing objects of the St reamReader and St reamiriter interface respectively.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of St reamReader and St reamWriter classes.
They inherit all other methods and attributes from the underlying stream.

7.2.2 Encodings and Unicode

Strings are stored internally as sequences of code points in range U+0000-U+10FFFF. (See PEP 393 for more
details about the implementation.) Once a string object is used outside of CPU and memory, endianness and how
these arrays are stored as bytes become an issue. As with other codecs, serialising a string into a sequence of bytes
is known as encoding, and recreating the string from the sequence of bytes is known as decoding. There are a variety
of different text serialisation codecs, which are collectivity referred to as fext encodings.

The simplest text encoding (called 'latin-1"' or 'iso-8859-1") maps the code points 0-255 to the bytes
0x0-0xff, which means that a string object that contains code points above U+00FF can’t be encoded with this
codec. Doing so will raise a UnicodeEncodeError that looks like the following (although the details of the
error message may differ): UnicodeEncodeError: 'latin-1' codec can't encode character
"\ul234' in position 3: ordinal not in range (256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all Unicode
code points and how these code points are mapped to the bytes 0x0-0x f£. To see how this is done simply open e.g.
encodings/cpl252.py (which is an encoding that is used primarily on Windows). There’s a string constant
with 256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 1114112 code points defined in Unicode. A simple and straight-
forward way that can store each Unicode code point, is to store each code point as four consecutive bytes. There are
two possibilities: store the bytes in big endian or in little endian order. These two encodings are called UTF-32-BE
and UTF-32-LE respectively. Their disadvantage is that if e.g. you use UTF-32-BE on a little endian machine
you will always have to swap bytes on encoding and decoding. UTF-32 avoids this problem: bytes will always be in
natural endianness. When these bytes are read by a CPU with a different endianness, then bytes have to be swapped
though. To be able to detect the endianness of a UTF—16 or UTF-32 byte sequence, there’s the so called BOM
(“Byte Order Mark”). This is the Unicode character U+FEFF. This character can be prepended to every UTF-16
or UTF-32 byte sequence. The byte swapped version of this character (0xFFFE) is an illegal character that may
not appear in a Unicode text. So when the first character in a UTF-16 or UTF-32 byte sequence appears to be a
U+FFFE the bytes have to be swapped on decoding. Unfortunately the character U+FEFF had a second purpose as
a ZERO WIDTH NO-BREAK SPACE: a character that has no width and doesn’t allow a word to be split. It can e.g.
be used to give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as a ZERO WIDTH NO-BREAK
SPACE has been deprecated (with U+2060 (WORD JOINER) assuming this role). Nevertheless Unicode software
still must be able to handle U+FEFF in both roles: as a BOM it’s a device to determine the storage layout of the
encoded bytes, and vanishes once the byte sequence has been decoded into a string; asa ZERO WIDTH NO-BREAK
SPACE it’s a normal character that will be decoded like any other.

7.2. codecs — Codec registry and base classes 175


https://www.python.org/dev/peps/pep-0393

The Python Library Reference, Release 3.10.18

There’s another encoding that is able to encode the full range of Unicode characters: UTF-8. UTF-§ is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists
of two parts: marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to
four 1 bits followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when
concatenated give the Unicode character):

Range Encoding

U-00000000 ... U-0000007F | OXXXXXXX

U-00000080 ... U-000007FF | 110xxxxx 10XXXXXX

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxx 10XXXXXX
U-00010000 ... U-0010FFFF | 11110xxx 10xxxxxx 10xxxxxx 10XxXXxXx

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even if it’s the
first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a string.
Each charmap encoding can decode any random byte sequence. However that’s not possible with UTF-8, as UTF-8
byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the reliability with which a
UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python calls "ut £-8-sig") for its
Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 encoded BOM (which looks
like this as a byte sequence: Oxef, Oxbb, Oxbf) is written. As it’s rather improbable that any charmap encoded
file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in 180-8859-1), this increases the probability that a ut f-8-sig encoding can be correctly guessed from the byte
sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte sequence,
but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write Oxef, Oxbb,
Oxbf as the first three bytes to the file. On decoding ut £-8-sig will skip those three bytes if they appear as the
first three bytes in the file. In UTF-8, the use of the BOM is discouraged and should generally be avoided.

7.2.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases; therefore,
e.g. 'utf£-8" is avalid alias for the 'ut£_8"' codec.

CPython implementation detail: Some common encodings can bypass the codecs lookup machinery to improve
performance. These optimization opportunities are only recognized by CPython for a limited set of (case insensitive)
aliases: utf-8, utf8, latin-1, latin1, is0-8859-1, is08859-1, mbcs (Windows only), ascii, us-ascii, utf-16, utf16, utf-
32, utf32, and the same using underscores instead of dashes. Using alternative aliases for these encodings may result
in slower execution.

Changed in version 3.6: Optimization opportunity recognized for us-ascii.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

o an ISO 8859 codeset

 a Microsoft Windows code page, which is typically derived from an 8859 codeset, but replaces control char-
acters with additional graphic characters

« an IBM EBCDIC code page

176 Chapter 7. Binary Data Services



The Python Library Reference, Release 3.10.18

« an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional Chinese
bigShkscs big5-hkscs, hkscs Traditional Chinese
cp037 IBM037, IBM039 English
cp273 273, IBM273, csIBM273 German
New in version 3.4.
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP- | Western Europe
CH, IBM500
cp720 Arabic
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBMS855 Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM857 Turkish
cp858 858, IBM858 Western Europe
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBMS861 Icelandic
cp862 862, IBM&62 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norwegian
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional Chinese
cpl1006 Urdu
cpl026 ibm1026 Turkish
cpll25 1125, ibm1125, cp866u, ruscii Ukrainian
New in version 3.4.
cpl140 ibm1140 Western Europe
cpl250 windows-1250 Central and Eastern Europe
cpl251 windows-1251 Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
cpl252 windows-1252 Western Europe
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows-1256 Arabic
cpl257 windows-1257 Baltic languages
cpl258 windows-1258 Vietnamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese

continues on next page

7.2. codecs — Codec registry and base classes

177



The Python Library Reference, Release 3.10.18

Table 1 - continued from previous page

Codec Aliases Languages
euc_kr euckr, korean, ksc5601, ks c- | Korean
5601, ks_c-5601-1987, ksx1001,
ks_x-1001
gb2312 chinese, csiso58gb231280, euc- | Simplified Chinese
cn, eucen, eucgb2312-cn, gh2312-
1980, gb2312-80, iso-ir-58
gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese
i502022_jp csi502022jp, i502022jp, is0-2022- | Japanese
Jp
1502022_jp_1 1502022jp-1, is0-2022-jp-1 Japanese

i502022_jp_2

i502022jp-2, i50-2022-jp-2

Japanese, Korean, Simplified Chi-
nese, Western Europe, Greek

i502022_jp_2004

i502022jp-2004,
2004

is0-2022-jp-

Japanese

i502022_jp_3 i502022jp-3, is0-2022-jp-3 Japanese
1502022_jp_ext 1502022 jp-ext, is0-2022-jp-ext Japanese
1502022 _kr ¢sis02022kr, is02022kr, is0-2022- | Korean

kr
latin_1 is0-8859-1,  is08859-1, 8859, | Western Europe

cp819, latin, latinl, L1
1508859_2 150-8859-2, latin2, L2 Central and Eastern Europe
1s08859_3 1s0-8859-3, latin3, L3 Esperanto, Maltese
1508859_4 150-8859-4, latind, L4 Baltic languages
1s08859_5 150-8859-5, cyrillic Bulgarian, Byelorussian, Macedo-

nian, Russian, Serbian
1508859_6 150-8859-6, arabic Arabic
1508859_7 is0-8859-7, greek, greek8 Greek
1508859_8 180-8859-8, hebrew Hebrew
1s08859_9 is0-8859-9, latin5, L5 Turkish
1508859_10 is0-8859-10, latin6, L6 Nordic languages
1508859_11 is0-8859-11, thai Thai languages
is08859_13 150-8859-13, latin7, L7 Baltic languages
1508859_14 150-8859-14, latin8, L8 Celtic languages
1508859_15 1s0-8859-15, 1atin9, L9 Western Europe
1508859_16 150-8859-16, latin10, L10 South-Eastern Europe
johab cpl361, ms1361 Korean
koi8_r Russian
koi8 t Tajik
New in version 3.5.

koi8_u UKkrainian
kz1048 kz_ 1048, strk1048_2002, rk1048 | Kazakh

New in version 3.5.

mac_cyrillic maccyrillic Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian

mac_greek macgreek Greek

mac_iceland maciceland Icelandic

mac_latin2 maclatin2, maccentraleurope, | Central and Eastern Europe
mac_centeuro

mac_roman macroman, macintosh Western Europe

mac_turkish macturkish Turkish

ptcpl54 csptepl54, pt154, cpl54, cyrillic- | Kazakh

asian

continues on next page

178

Chapter 7. Binary Data Services




The Python Library Reference, Release 3.10.18

Table 1 - continued from previous page

Codec Aliases Languages
shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese

shift_jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese

shift_jisx0213 shiftjisx0213, sjisx0213, | Japanese

s_jisx0213

utf_32 U32, utf32 all languages
utf_32_be UTF-32BE all languages
utf_32_le UTF-32LE all languages
utf_16 Ul16, utf16 all languages
utf_16_be UTF-16BE all languages
utf_16_le UTF-16LE all languages
utf_7 U7, unicode-1-1-utf-7 all languages
utf_8 U8, UTF, utf8, cp65001 all languages
utf_8_sig all languages

Changed in version 3.4: The utf-16* and utf-32* encoders no longer allow surrogate code points (U+D800-
U+DFFF) to be encoded. The utf-32* decoders no longer decode byte sequences that correspond to surrogate code
points.

Changed in version 3.8: cp65001 is now an alias to ut £_8.

7.2.4 Python Specific Encodings

A number of predefined codecs are specific to Python, so their codec names have no meaning outside Python. These
are listed in the tables below based on the expected input and output types (note that while text encodings are the
most common use case for codecs, the underlying codec infrastructure supports arbitrary data transforms rather than
just text encodings). For asymmetric codecs, the stated meaning describes the encoding direction.

Text Encodings

The following codecs provide st r to bytes encoding and bytes-like object to st r decoding, similar to the Unicode
text encodings.

7.2. codecs — Codec registry and base classes 179



The Python Library Reference, Release 3.10.18

Codec Aliases Meaning

idna Implement RFC 3490, see also
encodings.idna. Only er—
rors='strict' is supported.
mbcs ansi, dbcs Windows only: Encode the
operand according to the ANSI
codepage (CP_ACP).

oem Windows only: Encode the
operand according to the OEM
codepage (CP_OEMCP).

New in version 3.6.

palmos Encoding of PalmOS 3.5.

punycode Implement RFC 3492. Stateful
codecs are not supported.

raw_unicode_escape Latin-1 encoding with \uXXXX

and \UXXXXXXXX for other code
points. Existing backslashes are
not escaped in any way. It is used
in the Python pickle protocol.
undefined Raise an exception for all conver-
sions, even empty strings. The er-
ror handler is ignored.
unicode_escape Encoding suitable as the contents
of a Unicode literal in ASCII-
encoded Python source code, ex-
cept that quotes are not escaped.
Decode from Latin-1 source code.
Beware that Python source code
actually uses UTF-8 by default.

Changed in version 3.8: “unicode_internal” codec is removed.

Binary Transforms

The following codecs provide binary transforms: bytes-like object to byt es mappings. They are not supported by
bytes.decode () (which only produces st r output).

180 Chapter 7. Binary Data Services


https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3492.html

The Python Library Reference, Release 3.10.18

Codec Aliases Meaning Encoder / decoder
base64_codec! | base64, Convert the operand to multiline MIME base64 (the | baseé64.
base_64 result always includes a trailing '\n"). encodebytes () /
Changed in version 3.4: accepts any bytes-like object | base64.
as input for encoding and decoding decodebytes ()
bz2 codec bz2 Compress the operand using bz2. bz2.compress ()
/bz2.
decompress ()
hex_codec hex Convert the operand to hexadecimal representation, binascii.
with two digits per byte. b2a_hex () /
binascii.
a’Zb_hex ()
quopri_codec quopri, Convert the operand to MIME quoted printable. quopri.
quoted- encode () with
printable, quotetabs=True
quoted_printable / quopri.
decode ()
uu_codec uu Convert the operand using uuencode. uu.encode () /
uu.decode ()
zlib_codec zip, zlib Compress the operand using gzip. z1lib.
compress () /
z1lib.
decompress ()

New in version 3.2: Restoration of the binary transforms.
Changed in version 3.4: Restoration of the aliases for the binary transforms.
Text Transforms

The following codec provides a text transform: a st r to str mapping. It is not supported by str.encode ()
(which only produces bytes output).

Codec | Aliases | Meaning
rot_13 | rotl3 Return the Caesar-cypher encryption of the operand.

New in version 3.2: Restoration of the rot_ 13 text transform.

Changed in version 3.4: Restoration of the rot 13 alias.

7.2.5 encodings.idna — Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode encoding and
stringprep.

If you need the IDNA 2008 standard from RFC 5891 and RFC 5895, use the third-party idna module.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name con-
taining non-ASCII characters (such as www.Alliancefrang¢aise.nu) is converted into an ASCII-compatible
encoding (ACE, such as www.xn—--alliancefranaise-npb.nu). The ACE form of the domain name is
then used in all places where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host
fields, and so on. This conversion is carried out in the application; if possible invisible to the user: The application
should transparently convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode
before presenting them to the user.

! In addition to bytes-like objects, 'base64_codec" also accepts ASCII-only instances of st r for decoding

7.2. codecs — Codec registry and base classes 181


https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3492.html
https://datatracker.ietf.org/doc/html/rfc5891.html
https://datatracker.ietf.org/doc/html/rfc5895.html
https://pypi.org/project/idna/

The Python Library Reference, Release 3.10.18

Python supports this conversion in several ways: the idna codec performs conversion between Unicode and ACE,
separating an input string into labels based on the separator characters defined in section 3.1 of RFC 3490 and
converting each label to ACE as required, and conversely separating an input byte string into labels based on the .
separator and converting any ACE labels found into unicode. Furthermore, the socket module transparently con-
verts Unicode host names to ACE, so that applications need not be concerned about converting host names themselves
when they pass them to the socket module. On top of that, modules that have host names as function parameters,
such as http.client and ftplib, accept Unicode host names (http.client then also transparently sends
an IDNA hostname in the Host field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: applications wishing to present such host names to the user should decode them to Unicode.

The module encodings. idna also implements the nameprep procedure, which performs certain normalizations
on host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The
nameprep functions can be used directly if desired.

encodings.idna.nameprep (label)
Return the nameprepped version of label. The implementation currently assumes query strings, so A1 1lowU-
nassigned is true.

encodings.idna.ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

7.2.6 encodings.mbcs — Windows ANSI codepage

This module implements the ANSI codepage (CP_ACP).
Availability: Windows only.
Changed in version 3.3: Support any error handler.

Changed in version 3.2: Before 3.2, the errors argument was ignored; ' replace ' was always used to encode, and
'ignore"' to decode.

7.2.7 encodings.utf_8_sig— UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec. On encoding, a UTF-8 encoded BOM will be prepended to
the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte stream). On
decoding, an optional UTF-8 encoded BOM at the start of the data will be skipped.

182 Chapter 7. Binary Data Services


https://datatracker.ietf.org/doc/html/rfc3490.html#section-3.1
https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3490.html

CHAPTER
EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type
arrays, heap queues, double-ended queues, and enumerations.

Python also provides some built-in data types, in particular, dict, 1ist, set and frozenset,and tuple. The
st r class is used to hold Unicode strings, and the bytes and bytearray classes are used to hold binary data.

The following modules are documented in this chapter:

8.1 datetime — Basic date and time types

Source code: Lib/datetime.py

The datet ime module supplies classes for manipulating dates and times.

While date and time arithmetic is supported, the focus of the implementation is on efficient attribute extraction for
output formatting and manipulation.

See also:

Module calendar General calendar related functions.

Module time Time access and conversions.

Module zoneinfo Concrete time zones representing the IANA time zone database.

Package dateutil Third-party library with expanded time zone and parsing support.

8.1.1 Aware and Naive Objects

Date and time objects may be categorized as “aware” or “naive” depending on whether or not they include timezone
information.

With sufficient knowledge of applicable algorithmic and political time adjustments, such as time zone and daylight
saving time information, an aware object can locate itself relative to other aware objects. An aware object represents
a specific moment in time that is not open to interpretation.'

A naive object does not contain enough information to unambiguously locate itself relative to other date/time objects.
Whether a naive object represents Coordinated Universal Time (UTC), local time, or time in some other timezone
is purely up to the program, just like it is up to the program whether a particular number represents metres, miles, or
mass. Naive objects are easy to understand and to work with, at the cost of ignoring some aspects of reality.

For applications requiring aware objects, datet ime and t ime objects have an optional time zone information
attribute, t zinfo, that can be set to an instance of a subclass of the abstract t zinfo class. These t zinfo objects
capture information about the offset from UTC time, the time zone name, and whether daylight saving time is in
effect.

LIf, that is, we ignore the effects of Relativity

183


https://github.com/python/cpython/tree/3.10/Lib/datetime.py
https://dateutil.readthedocs.io/en/stable/

The Python Library Reference, Release 3.10.18

Only one concrete t zinfo class, the t imezone class, is supplied by the datet ime module. The t imezone
class can represent simple timezones with fixed offsets from UTC, such as UTC itself or North American EST
and EDT timezones. Supporting timezones at deeper levels of detail is up to the application. The rules for time
adjustment across the world are more political than rational, change frequently, and there is no standard suitable for
every application aside from UTC.

8.1.2 Constants

The datet ime module exports the following constants:

datetime .MINYEAR
The smallest year number allowed in a date or datet ime object. MINYEAR s 1.

datetime.MAXYEAR
The largest year number allowed in a date or datet ime object. MAXYEARis 9999.

8.1.3 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.

class datetime.time
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds.
(There is no notion of “leap seconds” here.) Attributes: hour, minute, second, microsecond, and
tzinfo.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second, mi—
crosecond,and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, time, or datetime instances to microsecond
resolution.

class datetime.tzinfo
An abstract base class for time zone information objects. These are used by the datet ime and t ime classes
to provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight
saving time).

class datetime.timezone
A class that implements the t z1info abstract base class as a fixed offset from the UTC.

New in version 3.2.
Objects of these types are immutable.

Subclass relationships:

object
timedelta
tzinfo
timezone
time
date
datetime

184 Chapter 8. Data Types




The Python Library Reference, Release 3.10.18

Common Properties

The date, datetime, t ime, and t imezone types share these common features:
» Objects of these types are immutable.
« Objects of these types are hashable, meaning that they can be used as dictionary keys.

o Objects of these types support efficient pickling via the pick 1 e module.

Determining if an Object is Aware or Naive

Objects of the date type are always naive.
An object of type t ime or datet ime may be aware or naive.
A datet ime object d is aware if both of the following hold:

1. d.tzinfo is not None

2. d.tzinfo.utcoffset (d) does not return None
Otherwise, d is naive.
A time object ¢ is aware if both of the following hold:

1. t.tzinfo is not None

2. t.tzinfo.utcoffset (None) does not return None.
Otherwise, ¢ is naive.

The distinction between aware and naive doesn’t apply to t imede 1t a objects.

8.1.4 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class datetime.timedelta (days=0, seconds=0, microseconds=0, milliseconds=0,

hours=0, weeks=0)

minutes=0,

All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive or

negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:

o A millisecond is converted to 1000 microseconds.
o A minute is converted to 60 seconds.
« An hour is converted to 3600 seconds.

o A week is converted to 7 days.

and days, seconds and microseconds are then normalized so that the representation is unique, with

e 0 <= microseconds < 1000000
e 0 <= seconds < 3600%*24 (the number of seconds in one day)

¢ —999999999 <= days <= 999999999

The following example illustrates how any arguments besides days, seconds and microseconds are “merged”

and normalized into those three resulting attributes:

>>> from datetime import timedelta
>>> delta = timedelta(

days=50,

seconds=27,

(continues on next page)

8.1. datetime — Basic date and time types

185




The Python Library Reference, Release 3.10.18

(continued from previous page)

microseconds=10,
milliseconds=29000,
minutes=5,
hours=8,
weeks=2
)
>>> # Only days, seconds, and microseconds remain
>>> delta
datetime.timedelta (days=64, seconds=29156, microseconds=10)

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond using round-half-to-even
tiebreaker. If no argument is a float, the conversion and normalization processes are exact (no information is
lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example:

>>> from datetime import timedelta

>>> d = timedelta (microseconds=-1)

>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)

Class attributes:

timedelta.min
The most negative t imedelta object, timedelta (-999999999).

timedelta.max
The most positive timedelta object, timedelta (days=999999999, hours=23,
minutes=59, seconds=59, microseconds=999999).

timedelta.resolution
The smallest possible difference between non-equal timedelta objects,
timedelta (microseconds=1).

Note that, because of normalization, timedelta.max > -timedelta.min. —timedelta.max is not rep-
resentable as a t imedelta object.

Instance attributes (read-only):

Attribute Value

days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds | Between O and 999999 inclusive

Supported operations:

186 Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

Operation Result

tl = t2 + t3 Sum of £2 and 3. Afterwards ¢/-2 == t3 and t1-t3 == 12 are true. (1)

tl = t2 - t3 Difference of 2 and 3. Afterwards t/ == 12 - ¢3 and 2 == tI + 13 are true. (1)(6)
tl = t2 * i or t1 | Delta multiplied by an integer. Afterwards ¢/ // i == 12 is true, provided 1 != 0.
=1 * t2

In general, ¢t/ *i==1tI * (i-1) + ¢1 is true. (1)

tl = t2 * £ or tl | Delta multiplied by a float. The result is rounded to the nearest multiple of

= f * t2 timedelta.resolution using round-half-to-even.

f=1t2 / t3 Division (3) of overall duration ¢2 by interval unit 3. Returns a f1oat object.

tl = t2 / f or tl | Delta divided by a float or an int. The result is rounded to the nearest multiple of

=t2 / 1 timedelta.resolution using round-half-to-even.

tl = t2 // 1ortl | Theflooris computed and the remainder (if any) is thrown away. In the second case,

=t2 // t3 an integer is returned. (3)

tl = t2 % t3 The remainder is computed as a t imedelta object. (3)

q, r = divmod(tl, | Computes the quotient and the remainder: g = t1 // t2@3)andr = tl1 %

t2) t2. qisaninteger and ris a t imedelta object.

+t1 Returns a t imede 1t a object with the same value. (2)

-t1 equivalent to timedelta(-tl.days, -tl.seconds, -tl.microseconds), and to t1* -1.
A

abs (t) equivalent to +7 when t . days >= 0,andto-fwhen t.days < 0.(2)

str(t) Returns a string in the form [D day[s], ][H]H:MM:SS[.UUUUUU], where
D is negative for negative t. (5)

repr (t) Returns a string representation of the ¢ imede 1t a object as a constructor call with
canonical attribute values.

Notes:

(1) This is exact but may overflow.

(2) This is exact and cannot overflow.

(3) Division by O raises ZeroDivisionError

(4) -timedelta.max is not representable as a t imedelta object.

(5) String representations of timedelta objects are normalized similarly to their internal representation. This

(6)

leads to somewhat unusual results for negative timedeltas. For example:

>>> timedelta (hours=-5)

datetime.timedelta (days=-1, seconds=68400)
>>> print (_)

-1 day, 19:00:00

The expression t2 — t3 will always be equal to the expression t2 + (-t3) except when t3 is equal to
timedelta.max; in that case the former will produce a result while the latter will overflow.

In addition to the operations listed above, t i mede 1t a objects support certain additions and subtractions with date
and datetime objects (see below).

Changed in version 3.2: Floor division and true division of a t imedelta object by another t imedelta object
are now supported, as are remainder operations and the divmod () function. True division and multiplication of a
timedelta object by a f1oat object are now supported.

Comparisons of t imedelta objects are supported, with some caveats.

The comparisons == or ! = always return a boo 1, no matter the type of the compared object:

>>> from datetime import timedelta
>>> deltal = timedelta (seconds=57)
>>> delta?2 = timedelta (hours=25, seconds=2)
>>> deltaz != deltal
(continues on next page)
8.1. datetime — Basic date and time types 187




The Python Library Reference, Release 3.10.18

(continued from previous page)

True
>>> delta2 ==
False

For all other comparisons (such as < and >), when a t imede 1t a object is compared to an object of a different type,
TypeError is raised:

>>> delta2 > deltal
True
>>> delta2 > 5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: '>' not supported between instances of 'datetime.timedelta' and 'int'

In Boolean contexts, a t imede 1t a object is considered to be true if and only if it isn’t equal to t imedelta (0).
Instance methods:

timedelta.total_seconds ()
Return the total number of seconds contained in the duration. Equivalent to td /
timedelta (seconds=1). For interval units other than seconds, use the division form directly
(e.g. td / timedelta (microseconds=1)).

Note that for very large time intervals (greater than 270 years on most platforms) this method will lose mi-
crosecond accuracy.

New in version 3.2.

Examples of usage: timedelta

An additional example of normalization:

>>> # Components of another_year add up to exactly 365 days
>>> from datetime import timedelta

>>> year = timedelta (days=365)

>>> another_year = timedelta (weeks=40, days=84, hours=23,
. minutes=50, seconds=600)

>>> year == another_year

True
>>> year.total_seconds ()
31536000.0

Examples of timedelta arithmetic:

>>> from datetime import timedelta
>>> year = timedelta (days=365)

>>> ten_years = 10 * year

>>> ten_years

datetime.timedelta (days=3650)

>>> ten_years.days // 365

10

>>> nine_years = ten_years - year
>>> nine_years

datetime.timedelta (days=3285)

>>> three_years = nine_years // 3
>>> three_years, three_years.days // 365
(datetime.timedelta (days=1095), 3)

188 Chapter 8. Data Types




The Python Library Reference, Release 3.10.18

8.1.5 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions.

January 1 of year 1 is called day number 1, January 2 of year 1 is called day number 2, and so on.”

class datetime.date (year, month, day)
All arguments are required. Arguments must be integers, in the following ranges:

e MINYEAR <= year <= MAXYEAR
e 1 <= month <= 12
e 1 <= day <= number of days in the given month and year
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod date.today ()
Return the current local date.

This is equivalent to date . fromtimestamp (time.time () ).

classmethod date.fromtimestamp (timestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by t ime. time ().

This may raise OverflowError, if the timestamp is out of the range of values supported by the platform
C localtime () function, and OSError on localtime () failure. It’'s common for this to be restricted
to years from 1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion
of a timestamp, leap seconds are ignored by fromt imestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C localtime () function. Raise OSError instead of Val-
ueErroron localtime () failure.

classmethod date.fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.

ValueError is raised unless 1 <= ordinal <= date.max.toordinal (). For any date d,
date.fromordinal (d.toordinal ()) ==

classmethod date.fromisoformat (date_string)
Return a dat e corresponding to a date_string given in the format YYYY-MM-DD:

>>> from datetime import date
>>> date.fromisoformat ('2019-12-04")
datetime.date (2019, 12, 4)

This is the inverse of date. isoformat (). It only supports the format YYYY~-MM-DD.
New in version 3.7.

classmethod date.fromisocalendar (year, week, day)
Return a date corresponding to the ISO calendar date specified by year, week and day. This is the inverse of
the function date. isocalendar ().

New in version 3.8.
Class attributes:

date.min
The earliest representable date, date (MINYEAR, 1, 1).

2 This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s book Calendrical Calculations, where it’s the
base calendar for all computations. See the book for algorithms for converting between proleptic Gregorian ordinals and many other calendar
systems.

8.1. datetime — Basic date and time types 189



The Python Library Reference, Release 3.10.18

date.max
The latest representable date, date (MAXYEAR, 12, 31).

date.resolution
The smallest possible difference between non-equal date objects, t imedelta (days=1).

Instance attributes (read-only):

date.year
Between MINYEAR and MAXYEAR inclusive.

date.month
Between 1 and 12 inclusive.

date.day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result
date2 = datel + timedelta | date2 willbe timedelta.days days after datel. (1)
date2 = datel - timedelta | Computes date2 such that date2 + timedelta == datel. (2)
timedelta = datel - date2 | (3)
datel < date?2 datel is considered less than date2 when datel precedes date2 in time.
“)
Notes:

(1) date? is moved forward in time if timedelta.days > 0, or backward if timedelta.days < O.
Afterward date2 - datel == timedelta.days. timedelta.seconds and timedelta.
microseconds are ignored. OverflowError is raised if date2.year would be smaller than
MINYEAR or larger than MAXYFEAR.

(2) timedelta.seconds and timedelta.microseconds are ignored.

(3) This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta
== datel after.

(4) In other words, datel < date2 if and only if datel.toordinal () < date2.toordinal ().
Date comparison raises TypeError if the other comparand isn’t also a date object. However, Not Im—
plemented is returned instead if the other comparand has a t imetuple () attribute. This hook gives
other kinds of date objects a chance at implementing mixed-type comparison. If not, when a date object
is compared to an object of a different type, TypeError is raised unless the comparison is == or !=. The
latter cases return F'a 1 se or True, respectively.

In Boolean contexts, all date objects are considered to be true.
Instance methods:

date.replace (year=self.year, month=self.month, day=self.day)
Return a date with the same value, except for those parameters given new values by whichever keyword argu-
ments are specified.

Example:

>>> from datetime import date
>>> d = date (2002, 12, 31)
>>> d.replace (day=26)
datetime.date (2002, 12, 26)

date.timetuple ()
Return a t ime. st ruct_time such as returned by t ime. localtime ().

The hours, minutes and seconds are 0, and the DST flag is -1.

d.timetuple () is equivalent to:

190 Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

time.struct_time((d.year, d.month, d.day, 0, 0, 0, d.weekday(), yday, -1))

where yday = d.toordinal () - date(d.year, 1, 1).toordinal () + 1 istheday number
within the current year starting with 1 for January 1st.

date.toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date
objectd, date.fromordinal (d.toordinal ()) ==

date.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002,
12, 4).weekday () == 2,a Wednesday. See also i soweekday ().

date.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002,
12, 4).isoweekday () == 3,a Wednesday. See also weekday (), isocalendar ().

date.isocalendar ()
Return a named tuple object with three components: year, week and weekday.

The ISO calendar is a widely used variant of the Gregorian calendar.’

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The
first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called
week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004:

>>> from datetime import date

>>> date (2003, 12, 29).isocalendar ()
datetime.IsoCalendarDate (year=2004, week=1, weekday=1)
>>> date (2004, 1, 4).isocalendar ()
datetime.IsoCalendarDate (year=2004, week=1, weekday=7)

Changed in version 3.9: Result changed from a tuple to a named tuple.

date.isoformat ()
Return a string representing the date in ISO 8601 format, YYYY-MM—-DD:

>>> from datetime import date
>>> date (2002, 12, 4).isoformat ()
'2002-12-04"

This is the inverse of date. fromisoformat ().

date.__str__ ()
For a date d, str (d) is equivalentto d.isoformat ().

date.ctime ()
Return a string representing the date:

>>> from datetime import date
>>> date (2002, 12, 4).ctime()
'Wed Dec 4 00:00:00 2002"

d.ctime () is equivalent to:

time.ctime (time.mktime (d.timetuple()))

on platforms where the native C ctime () function (which time.ctime () invokes, but which date.
ctime () does not invoke) conforms to the C standard.

3 See R. H. van Gent’s guide to the mathematics of the ISO 8601 calendar for a good explanation.

8.1. datetime — Basic date and time types 191



https://web.archive.org/web/20220531051136/https://webspace.science.uu.nl/~gent0113/calendar/isocalendar.htm

The Python Library Reference, Release 3.10.18

date.strftime (format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. For a complete list of formatting directives, see strftime() and strptime()
Behavior.

date.__ format__ (format)
Same as date. st rftime (). This makes it possible to specify a format string for a dat e object in format-
ted string literals and when using st r. format (). For a complete list of formatting directives, see strftime()
and strptime() Behavior.

Examples of Usage: date

Example of counting days to an event:

>>> import time

>>> from datetime import date

>>> today = date.today ()

>>> today

datetime.date (2007, 12, 5)

>>> today == date.fromtimestamp (time.time ())
True

>>> my_birthday = date(today.year, 6, 24)

>>> if my_birthday < today:

.. my_birthday = my_birthday.replace(year=today.year + 1)
>>> my_birthday

datetime.date (2008, 6, 24)

>>> time_to_birthday = abs (my_birthday - today)
>>> time_to_birthday.days

202

More examples of working with date:

>>> from datetime import date

>>> d = date.fromordinal (730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date (2002, 3, 11)

>>> # Methods related to formatting string output
>>> d.isoformat ()

'2002-03-11"

>>> d.strftime ("%d/%m/%y")
'11/03/02"

>>> d.strftime ("%A Sd. %B $Y")

'Monday 11. March 2002'

>>> d.ctime ()

'Mon Mar 11 00:00:00 2002"'

>>> 'The {1} is {0:%d}, the {2} is {0:%B}.'.format (d, "day", "month")
'The day is 11, the month is March.'

>>> # Methods for to extracting 'components' under different calendars
>>> t = d.timetuple ()
>>> for i in t:

ce print (i)

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year

(continues on next page)

192 Chapter 8. Data Types




The Python Library Reference, Release 3.10.18

(continued from previous page)

-1
>>> ic = d.isocalendar ()
>>> for i in ic:

C. print (1)

2002 # ISO year

11 # ISO week number

1 # ISO day number ( 1 = Monday )

>>> # A date object is immutable; all operations produce a new object
>>> d.replace (year=2005)
datetime.date (2005, 3, 11)

8.1.6 datetime Objects

A datet ime object is a single object containing all the information from a dat e object and a t ime object.

Like a date object, datet ime assumes the current Gregorian calendar extended in both directions; like a t ime
object, datet ime assumes there are exactly 3600%24 seconds in every day.

Constructor:

class datetime.datetime (year, month, day, hour=0, minute=0, second=0, microsecond=0, tz-
info=None, *, fold=0)
The year, month and day arguments are required. #zinfo may be None, or an instance of a ¢ zinfo subclass.
The remaining arguments must be integers in the following ranges:

e MINYEAR <= year <= MAXYEAR,

e 1 <= month <= 12,

<= day <= number of days in the given month and year,
<= hour < 24,

minute < 60,

<= second < 60,

L]

o o o o
A
Il

<= microsecond < 1000000,
e fold in [0, 1].
If an argument outside those ranges is given, Va lueError is raised.
New in version 3.6: Added the fold argument.
Other constructors, all class methods:

classmethod datetime.today ()
Return the current local datetime, with £ zinfo None.

Equivalent to:

datetime.fromtimestamp (time.time ())

See also now (), fromtimestamp ().
This method is functionally equivalent to now (), but without a t z parameter.

classmethod datetime.now (1z=None)
Return the current local date and time.

If optional argument #z is None or not specified, this is like today (), but, if possible, supplies more precision
than can be gotten from going through a t ime. time () timestamp (for example, this may be possible on
platforms supplying the C gettimeofday () function).

8.1. datetime — Basic date and time types 193



The Python Library Reference, Release 3.10.18

If #z is not None, it must be an instance of a t z1n fo subclass, and the current date and time are converted
to t7’s time zone.

This function is preferred over today () and utcnow ().

classmethod datetime.utcnow ()

Return the current UTC date and time, with t zinfo None.

This is like now (), but returns the current UTC date and time, as a naive datet ime object. An aware
current UTC datetime can be obtained by calling datetime.now (timezone.utc). See also now ().

Warning: Because naive datet ime objects are treated by many datet ime methods as local times,
it is preferred to use aware datetimes to represent times in UTC. As such, the recommended way to create
an object representing the current time in UTC is by calling datetime.now (timezone.utc).

classmethod datetime.fromtimestamp (timestamp, tz=None)

Return the local date and time corresponding to the POSIX timestamp, such as is returned by t ime . t ime ().
If optional argument ¢z is None or not specified, the timestamp is converted to the platform’s local date and
time, and the returned dat et ime object is naive.

If #z is not None, it must be an instance of a t zinfo subclass, and the timestamp is converted to #z’s time
Zone.

fromtimestamp () may raise OverflowError, if the timestamp is out of the range of values supported
by the platform C localtime () or gmtime () functions, and OSError on localtime () or gm-—
time () failure. It’'s common for this to be restricted to years in 1970 through 2038. Note that on non-POSIX
systems that include leap seconds in their notion of a timestamp, leap seconds are ignored by fromt imes—
tamp (), and then it’s possible to have two timestamps differing by a second that yield identical datet ime
objects. This method is preferred over ut cfromtimestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C localtime () or gmtime () functions. Raise OSError
instead of ValueErroron localtime () or gmtime () failure.

Changed in version 3.6: fromtimestamp () may return instances with fold setto 1.

classmethod datetime.utcfromtimestamp (fimestamp)

Return the UTC datet ime corresponding to the POSIX timestamp, with t zinfo None. (The resulting
object is naive.)

This may raise OverflowError, if the timestamp is out of the range of values supported by the platform
C gmtime () function, and OSError on gmtime () failure. It's common for this to be restricted to years
in 1970 through 2038.

To get an aware datet ime object, call fromtimestamp ():

’datetime.fromtimestamp(timestamp, timezone.utc)

On the POSIX compliant platforms, it is equivalent to the following expression:

’datetime(i970, 1, 1, tzinfo=timezone.utc) + timedelta (seconds=timestamp)

except the latter formula always supports the full years range: between MINYEAR and MAXYEAR inclusive.

Warning: Because naive datetime objects are treated by many datetime methods as lo-
cal times, it is preferred to use aware datetimes to represent times in UTC. As such, the recom-
mended way to create an object representing a specific timestamp in UTC is by calling datetime.
fromtimestamp (timestamp, tz=timezone.utc).

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C gmt ime () function. Raise OSErrorinstead of ValueError

194

Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

on gmt ime () failure.

classmethod datetime.fromordinal (ordinal)
Return the dat et ime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueErrorisraised unless 1 <= ordinal <= datetime.max.toordinal (). The hour,
minute, second and microsecond of the result are all 0, and t zinfois None.

classmethod datetime.combine (date, time, tzinfo=self.tzinfo)
Return a new datet ime object whose date components are equal to the given date object’s, and whose
time components are equal to the given t ime object’s. If the #zinfo argument is provided, its value is used to
set the t zinfo attribute of the result, otherwise the t zinfo attribute of the time argument is used.

For any datetime objectd, d == datetime.combine (d.date(), d.time(), d.tzinfo).
If date is a dat et ime object, its time components and t z i nfo attributes are ignored.

Changed in version 3.6: Added the fzinfo argument.

classmethod datetime.fromisoformat (date_string)
Return a datet ime corresponding to a date_string in one of the formats emitted by date. isoformat ()
and datetime.isoformat ().

Specifically, this function supports strings in the format:

YYYY-MM-DD [*HH[ :MM[:SS[.£f££[£f££]]]] [+HH:MM[:SS[.f££f££f£]]1]]

where * can match any single character.

Caution: This does not support parsing arbitrary ISO 8601 strings - it is only intended as the inverse op-
eration of datetime. isoformat (). A more full-featured ISO 8601 parser, dateutil.parser.
isoparse is available in the third-party package dateutil.

Examples:

>>> from datetime import datetime

>>> datetime.fromisoformat ('2011-11-04")

datetime.datetime (2011, 11, 4, 0, 0)

>>> datetime.fromisoformat ('2011-11-04T00:05:23")

datetime.datetime (2011, 11, 4, 0, 5, 23)

>>> datetime.fromisoformat ('2011-11-04 00:05:23.283")

datetime.datetime (20121, 11, 4, 0, 5, 23, 283000)

>>> datetime.fromisoformat ('2011-11-04 00:05:23.283+00:00")

datetime.datetime (2011, 11, 4, 0, 5, 23, 283000, tzinfo=datetime.timezone.utc)

>>> datetime.fromisoformat ('2011-11-04T00:05:23+04:00")

datetime.datetime (2011, 11, 4, 0, 5, 23,
tzinfo=datetime.timezone (datetime.timedelta (seconds=14400)))

New in version 3.7.

classmethod datetime.fromisocalendar (year, week, day)
Return a datet ime corresponding to the ISO calendar date specified by year, week and day. The non-date
components of the datetime are populated with their normal default values. This is the inverse of the function
datetime.isocalendar().

New in version 3.8.

classmethod datetime.strptime (date_string, format)
Return a datet ime corresponding to date_string, parsed according to format.

This is equivalent to:

datetime (* (time.strptime (date_string, format) [0:6]))

8.1. datetime — Basic date and time types 195


https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.isoparse

The Python Library Reference, Release 3.10.18

ValueError israised if the date_string and format can’t be parsed by t ime. st rptime () or if it returns
a value which isn’t a time tuple. For a complete list of formatting directives, see strftime() and strptime()
Behavior.

Class attributes:

datetime.min
The earliest representable datet ime, datetime (MINYEAR, 1, 1, tzinfo=None).

datetime.max
The latest representable datet ime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

datetime.resolution
The smallest possible difference between non-equal datetime objects,
timedelta (microseconds=1).

Instance attributes (read-only):

datetime.year
Between MINYEAR and MAXYEAR inclusive.

datetime.month
Between 1 and 12 inclusive.

datetime.day
Between 1 and the number of days in the given month of the given year.

datetime.hour
In range (24).

datetime.minute
In range (60).

datetime.second
In range (60).

datetime.microsecond
In range (1000000).

datetime.tzinfo
The object passed as the tzinfo argument to the dat et ime constructor, or None if none was passed.

datetime. fold
In [0, 1]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased
for political reasons.) The value 0 (1) represents the earlier (later) of the two moments with the same wall time
representation.

New in version 3.6.

Supported operations:

Operation Result

datetime2 = datetimel + timedelta | (1)

datetime2 = datetimel - timedelta | (2)

timedelta = datetimel - datetime2 | (3)

datetimel < datetime?2 Compares datetime to datetime. (4)

(1) datetime? is a duration of timedelta removed from datetimel, moving forward in time if t imedelta.days
>0, or backward if t imedelta.days <0. The result has the same t z i nfo attribute as the input datetime,
and datetime?2 - datetimel == timedelta after. OverflowError israised if datetime2.year would be smaller
than MTNYEAR or larger than MAXYEAR. Note that no time zone adjustments are done even if the input is an
aware object.

(2) Computes the datetime?2 such that datetime2 + timedelta == datetime1. As for addition, the result has the same
tzinfo attribute as the input datetime, and no time zone adjustments are done even if the input is aware.

196 Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

(3) Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are
aware. If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same ¢ zinfo attribute, the t z i nfo attributes are ignored,
and the result is a t imedelta object ¢ such that datetime2 + t == datetimel. No time zone
adjustments are done in this case.

If both are aware and have different t z1info attributes, a—b acts as if a and b were first converted to naive
UTC datetimes first. The result is (a.replace (tzinfo=None) - a.utcoffset()) - (b.
replace (tzinfo=None) - b.utcoffset ()) except that the implementation never overflows.

(4) datetimel is considered less than datetime2 when datetimel precedes datetime2 in time.

If one comparand is naive and the other is aware, TypeError is raised if an order comparison is attempted.
For equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same t z i n o attribute, the common t z i nfo attribute is ignored
and the base datetimes are compared. If both comparands are aware and have different t z i nfo attributes,
the comparands are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()).

Changed in version 3.3: Equality comparisons between aware and naive datet ime instances don’t raise
TypeError.

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses,
datetime comparison normally raises TypeError if the other comparand isn’t also a datet ime object.
However, Not Implemented is returned instead if the other comparand has a timetuple () attribute.
This hook gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a
datet ime object is compared to an object of a different type, TypeError is raised unless the comparison
is == or !=. The latter cases return False or True, respectively.

Instance methods:

datetime.date ()
Return date object with same year, month and day.

datetime.time ()
Return ¢ ime object with same hour, minute, second, microsecond and fold. tzinfo is None. See also
method timetz ().

Changed in version 3.6: The fold value is copied to the returned t ime object.

datetime.timetz ()
Return t i me object with same hour, minute, second, microsecond, fold, and tzinfo attributes. See also method
time ().

Changed in version 3.6: The fold value is copied to the returned t ime object.

datetime.replace (year=self.year, month=self.month, day=self.day, hour=self.hour, minute=self.minute,
second=self.second, microsecond=self.microsecond, tzinfo=self.tzinfo, *, fold=0)
Return a datetime with the same attributes, except for those attributes given new values by whichever keyword
arguments are specified. Note that t zinfo=None can be specified to create a naive datetime from an aware
datetime with no conversion of date and time data.

New in version 3.6: Added the fold argument.

datetime.astimezone (1z=None)
Return a datet ime object with new t zinfo attribute #z, adjusting the date and time data so the result is
the same UTC time as self, but in #z’s local time.

If provided, #z must be an instance of a t zinfo subclass, and its ut cof fset () and dst () methods must
not return None. If self is naive, it is presumed to represent time in the system timezone.

If called without arguments (or with t z=None) the system local timezone is assumed for the target timezone.
The . tzinfo attribute of the converted datetime instance will be set to an instance of timezone with the
zone name and offset obtained from the OS.

8.1. datetime — Basic date and time types 197



The Python Library Reference, Release 3.10.18

If self.tzinfoistz, self.astimezone (tz) is equal to self: no adjustment of date or time data is
performed. Else the result is local time in the timezone #z, representing the same UTC time as self: after astz
= dt.astimezone (tz),astz — astz.utcoffset () will have the same date and time data as dt
- dt.utcoffset ().

If you merely want to attach a time zone object #z to a datetime df without adjustment of date and time data, use
dt.replace (tzinfo=tz). If you merely want to remove the time zone object from an aware datetime
dt without conversion of date and time data, use dt . replace (tzinfo=None).

Note that the default t zinfo. fromutc () method can be overridden in a t zinfo subclass to affect the
result returned by ast imezone (). Ignoring error cases, ast imezone () acts like:

def astimezone (self, tz):
if self.tzinfo is tz:
return self
# Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
# Convert from UTC to tz's local time.
return tz.fromutc (utc)

Changed in version 3.3: #z now can be omitted.

Changed in version 3.6: The ast imezone () method can now be called on naive instances that are presumed
to represent system local time.

datetime.utcoffset ()
If tzinfois None, returns None, else returns self.tzinfo.utcoffset (self), and raises an ex-
ception if the latter doesn’t return None or a t imede 1t a object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

datetime.dst ()
If tzinfois None, returns None, else returns self.tzinfo.dst (self), and raises an exception if
the latter doesn’t return None or a t imedet a object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

datetime.tzname ()
If tzinfois None, returns None, else returns self.tzinfo.tzname (self), raises an exception if
the latter doesn’t return None or a string object,

datetime.timetuple ()
Return a t ime. st ruct_time such as returned by t ime. localtime ().

d.timetuple () is equivalent to:

time.struct_time ((d.year, d.month, d.day,
d.hour, d.minute, d.second,
d.weekday (), yday, dst))

where yday = d.toordinal () - date(d.year, 1, 1).toordinal () + 1 isthedaynumber
within the current year starting with 1 for January Ist. The tm_isdst flag of the result is set according to the
dst () method: tzinfois None or dst () returns None, tm_isdst issetto —1;else if dst () returns
a non-zero value, tm_isdst issetto 1;else tm_ isdst issetto 0.

datetime.utctimetuple ()
If datetime instance d is naive, this is the same as d.timetuple () except that tm_1isdst is forced to
0 regardless of what d.dst () returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset (),anda t ime. st ruct_time
for the normalized time is returned. tm_1isdst is forced to 0. Note that an OverflowError may be
raised if d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year boundary.

198 Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

Warning:  Because naive datetime objects are treated by many datetime methods as local
times, it is preferred to use aware datetimes to represent times in UTC; as a result, using datetime.
utctimetuple () may give misleading results. If you have a naive datetime representing UTC,
use datetime.replace (tzinfo=timezone.utc) to make it aware, at which point you can use
datetime.timetuple ().

datetime.toordinal ()
Return the proleptic Gregorian ordinal of the date. The same as self.date () .toordinal ().

datetime.timestamp ()
Return POSIX timestamp corresponding to the datet ime instance. The return value is a £1oat similar to
that returned by t ime. time ().

Naive datet ime instances are assumed to represent local time and this method relies on the platform C
mktime () function to perform the conversion. Since datet ime supports wider range of values than mk —
time () on many platforms, this method may raise OverflowError for times far in the past or far in the
future.

For aware dat et ime instances, the return value is computed as:

(dt - datetime (1970, 1, 1, tzinfo=timezone.utc)).total_seconds ()

New in version 3.3.

Changed in version 3.6: The timestamp () method uses the fold attribute to disambiguate the times
during a repeated interval.

Note: There is no method to obtain the POSIX timestamp directly from a naive datet ime instance repre-
senting UTC time. If your application uses this convention and your system timezone is not set to UTC, you
can obtain the POSIX timestamp by supplying t zinfo=timezone.utc:

’ timestamp = dt.replace(tzinfo=timezone.utc) .timestamp ()

or by calculating the timestamp directly:

’timestamp = (dt - datetime (1970, 1, 1)) / timedelta (seconds=1)

datetime.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as self.date () .
weekday (). See also i soweekday ().

datetime.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as self.date () .
isoweekday (). See also weekday (), isocalendar ().

datetime.isocalendar ()
Return a named tuple with three components: year, week and weekday. The same as self.date () .
isocalendar ().

datetime.isoformat (sep="T', timespec='auto")
Return a string representing the date and time in ISO 8601 format:

e YYYY-MM-DDTHH:MM:SS.ffffff,if microsecondisnot(
e YYYY-MM-DDTHH:MM:SS, if microsecondis 0
If utcoffset () does not return None, a string is appended, giving the UTC offset:
e YYYY-MM-DDTHH:MM:SS.ffffff+HH:MM[:SS[.£f£f£££f£f]],if microsecondisnot0
e YYYY-MM-DDTHH:MM:SS+HH:MM[:SS[.ffffff]],if microsecondis

Examples:

8.1. datetime — Basic date and time types 199



The Python Library Reference, Release 3.10.18

datetime.__str

>>> from datetime import datetime, timezone

>>> datetime (2019, 5, 18, 15, 17, 8, 132263).isoformat ()
'2019-05-18T15:17:08.132263"

>>> datetime (2019, 5, 18, 15, 17, tzinfo=timezone.utc) .isoformat ()
'2019-05-18T15:17:004+00:00"

The optional argument sep (default ' T ') is a one-character separator, placed between the date and time por-
tions of the result. For example:

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ (tzinfo) :
"""A time zone with an arbitrary, constant —-06:39 offset."""
def utcoffset(self, dt):
return timedelta (hours=-6, minutes=-39)

>>> datetime (2002, 12, 25, tzinfo=TZ()) .isoformat (' ')

'2002-12-25 00:00:00-06:39"
>>> datetime (2009, 11, 27, microsecond=100, tzinfo=TZ()) .isoformat ()

'2009-11-27T00:00:00.000100-06:39"

The optional argument timespec specifies the number of additional components of the time to include (the
defaultis "auto"'). It can be one of the following:

e 'auto': Same as 'seconds' if microsecondis(, same as 'microseconds' otherwise.
e 'hours': Include the hour in the two-digit HH format.

e 'minutes': Include hour and minute in HH : MM format.

e "seconds': Include hour, minute, and second in HH:MM: SS format.

e 'milliseconds': Include full time, but truncate fractional second part to milliseconds.
HH:MM:SS.sss format.

¢ 'microseconds': Include full time in HH:MM: SS. f££fff format.

Note: Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid fimespec argument:

>>> from datetime import datetime

>>> datetime.now () .isoformat (timespec="minutes")
'2002-12-25T00:00"

>>> dt = datetime (2015, 1, 1, 12, 30, 59, 0)

>>> dt.isoformat (timespec="'microseconds"')
'2015-01-01T12:30:59.000000"

New in version 3.6: Added the fimespec argument.

_ 0
For a datet ime instance d, str (d) is equivalentto d.isoformat (' ').

datetime.ctime ()

Return a string representing the date and time:

>>> from datetime import datetime
>>> datetime (2002, 12, 4, 20, 30, 40).ctime ()
'Wed Dec 4 20:30:40 2002"

The output string will not include time zone information, regardless of whether the input is aware or naive.

d.ctime () is equivalent to:

200

Chapter 8. Data Types




The Python Library Reference, Release 3.10.18

time.ctime (time.mktime (d.timetuple()))

on platforms where the native C ctime () function (which time.ctime () invokes, but which
datetime.ctime () does not invoke) conforms to the C standard.

datetime.strftime (format)
Return a string representing the date and time, controlled by an explicit format string. For a complete list of
formatting directives, see strftime() and strptime() Behavior.

datetime._ format__ (format)
Same as datetime.strftime (). This makes it possible to specify a format string for a datet ime ob-
ject in formatted string literals and when using st r. format (). For a complete list of formatting directives,
see strftime() and strptime() Behavior.

Examples of Usage: datetime

Examples of working with datet ime objects:

>>> from datetime import datetime, date, time, timezone

>>> # Using datetime.combine ()

>>> d = date (2005, 7, 14)

>>> t = time (12, 30)

>>> datetime.combine(d, t)
datetime.datetime (2005, 7, 14, 12, 30)

>>> # Using datetime.now()

>>> datetime.now ()

datetime.datetime (2007, 12, 6, 16, 29, 43, 79043) # GMT +1

>>> datetime.now (timezone.utc)

datetime.datetime (2007, 12, 6, 15, 29, 43, 79060, tzinfo=datetime.timezone.utc)

>>> # Using datetime.strptime ()

>>> dt = datetime.strptime ("21/11/06 16:30", "2d/%m/Sy SH:%M")
>>> dt

datetime.datetime (2006, 11, 21, 16, 30)

>>> # Using datetime.timetuple () to get tuple of all attributes
>>> tt = dt.timetuple ()
>>> for it in tt:

print (it)
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1lst January
-1 # dst - method tzinfo.dst () returned None

>>> # Date in ISO format
>>> ic = dt.isocalendar ()
>>> for it in ic:

print (it)
2006 # ISO year
47 # ISO week
2 # ISO weekday

(continues on next page)

8.1. datetime — Basic date and time types 201




The Python Library Reference, Release 3.10.18

(continued from previous page)

>>> # Formatting a datetime

>>> dt.strftime ("$A, $d. %B %Y $I:
'Tuesday, 21. November 2006 04:30PM'
>>> 'The {1} is {0:%d}, the {2} is {0:%B}, the {3} is {0:%I:%M%p}."'.format (dt, "day
<", "month", "time")

'The day is 21, the month is November, the time is 04:30PM.'

The example below defines a ¢ z i n f o subclass capturing time zone information for Kabul, Afghanistan, which used
+4 UTC until 1945 and then +4:30 UTC thereafter:

from datetime import timedelta, datetime, tzinfo, timezone

class KabulTz (tzinfo) :
# Kabul used +4 until 1945, when they moved to +4:30
UTC_MOVE_DATE = datetime (1944, 12, 31, 20, tzinfo=timezone.utc)

def utcoffset (self, dt):
if dt.year < 1945:
return timedelta (hours=4)
elif (1945, 1, 1, 0, 0) <= dt.timetuple() [:5] < (1945, 1, 1, 0, 30):
# An ambiguous ("imaginary'") half-hour range representing
# a 'fold' in time due to the shift from +4 to +4:30.
# If dt falls in the imaginary range, use fold to decide how
# to resolve. See PEP495.
return timedelta (hours=4, minutes= (30 if dt.fold else 0))
else:
return timedelta (hours=4, minutes=30)

def fromutc(self, dt):
# Follow same validations as in datetime.tzinfo
if not isinstance(dt, datetime) :
raise TypeError ("fromutc() requires a datetime argument")
if dt.tzinfo is not self:
raise ValueError("dt.tzinfo is not self")

# A custom implementation 1is required for fromutc as

# the input to this function is a datetime with utc values

# but with a tzinfo set to self.

# See datetime.astimezone or fromtimestamp.

if dt.replace(tzinfo=timezone.utc) >= self.UTC_MOVE_DATE:
return dt + timedelta (hours=4, minutes=30)

else:
return dt + timedelta (hours=4)

def dst (self, dt):
# Kabul does not observe daylight saving time.
return timedelta (0)

def tzname (self, dt):
if dt >= self.UTC_MOVE_DATE:
return "+04:30"
return "+04"

Usage of KabulTz from above:

>>> tzl = KabulTz ()

>>> # Datetime before the change

>>> dtl = datetime (1900, 11, 21, 16, 30, tzinfo=tzl)
>>> print (dtl.utcoffset())

4:00:00

(continues on next page)

202 Chapter 8. Data Types




The Python Library Reference, Release 3.10.18

(continued from previous page)

>>> # Datetime after the change

>>> dt2 = datetime (2006, 6, 14, 13, 0, tzinfo=tzl)
>>> print (dt2.utcoffset ())

4:30:00

>>> # Convert datetime to another time zone

>>> dt3 = dt2.astimezone (timezone.utc)

>>> dt3

datetime.datetime (2006, 6, 14, 8, 30, tzinfo=datetime.timezone.utc)
>>> dt2

datetime.datetime (2006, 6, 14, 13, 0, tzinfo=KabulTz())

>>> dt2 == dt3

True

8.1.7 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

class datetime.time (hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *, fold=0)
All arguments are optional. #zinfo may be None, or an instance of a t zinfo subclass. The remaining argu-
ments must be integers in the following ranges:

e 0 <= hour < 24,

¢ 0 <= minute < 60,

¢ 0 <= second < 60,

¢ 0 <= microsecond < 1000000,
e fold in [0, 1].

If an argument outside those ranges is given, ValueError is raised. All default to 0 except tzinfo, which
defaults to None.

Class attributes:

time.min
The earliest representable ¢ ime, time (0, 0, 0, 0).

time.max
The latest representable ¢ ime, time (23, 59, 59, 999999).

time.resolution
The smallest possible difference between non-equal t i me objects, timedelta (microseconds=1), al-
though note that arithmetic on t ime objects is not supported.

Instance attributes (read-only):

time.hour
In range (24).

time.minute
In range (60).

time.second
In range (60).

time.microsecond
In range (1000000).

time.tzinfo
The object passed as the tzinfo argument to the t ime constructor, or None if none was passed.

8.1. datetime — Basic date and time types 203




The Python Library Reference, Release 3.10.18

time.fold
In [0, 1]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased
for political reasons.) The value 0 (1) represents the earlier (later) of the two moments with the same wall time
representation.

New in version 3.6.

t ime objects support comparison of time to t ime, where a is considered less than b when a precedes b in time.
If one comparand is naive and the other is aware, TypeError is raised if an order comparison is attempted. For
equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same t z i nfo attribute, the common ¢ zinfo attribute is ignored and
the base times are compared. If both comparands are aware and have different t z i nfo attributes, the comparands
are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()). In order to stop mixed-
type comparisons from falling back to the default comparison by object address, when a t ime object is compared
to an object of a different type, TypeError is raised unless the comparison is == or !=. The latter cases return
False or True, respectively.

Changed in version 3.3: Equality comparisons between aware and naive t i me instances don’t raise TypeError.
In Boolean contexts, a t 1me object is always considered to be true.

Changed in version 3.5: Before Python 3.5, a ¢ ime object was considered to be false if it represented midnight in
UTC. This behavior was considered obscure and error-prone and has been removed in Python 3.5. See bpo-13936
for full details.

Other constructor:

classmethod time.fromisoformat (fime_string)
Return a time corresponding to a fime_string in one of the formats emitted by time.isoformat ().
Specifically, this function supports strings in the format:

HH[:MM[:SS[.f££[f£f£]]]] [+HH:MM[:SS[.f££f£££f]]]

Caution: This does nor support parsing arbitrary ISO 8601 strings. It is only intended as the inverse
operation of t ime.isoformat ().

Examples:

>>> from datetime import time

>>> time.fromisoformat ('04:23:01")

datetime.time (4, 23, 1)

>>> time.fromisoformat ('04:23:01.000384")

datetime.time (4, 23, 1, 384)

>>> time.fromisoformat ('04:23:01+04:00")

datetime.time (4, 23, 1, tzinfo=datetime.timezone (datetime.
—timedelta (seconds=14400)))

New in version 3.7.
Instance methods:

time.replace (hour=self.hour, minute=self.minute, second=self.second, microsecond=self.microsecond, tz-
info=self.tzinfo, *, fold=0)
Return a t i me with the same value, except for those attributes given new values by whichever keyword argu-
ments are specified. Note that t zinfo=None can be specified to create a naive t ime from an aware t ime,
without conversion of the time data.

New in version 3.6: Added the fold argument.

time.isoformat (fimespec='auto’)
Return a string representing the time in ISO 8601 format, one of:

204 Chapter 8. Data Types


https://bugs.python.org/issue?@action=redirect&bpo=13936

The Python Library Reference, Release 3.10.18

e HH:MM:SS.ffffff, if microsecondisnot(
e HH:MM:SS, if microsecondis 0
e HH:MM:SS.ffffff+HH:MM[:SS[.ffffff]],if utcofrfset () does not return None

e HH:MM:SS+HH:MM[:SS[.ffffff]],if microsecondisQand utcoffset () doesnotreturn
None

The optional argument timespec specifies the number of additional components of the time to include (the
defaultis 'auto"'). It can be one of the following:

e 'auto': Same as 'seconds' if microsecondis 0, same as 'microseconds' otherwise.
e 'hours': Include the hour in the two-digit HH format.

e 'minutes': Include hour and minute in HH : MM format.

e "seconds': Include hour, minute, and second in HH:MM: SS format.

e 'milliseconds': Include full time, but truncate fractional second part to milliseconds.
HH:MM:SS.sss format.

e 'microseconds': Include full time in HH:MM: SS. f£ £ £ £ f format.

Note: Excluded time components are truncated, not rounded.

ValueFError will be raised on an invalid timespec argument.

Example:

>>> from datetime import time

>>> time (hour=12, minute=34, second=56, microsecond=123456) .isoformat (timespec=
—'minutes')

'12:34"

>>> dt = time (hour=12, minute=34, second=56, microsecond=0)

>>> dt.isoformat (timespec="microseconds"')

'12:34:56.000000"

>>> dt.isoformat (timespec="'auto")

'12:34:56"

New in version 3.6: Added the timespec argument.

time.__str__ ()
Foratimet, str (t) isequivalentto t .isoformat ().

time.strftime (format)
Return a string representing the time, controlled by an explicit format string. For a complete list of formatting
directives, see strftime() and strptime() Behavior.

time.__ format_ (format)
Same as t ime. st rft ime (). This makes it possible to specify a format string for a ¢ i me object in format-
ted string literals and when using st r. format (). For a complete list of formatting directives, see strftime()
and strptime() Behavior.

time.utcoffset ()
If tzinfois None, returns None, else returns self.tzinfo.utcoffset (None), and raises an ex-
ception if the latter doesn’t return None or a t imede 1t a object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

time.dst ()
If tzinfois None, returns None, else returns self.tzinfo.dst (None), and raises an exception if
the latter doesn’t return None, or a t imede 1t a object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

8.1. datetime — Basic date and time types 205



The Python Library Reference, Release 3.10.18

time.tzname ()
If tzinfois None, returns None, else returns self.tzinfo.tzname (None), Or raises an exception
if the latter doesn’t return None or a string object.

Examples of Usage: time

Examples of working with a ¢ i me object:

>>> from datetime import time, tzinfo, timedelta
>>> class TZ1l(tzinfo):
def utcoffset (self, dt):
return timedelta (hours=1)
def dst(self, dt):
return timedelta (0)
def tzname (self,dt):
return "+01:00"
def _ repr_ (self):
return f"{self. class . name__ } ()"

>>> t = time (12, 10, 30, tzinfo=TZ1())
>>> t

datetime.time (12, 10, 30, tzinfo=TZ1())
>>> t.isoformat ()

'12:10:30+01:00"

>>> t.dst ()

datetime.timedelta (0)

>>> t.tzname ()

'+01:00"

>>> t.strftime ("$H:%M:%S %7Z2")

'12:10:30 +01:00"

>>> 'The is {:%H:%M}."'.format ("time", t)
'The time is 12:10."

8.1.8 tzinfo Objects

class datetime.tzinfo
This is an abstract base class, meaning that this class should not be instantiated directly. Define a subclass of
tzinfo to capture information about a particular time zone.

An instance of (a concrete subclass of) ¢ zinfo can be passed to the constructors for datet ime and t ime
objects. The latter objects view their attributes as being in local time, and the ¢ z i n £ o object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or
time object passed to them.

You need to derive a concrete subclass, and (at least) supply implementations of the standard ¢ z i n £ o methods
needed by the dat et ime methods you use. The datet ime module provides t imezone, a simple concrete
subclass of ¢ zinfo which can represent timezones with fixed offset from UTC such as UTC itself or North
American EST and EDT.

Special requirement for pickling: A t zinfo subclass musthavean ___init__ () method that can be called
with no arguments, otherwise it can be pickled but possibly not unpickled again. This is a technical requirement
that may be relaxed in the future.

A concrete subclass of tzinfo may need to implement the following methods. Exactly which methods are
needed depends on the uses made of aware datet ime objects. If in doubt, simply implement all of them.

tzinfo.utcoffset (dt)
Return offset of local time from UTC, as a t imedelta object that is positive east of UTC. If local time is
west of UTC, this should be negative.

206 Chapter 8. Data Types




The Python Library Reference, Release 3.10.18

This represents the total offset from UTC; for example, if a t zinfo object represents both time zone and
DST adjustments, utcoffset () should return their sum. If the UTC offset isn’t known, return None.
Else the value returned must be a t imedelta object strictly between —timedelta (hours=24) and
timedelta (hours=24) (the magnitude of the offset must be less than one day). Most implementations
of utcorffset () will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst (dt) # daylight-aware class

If utcoffset () does not return None, dst () should not return None either.
The default implementation of utcoffset () raises Not ImplementedError.
Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

tzinfo.dst (dt)
Return the daylight saving time (DST) adjustment, as a t imede 1t a object or None if DST information isn’t
known.

Return t imedelta (0) if DST is not in effect. If DST is in effect, return the offset as a ¢ imede 1t a object
(see utcofrfset () for details). Note that DST offset, if applicable, has already been added to the UTC
offset returned by utcoffset (), so there’s no need to consult dst () unless you're interested in obtaining
DST info separately. For example, datetime. timetuple () callsits t zinfo attribute’s dst () method
to determine how the tm_isdst flag should be set, and t zinfo. fromutc () calls dst () to account for
DST changes when crossing time zones.

An instance #z of a t zinfo subclass that models both standard and daylight times must be consistent in this
sense:

tz.utcoffset (dt) - tz.dst(dt)

must return the same result for every datet imedt withdt .tzinfo == tz Forsane t zinfo subclasses,
this expression yields the time zone’s “standard offset”, which should not depend on the date or the time, but
only on geographic location. The implementation of datetime.astimezone () relies on this, but cannot
detect violations; it’s the programmer’s responsibility to ensure it. If a t zinfo subclass cannot guarantee
this, it may be able to override the default implementation of tzinfo. fromutc () to work correctly with
astimezone () regardless.

Most implementations of dst () will probably look like one of these two:

def dst (self, dt):
# a fixed-offset class: doesn't account for DST
return timedelta (0)

or:

def dst (self, dt):
# Code to set dston and dstoff to the time zone's DST
# transition times based on the input dt.year, and expressed
# in standard local time.

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta (hours=1)

else:
return timedelta (0)

The default implementation of dst () raises Not ImplementedError.
Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

tzinfo.tzname (df)
Return the time zone name corresponding to the dat et ime object dr, as a string. Nothing about string names
is defined by the datet ime module, and there’s no requirement that it mean anything in particular. For
example, “GMT”, “UTC”, “-500”, “-5:00”, “EDT”, “US/Eastern”, “America/New York” are all valid replies.
Return None if a string name isn’t known. Note that this is a method rather than a fixed string primarily

8.1. datetime — Basic date and time types 207



The Python Library Reference, Release 3.10.18

because some tzinfo subclasses will wish to return different names depending on the specific value of dt
passed, especially if the ¢ zinfo class is accounting for daylight time.

The default implementation of t zname () raises Not ImplementedError.

These methods are called by a datetime or time object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a ¢ ime object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a df argument of None, or of class datet ime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is
appropriate if the class wishes to say that time objects don’t participate in the t zinfo protocols. It may be more
useful for utcoffset (None) to return the standard UTC offset, as there is no other convention for discovering
the standard offset.

When a datet ime object is passed in response to a datet ime method, dt .t zinfo is the same object as self.
t zinfo methods can rely on this, unless user code calls ¢ zinfo methods directly. The intent is that the t zinfo
methods interpret dt as being in local time, and not need worry about objects in other timezones.

There is one more t z i nfo method that a subclass may wish to override:

tzinfo.fromutc (dr)
This is called from the default datetime.astimezone () implementation. When called from that, dt .
tzinfo is self, and dr’s date and time data are to be viewed as expressing a UTC time. The purpose of
fromutc () is to adjust the date and time data, returning an equivalent datetime in self’s local time.

Most t z i n fo subclasses should be able to inherit the default fromutc () implementation without problems.
It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard and daylight
time, and the latter even if the DST transition times differ in different years. An example of a time zone the
default fromutc () implementation may not handle correctly in all cases is one where the standard offset
(from UTC) depends on the specific date and time passed, which can happen for political reasons. The default
implementations of astimezone () and fromutc () may not produce the result you want if the result is
one of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc () implementation acts like:

def fromutc(self, dt):
# raise ValueError error 1if dt.tzinfo is not self
dtoff = dt.utcoffset ()
dtdst = dt.dst ()
# raise ValueError 1if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self's standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst ()
# raise ValueError 1f dtdst is None
if dtdst:
return dt + dtdst
else:
return dt

In the following t zinfo_examples.py file there are some examples of t zinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta (0)
HOUR = timedelta (hours=1)
SECOND = timedelta (seconds=1)

# A class capturing the platform's idea of local time.
# (May result in wrong values on historical times in

# timezones where UIC offset and/or the DST rules had
# changed in the past.)

import time as _time

(continues on next page)

208 Chapter 8. Data Types




The Python Library Reference, Release 3.10.18

(continued from previous page)

STDOFFSET = timedelta(seconds = —_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = —_time.altzone)
else:

DSTOFFSET = STDOFFSET
DSTDIFF = DSTOFFSET - STDOFFSET
class LocalTimezone (tzinfo) :

def fromutc(self, dt):
assert dt.tzinfo is self
stamp = (dt - datetime (1970, 1, 1, tzinfo=self)) // SECOND
args = _time.localtime (stamp) [:6]
dst_diff = DSTDIFF // SECOND
# Detect fold
fold = (args == _time.localtime(stamp - dst_diff))
return datetime (*args, microsecond=dt.microsecond,
tzinfo=self, fold=fold)

def utcoffset (self, dt):
if self. isdst(dt):
return DSTOFFSET
else:
return STDOFFSET

def dst (self, dt):
if self._ isdst (dt):
return DSTDIFF
else:
return ZERO

def tzname (self, dt):
return _time.tzname[self._ isdst (dt) ]

def _isdst (self, dt):
tt = (dt.year, dt.month, dt.day,
dt .hour, dt.minute, dt.second,
dt.weekday (), 0, 0)
stamp = _time.mktime (tt)
tt = _time.localtime (stamp)
return tt.tm_isdst > 0

Local = LocalTimezone ()

# A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):
days_to_go = 6 - dt.weekday ()
if days_to_go:
dt += timedelta (days_to_go)
return dt

US DST Rules

This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz-1ink.htm

S R W R W W

(continues on next page)

8.1. datetime — Basic date and time types 209




The Python Library Reference, Release 3.10.18

(continued from previous page)

# https://sourceforge.net/projects/pytz/ (might not be up-to-date)

#

# In the US, since 2007, DST starts at Z2am (standard time) on the second

# Sunday in March, which is the first Sunday on or after Mar 8.
DSTSTART_2007 = datetime (1, 3, 8, 2)

# and ends at 2am (DST time) on the first Sunday of Nov.

DSTEND_2007 = datetime (1, 11, 1, 2)

# From 1987 to 2006, DST used to start at Z2am (standard time) on the first
# Sunday in April and to end at 2am (DST time) on the last

# Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime (1, 4, 1, 2)

DSTEND_1987_2006 = datetime (1, 10, 25, 2)

# From 1967 to 1986, DST used to start at 2am (standard time) on the last
# Sunday in April (the one on or after April 24) and to end at 2am (DST time)
# on the last Sunday of October, which is the first Sunday

# on or after Oct 25.

DSTSTART_1967_1986 = datetime (1, 4, 24, 2)

DSTEND_1967_1986 = DSTEND_1987_2006

def us_dst_range (year) :

# Find start and end times for US DST. For years before 1967, return
# start = end for no DST.
if 2006 < year:

dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < year < 2007:

dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006
elif 1966 < year < 1987:

dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
else:

return (datetime (year, 1, 1), ) * 2

start = first_sunday_on_or_after (dststart.replace (year=year))

end = first_sunday_on_or_after (dstend.replace (year=year))
return start, end

class USTimeZone (tzinfo) :

def _ init_ (self, hours, reprname, stdname, dstname):
self.stdoffset = timedelta (hours=hours)
self.reprname = reprname
self.stdname = stdname
self.dstname = dstname

def _ repr_ (self):
return self.reprname

def tzname (self, dt):
if self.dst (dt):
return self.dstname
else:
return self.stdname

def utcoffset (self, dt):
return self.stdoffset + self.dst (dt)

def dst(self, dt):
if dt is None or dt.tzinfo is None:
# An exception may be sensible here, in one or both cases.
# It depends on how you want to treat them. The default
# fromutc () implementation (called by the default astimezone ()

(continues on next page)

210 Chapter 8. Data Types




The Python Library Reference, Release 3.10.18

(continued from previous page)

# implementation) passes a datetime with dt.tzinfo is self.
return ZERO
assert dt.tzinfo is self

start, end = us_dst_range (dt.year)
# Can't compare naive to aware objects, so strip the timezone from
# dt first.

dt = dt.replace (tzinfo=None)

if start + HOUR <= dt < end - HOUR:
# DST is 1in effect.
return HOUR

if end - HOUR <= dt < end:
# Fold (an ambiguous hour): use dt.fold to disambiguate.
return ZERO if dt.fold else HOUR

if start <= dt < start + HOUR:
# Gap (a non-existent hour): reverse the fold rule.
return HOUR if dt.fold else ZERO

# DST is off.

return ZERO

def fromutc(self, dt):
assert dt.tzinfo is self
start, end = us_dst_range (dt.year)
start = start.replace(tzinfo=self)
end = end.replace(tzinfo=self)
std_time = dt + self.stdoffset
dst_time = std_time + HOUR
if end <= dst_time < end + HOUR:
# Repeated hour
return std_time.replace(fold=1)
if std_time < start or dst_time >= end:
# Standard time
return std_time
if start <= std_time < end - HOUR:
# Daylight saving time
return dst_time

Eastern = USTimeZone (-5, "Eastern", "EST", "EDT")
Central = USTimeZone (-6, "Central", "csTt", "CDT")
Mountain = USTimeZone (-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone (-8, "Pacific", "pST", "PDT")

Note that there are unavoidable subtleties twice per year in a t zinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT begins
the minute after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59 (EDT) on the first Sunday
in November:

UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM 0:MM : MM :MM  3:MM
EDT 23:MM O:MM 1:MM 2:MM 3:MM 4:MM

[N
N

start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM
doesn’t really make sense on that day, so astimezone (Eastern) won't deliver a result with hour == 2 on
the day DST begins. For example, at the Spring forward transition of 2016, we get:

>>> from datetime import datetime, timezone
>>> from tzinfo_examples import HOUR, Eastern

(continues on next page)

8.1. datetime — Basic date and time types 211




The Python Library Reference, Release 3.10.18

(continued from previous page)

>>> u0 = datetime (2016, 3, 13, 5, tzinfo=timezone.utc)
>>> for i in range(4):

u = ul0 + i1i*HOUR

t = u.astimezone (Eastern)

print (u.time (), 'UTC ="', t.time(), t.tzname())

05:00:00 UTC = 00:00:00 EST
06:00:00 UTC = 01:00:00 EST
07:00:00 UTIC = 03:00:00 EDT
08:00:00 UTIC = 04:00:00 EDT

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unam-
biguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the
day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again.
Local times of the form 1:MM are ambiguous. ast imezone () mimics the local clock’s behavior by mapping two
adjacent UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM and 6:MM
both map to 1:MM when converted to Eastern, but earlier times have the fo1d attribute set to 0 and the later times
have it set to 1. For example, at the Fall back transition of 2016, we get:

>>> u0 = datetime (2016, 11, 6, 4, tzinfo=timezone.utc)
>>> for i1 in range(4):
u = u0 + i*HOUR
t = u.astimezone (Eastern)
print (u.time (), 'UTC =', t.time(), t.tzname(), t.fold)

04:00:00 UTC = 00:00:00 EDT
05:00:00 UTC = 01:00:00 EDT
06:00:00 UTIC = 01:00:00 EST
07:00:00 UTIC = 02:00:00 EST

o = O O

Note that the datet ime instances that differ only by the value of the fold attribute are considered equal in
comparisons.

Applications that can’t bear wall-time ambiguities should explicitly check the value of the fold attribute or avoid
using hybrid t z i n fo subclasses; there are no ambiguities when using t i me zone, or any other fixed-offset t zinfo
subclass (such as a class representing only EST (fixed offset -5 hours), or only EDT (fixed offset -4 hours)).

See also:

zoneinfo The datet ime module has a basic t imezone class (for handling arbitrary fixed offsets
from UTC) and its t imezone . ut c attribute (a UTC timezone instance).

zoneinfo brings the IANA timezone database (also known as the Olson database) to Python, and
its usage is recommended.

IANA timezone database The Time Zone Database (often called tz, tzdata or zoneinfo) contains code and data that
represent the history of local time for many representative locations around the globe. It is updated periodically
to reflect changes made by political bodies to time zone boundaries, UTC offsets, and daylight-saving rules.

8.1.9 timezone Objects

The timezone class is a subclass of tzinfo, each instance of which represents a timezone defined by a fixed
offset from UTC.

Objects of this class cannot be used to represent timezone information in the locations where different offsets are
used in different days of the year or where historical changes have been made to civil time.

class datetime.timezone (offset, name=None)
The offset argument must be specified as a t imede 1t a object representing the difference between the local
time and UTC. It must be strictly between -t imedelta (hours=24) and timedelta (hours=24),
otherwise ValueError is raised.

212 Chapter 8. Data Types



https://www.iana.org/time-zones

The Python Library Reference, Release 3.10.18

The name argument is optional. If specified it must be a string that will be used as the value returned by the
datetime.tzname () method.

New in version 3.2.
Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

timezone.utcoffset (df)
Return the fixed value specified when the t imezone instance is constructed.

The dt argument is ignored. The return value is a t imedelta instance equal to the difference between the
local time and UTC.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

timezone.tzname (dt)
Return the fixed value specified when the t imezone instance is constructed.

If name is not provided in the constructor, the name returned by t zname (dt) is generated from the value
of the offset as follows. If offser is timedelta (0), the name is “UTC”, otherwise it is a string in the
format UTC+HH : MM, where  is the sign of of fset, HH and MM are two digits of offset .hours and
offset.minutes respectively.

Changed in version 3.6: Name generated from offset=timedelta (0) is now plain 'UTC"', not
'UTC+00:00".

timezone.dst (dt)
Always returns None.

timezone.fromutc (dt)
Return dt + offset. The df argument must be an aware dat et ime instance, with tzinfo setto self.

Class attributes:

timezone.utec
The UTC timezone, t imezone (timedelta (0)).

8.1.10 strftime () and strptime () Behavior
date, datetime, and time objects all supporta strftime (format) method, to create a string representing
the time under the control of an explicit format string.

Conversely, the datetime. strptime () class method creates a datet ime object from a string representing a
date and time and a corresponding format string.

The table below provides a high-level comparison of strftime () versus strptime ():

strftime strptime

Usage Convert object to a string according to a | Parse a string into a datet ime object given a cor-
given format responding format

Type of | Instance method Class method

method

Method of date; datetime; time datetime

Signature strftime (format) strptime (date_string, format)

8.1. datetime — Basic date and time types 213



The Python Library Reference, Release 3.10.18

strftime () and strptime () Format Codes

The following is a list of all the format codes that the 1989 C standard requires, and these work on all platforms with
a standard C implementation.

214 Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

Directive Meaning Example Notes
%a Weekday as locale’s ab- (1)
breviated name. Sun, Mon, ... Sat
(en_US);
So, Mo, ..., Sa (de_DE)
SA Weekday as locale’s full @))
fame. Sunday, Monday, ...,
Saturday (en_US);
Sonntag, Montag, ...,
Samstag (de_DE)
Sw Weekday as a decimal | 0,1, ...,6
number, where 0 is Sun-
day and 6 is Saturday.
sd Day of the month as a | 01,02, ..., 31 9
zero-padded decimal
number.
%b Month as locale’s abbrevi- (D)
ated name. Jan, Feb, ..., Dec
(en_US);
Jan, Feb, ..., Dez
(de_DE)
%B Month as locale’s full (1)
name.
January, February, ...,
December (en_US);
Januar, Februar, ...,
Dezember (de_DE)
$m Month as a zero-padded | 01,02, ..., 12 ©)]
decimal number.
Sy Year without century as | 00,01, ..., 99 9)
a zero-padded decimal
number.
%Y Year with century as a | 0001, 0002, ..., 2013, | (2)
decimal number. 2014, ..., 9998, 9999
%H Hour (24-hour clock) as | 00, 01, ..., 23 9)
a zero-padded decimal
number.
%1 Hour (12-hour clock) as | 01,02, ..., 12 ©)]
a zero-padded decimal
number.
$p Locale’s equivalent of ei- (D), (3)
ther AM or PM. AM. PM (en_US);
am, pm (de_DE)
M Minute as a zero-padded | 00, 01, ..., 59 9)
decimal number.
%3 Second as a zero-padded | 00, 01, ..., 59 @), (9)
decimal number.
$f Microsecond as a decimal | 000000, 000001, ..., | (5)
number, zero-padded to 6 | 999999
digits.
%z UTC offset in the | (empty), +0000, -0400, | (6)
8.1. datetime — Basic|d@t@and tifi@'#ypes (- | +1030, +063415, - 215
fEEfEF] ] (empty | 030712.345216
string if the object is
naive).

PR th (s o2’ lrak Y ia al



The Python Library Reference, Release 3.10.18

Several additional directives not required by the C89 standard are included for convenience. These parameters all
correspond to ISO 8601 date values.

Di- Meaning Example Notes

rec-

tive

%G ISO 8601 year with century representing the year that contains the | 0001, 0002, ..., 2013, | (8)
greater part of the ISO week ($V). 2014, ..., 9998, 9999

%u ISO 8601 weekday as a decimal number where 1 is Monday. 1,2,...,7

SV ISO 8601 week as a decimal number with Monday as the first day of | 01,02, ..., 53 (8),
the week. Week 01 is the week containing Jan 4. 9

These may not be available on all platforms when used with the st rftime () method. The ISO 8601 year and
ISO 8601 week directives are not interchangeable with the year and week number directives above. Calling st rp—
time () with incomplete or ambiguous ISO 8601 directives will raise a ValueError.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s st rf—
time () function, and platform variations are common. To see the full set of format codes supported on your
platform, consult the st rftime (3) documentation. There are also differences between platforms in handling of
unsupported format specifiers.

New in version 3.6: $G, $u and %V were added.

Technical Detail
Broadly speaking, d.strftime (fmt) acts like the time module’s time.strftime (fmt, d.
timetuple () ) although not all objects support a t imetuple () method.

Forthe datetime. strptime () class method, the default valueis 1900-01-01T00:00:00.000: any com-
ponents not specified in the format string will be pulled from the default value.*

Using datetime.strptime (date_string, format) isequivalent to:

datetime (* (time.strptime (date_string, format) [0:6]))

except when the format includes sub-second components or timezone offset information, which are supported in
datetime.strptime butare discarded by time.strptime.

For time objects, the format codes for year, month, and day should not be used, as time objects have no such
values. If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as date
objects have no such values. If they’re used anyway, O is substituted for them.

For the same reason, handling of format strings containing Unicode code points that can’t be represented in the
charset of the current locale is also platform-dependent. On some platforms such code points are preserved intact in
the output, while on others st rft ime may raise UnicodeError or return an empty string instead.

Notes:

(1) Because the format depends on the current locale, care should be taken when making assumptions about the out-
put value. Field orderings will vary (for example, “month/day/year” versus “day/month/year”), and the output
may contain Unicode characters encoded using the locale’s default encoding (for example, if the current locale
is Ja_ JP, the default encoding could be any one of eucJP, SJIS,orut£-8;use locale.getlocale ()
to determine the current locale’s encoding).

(2) The strptime () method can parse years in the full [1, 9999] range, but years < 1000 must be zero-filled
to 4-digit width.

Changed in version 3.2: In previous versions, st rft ime () method was restricted to years >= 1900.

Changed in version 3.3: In version 3.2, st rftime () method was restricted to years >= 1000.

4 Passing datetime.strptime ('Feb 29', '%b %d') will fail since 1900 is not a leap year.

216 Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

(3) When used with the strptime () method, the $p directive only affects the output hour field if the $I
directive is used to parse the hour.

(4) Unlike the t ime module, the dat et ime module does not support leap seconds.

(5) When used with the st rpt ime () method, the % £ directive accepts from one to six digits and zero pads on
the right. % £ is an extension to the set of format characters in the C standard (but implemented separately in
datetime objects, and therefore always available).

(6) For a naive object, the %z and $Z format codes are replaced by empty strings.
For an aware object:

%z utcoffset () istransformed into a string of the form +HHMM [SS [ . f£££££] ], where HH is a 2-digit
string giving the number of UTC offset hours, MM is a 2-digit string giving the number of UTC offset
minutes, SS is a 2-digit string giving the number of UTC offset seconds and £ ££ £ £ £ is a 6-digit string
giving the number of UTC offset microseconds. The £ £ £fff part is omitted when the offset is a whole
number of seconds and both the £££f£ff and the SS part is omitted when the offset is a whole number
of minutes. For example, if utcoffset () returns timedelta (hours=-3, minutes=-30),
%z is replaced with the string '-0330"'.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

Changed in version 3.7: When the %z directive is provided to the st rptime () method, the UTC offsets
can have a colon as a separator between hours, minutes and seconds. For example, '+01:00:00" will be
parsed as an offset of one hour. In addition, providing 'Z "' is identical to '+00:00".

%Z In strftime (), %7 is replaced by an empty string if tzname () returns None; otherwise %7 is re-
placed by the returned value, which must be a string.

strptime () only accepts certain values for $7:
1. any value in t ime . t zname for your machine’s locale
2. the hard-coded values UTC and GMT

So someone living in Japan may have JST, UTC, and GMT as valid values, but probably not EST. It will
raise ValueError for invalid values.

Changed in version 3.2: When the %z directive is provided to the st rpt ime () method, an aware date—
t ime object will be produced. The t zinfo of the result will be set to a t imezone instance.

(7) When used with the strptime () method, $U and $W are only used in calculations when the day of the
week and the calendar year ($Y) are specified.

(8) Similar to $U and %W, %V is only used in calculations when the day of the week and the ISO year ($G) are
specified in a st rptime () format string. Also note that $G and $Y are not interchangeable.

(9) When used with the st rpt ime () method, the leading zero is optional for formats $d, $m, $H, $I, $M, %S,
%73, %U, $W, and $V. Format %y does require a leading zero.

8.2 zoneinfo — IANA time zone support

New in version 3.9.

Source code: Lib/zoneinfo

The zoneinfo module provides a concrete time zone implementation to support the ITANA time zone database as
originally specified in PEP 615. By default, zoneinfo uses the system’s time zone data if available; if no system
time zone data is available, the library will fall back to using the first-party tzdata package available on PyPI.

See also:

Module: datetime Provides the t ime and datet ime types with which the Zone Info class is designed to be
used.

8.2. zoneinfo — IANA time zone support 217


https://github.com/python/cpython/tree/3.10/Lib/zoneinfo
https://www.python.org/dev/peps/pep-0615
https://pypi.org/project/tzdata/

The Python Library Reference, Release 3.10.18

Package tzdata First-party package maintained by the CPython core developers to supply time zone data via PyPI.

8.2.1 Using ZoneInfo

ZoneInfois aconcrete implementation of the datetime. t zinfo abstract base class, and is intended to be at-
tached to t zinfo, either via the constructor, the datetime. replace method or datetime.astimezone:

>>> from zoneinfo import ZonelInfo
>>> from datetime import datetime, timedelta

>>> dt = datetime (2020, 10, 31, 12, tzinfo=Zonelnfo ("America/Los_Angeles"))
>>> print (dt)
2020-10-31 12:00:00-07:00

>>> dt.tzname ()
'PDT"

Datetimes constructed in this way are compatible with datetime arithmetic and handle daylight saving time transitions
with no further intervention:

>>> dt_add = dt + timedelta (days=1)

>>> print (dt_add)
2020-11-01 12:00:00-08:00

>>> dt_add.tzname ()
'PST'

These time zones also support the fold attribute introduced in PEP 495. During offset transitions which induce
ambiguous times (such as a daylight saving time to standard time transition), the offset from before the transition is
used when fo1d=0, and the offset after the transition is used when fold=1, for example:

>>> dt = datetime (2020, 11, 1, 1, tzinfo=ZoneInfo("America/Los_Angeles"))
>>> print (dt)
2020-11-01 01:00:00-07:00

>>> print (dt.replace(fold=1l))
2020-11-01 01:00:00-08:00

When converting from another time zone, the fold will be set to the correct value:

>>> from datetime import timezone
>>> LOS_ANGELES = Zonelnfo ("America/Los_Angeles™)
>>> dt_utc = datetime (2020, 11, 1, 8, tzinfo=timezone.utc)

>>> # Before the PDT -> PST transition
>>> print (dt_utc.astimezone (LOS_ANGELES))
2020-11-01 01:00:00-07:00

>>> # After the PDT -> PST transition
>>> print ((dt_utc + timedelta (hours=1)) .astimezone (LOS_ANGELES))
2020-11-01 01:00:00-08:00

218 Chapter 8. Data Types



https://pypi.org/project/tzdata/
https://www.python.org/dev/peps/pep-0495

The Python Library Reference, Release 3.10.18

8.2.2 Data sources

The zoneinfo module does not directly provide time zone data, and instead pulls time zone information from
the system time zone database or the first-party PyPI package tzdata, if available. Some systems, including notably
Windows systems, do not have an IANA database available, and so for projects targeting cross-platform compatibility
that require time zone data, it is recommended to declare a dependency on tzdata. If neither system data nor tzdata
are available, all calls to ZoneInfo will raise ZoneInfoNotFoundError.

Configuring the data sources

When ZoneInfo (key) is called, the constructor first searches the directories specified in TZPATH for a file
matching key, and on failure looks for a match in the tzdata package. This behavior can be configured in three ways:

1. The default TZPATH when not otherwise specified can be configured at compile time.
2. TZPATH can be configured using an environment variable.

3. At runtime, the search path can be manipulated using the reset_tzpath () function.

Compile-time configuration

The default TZPA TH includes several common deployment locations for the time zone database (except on Windows,
where there are no “well-known” locations for time zone data). On POSIX systems, downstream distributors and those
building Python from source who know where their system time zone data is deployed may change the default time
zone path by specifying the compile-time option TZPATH (or, more likely, the configure flag --with-
tzpath), which should be a string delimited by os. pathsep.

On all platforms, the configured value is available as the TZPATH key in sysconfig.get_config _var().

Environment configuration

When initializing TZPATH (either at import time or whenever reset_tzpath () is called with no arguments),
the zoneinfo module will use the environment variable PYTHONTZPATH, if it exists, to set the search path.

PYTHONTZPATH
This is an os.pathsep-separated string containing the time zone search path to use. It must consist of
only absolute rather than relative paths. Relative components specified in PYTHONTZPATH will not be used,
but otherwise the behavior when a relative path is specified is implementation-defined; CPython will raise
InvalidTZPathWarning,butother implementations are free to silently ignore the erroneous component
or raise an exception.

To set the system to ignore the system data and use the tzdata package instead, set PYTHONTZPATH="".

Runtime configuration

The TZ search path can also be configured at runtime using the reset_tzpath () function. This is generally not
an advisable operation, though it is reasonable to use it in test functions that require the use of a specific time zone
path (or require disabling access to the system time zones).

8.2. zoneinfo — IANA time zone support 219


https://pypi.org/project/tzdata/

The Python Library Reference, Release 3.10.18

8.2.3 The ZoneInfo class

class zoneinfo.ZoneInfo (key)
A concrete datetime. tzinfo subclass that represents an IANA time zone specified by the string key.
Calls to the primary constructor will always return objects that compare identically; put another way, barring
cache invalidation via ZoneInfo.clear_cache (), for all values of key, the following assertion will
always be true:

a ZoneInfo (key)
b ZonelInfo (key)

(k
(k
assert a is b

key must be in the form of a relative, normalized POSIX path, with no up-level references. The constructor
will raise ValueError if a non-conforming key is passed.

If no file matching key is found, the constructor will raise Zone InfoNotFoundError.
The ZoneInfo class has two alternate constructors:

classmethod ZoneInfo.from_£ile (fobj, /, key=None)
Constructs a ZoneInfo object from a file-like object returning bytes (e.g. a file opened in binary mode or an
io.BytesTIO object). Unlike the primary constructor, this always constructs a new object.

The key parameter sets the name of the zone for the purposes of __str__ () and __repr__ ().
Objects created via this constructor cannot be pickled (see pickling).

classmethod ZoneInfo.no_cache (key)
An alternate constructor that bypasses the constructor’s cache. It is identical to the primary constructor, but
returns a new object on each call. This is most likely to be useful for testing or demonstration purposes, but it
can also be used to create a system with a different cache invalidation strategy.

Objects created via this constructor will also bypass the cache of a deserializing process when unpickled.

Caution: Using this constructor may change the semantics of your datetimes in surprising ways, only use
it if you know that you need to.

The following class methods are also available:

classmethod ZonelInfo.clear_cache (¥, only_keys=None)
A method for invalidating the cache on the ZoneInfo class. If no arguments are passed, all caches are
invalidated and the next call to the primary constructor for each key will return a new instance.

If an iterable of key names is passed to the only_keys parameter, only the specified keys will be removed
from the cache. Keys passed to only_keys but not found in the cache are ignored.

Warning: Invoking this function may change the semantics of datetimes using ZoneInfo in surprising
ways; this modifies process-wide global state and thus may have wide-ranging effects. Only use it if you
know that you need to.

The class has one attribute:

ZoneInfo.key
This is a read-only arfribute that returns the value of key passed to the constructor, which should be a lookup
key in the IANA time zone database (e.g. America/New_York, Europe/Paris or Asia/Tokyo).

For zones constructed from file without specifying a key parameter, this will be set to None.

Note: Although it is a somewhat common practice to expose these to end users, these values are designed
to be primary keys for representing the relevant zones and not necessarily user-facing elements. Projects like

220 Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

CLDR (the Unicode Common Locale Data Repository) can be used to get more user-friendly strings from
these keys.

String representations

The string representation returned when calling st r ona Zone Info object defaults to using the ZoneInfo. key
attribute (see the note on usage in the attribute documentation):

>>> zone = ZonelInfo("Pacific/Kwajalein")
>>> str (zone)
'Pacific/Kwajalein'

>>> dt = datetime (2020, 4, 1, 3, 15, tzinfo=zone)
>>> f"/dt.isoformat () [{dt.tzinfo /] "
'2020-04-01T03:15:00+12:00 [Pacific/Kwajalein]'

For objects constructed from a file without specifying a key parameter, st r falls back to calling repr (). Zone-
Info’s repr is implementation-defined and not necessarily stable between versions, but it is guaranteed not to be
avalid ZoneInfo key.

Pickle serialization

Rather than serializing all transition data, ZoneInfo objects are serialized by key, and ZoneInfo objects con-
structed from files (even those with a value for key specified) cannot be pickled.

The behavior of a ZoneInfo file depends on how it was constructed:

1. ZoneInfo (key): When constructed with the primary constructor, a Zone Info object is serialized by key,
and when deserialized, the deserializing process uses the primary and thus it is expected that these are expected
to be the same object as other references to the same time zone. For example, if europe_berlin_pkl
is a string containing a pickle constructed from ZoneInfo ("Europe/Berlin"), one would expect the
following behavior:

>>> a = ZonelInfo ("Europe/Berlin")

>>> b = pickle.loads (europe_berlin_pkl)
>>> a is b

True

2. zoneInfo.no_cache (key): When constructed from the cache-bypassing constructor, the ZoneInfo
object is also serialized by key, but when deserialized, the deserializing process uses the cache bypassing
constructor. If europe_berlin_pkl_nc is a string containing a pickle constructed from ZoneInfo.
no_cache ("Europe/Berlin"), one would expect the following behavior:

>>> a = ZoneInfo ("Europe/Berlin")

>>> b = pickle.loads (europe_berlin_pkl_nc)
>>> a is b

False

3. ZoneInfo.from_ file (fobj, /, key=None): When constructed from a file, the ZoneInfo object
raises an exception on pickling. If an end user wants to pickle a ZoneInfo constructed from a file, it is
recommended that they use a wrapper type or a custom serialization function: either serializing by key or
storing the contents of the file object and serializing that.

This method of serialization requires that the time zone data for the required key be available on both the serializing
and deserializing side, similar to the way that references to classes and functions are expected to exist in both the
serializing and deserializing environments. It also means that no guarantees are made about the consistency of results
when unpickling a ZoneInfo pickled in an environment with a different version of the time zone data.

8.2. zoneinfo — IANA time zone support 221



The Python Library Reference, Release 3.10.18

8.2.4 Functions

zoneinfo.available_timezones ()
Get a set containing all the valid keys for JANA time zones available anywhere on the time zone path. This is
recalculated on every call to the function.

This function only includes canonical zone names and does not include “special” zones such as those under the
posix/ and right/ directories, or the posixrules zone.

Caution: This function may open a large number of files, as the best way to determine if a file on the
time zone path is a valid time zone is to read the “magic string” at the beginning.

Note: These values are not designed to be exposed to end-users; for user facing elements, applications should
use something like CLDR (the Unicode Common Locale Data Repository) to get more user-friendly strings.
See also the cautionary note on ZoneInfo. key.

zoneinfo.reset_tzpath (to=None)
Sets or resets the time zone search path (TZPATH) for the module. When called with no arguments, TZPATH
is set to the default value.

Calling reset_tzpath will not invalidate the Zone Info cache, and so calls to the primary ZoneInfo
constructor will only use the new TZPATH in the case of a cache miss.

The t o parameter must be a sequence of strings or os.PathLike and not a string, all of which must be
absolute paths. ValueError will be raised if something other than an absolute path is passed.

8.2.5 Globals

zoneinfo.TZPATH
A read-only sequence representing the time zone search path — when constructing a ZoneInfo from a key,
the key is joined to each entry in the TZPATH, and the first file found is used.

TZPATH may contain only absolute paths, never relative paths, regardless of how it is configured.

The object that zoneinfo.TZPATH points to may change in response to a call to reset_tzpath (), soit
is recommended to use zoneinfo.TZPATH rather than importing TZPATH from zoneinfo or assigning
a long-lived variable to zoneinfo.TZPATH.

For more information on configuring the time zone search path, see Configuring the data sources.

8.2.6 Exceptions and warnings

exception zoneinfo.ZoneInfoNotFoundError
Raised when construction of a ZoneInfo object fails because the specified key could not be found on the
system. This is a subclass of KeyError.

exception zoneinfo.InvalidTZPathWarning
Raised when PYTHONTZPATH contains an invalid component that will be filtered out, such as a relative path.

222 Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

8.3 calendar — General calendar-related functions

Source code: Lib/calendar.py

This module allows you to output calendars like the Unix cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Use setfirstweekday () to set the first day of the week to Sunday (6) or to any
other weekday. Parameters that specify dates are given as integers. For related functionality, see also the datet ime
and t ime modules.

The functions and classes defined in this module use an idealized calendar, the current Gregorian calendar extended
indefinitely in both directions. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and
Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all computations. Zero and negative years
are interpreted as prescribed by the ISO 8601 standard. Year O is 1 BC, year -1 is 2 BC, and so on.

class calendar.Calendar (firstweekday=0)
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. MONDAY is O
(the default), SUNDAY is 6.

A Calendar object provides several methods that can be used for preparing the calendar data for formatting.
This class doesn’t do any formatting itself. This is the job of subclasses.

Calendar instances have the following methods:

iterweekdays ()
Return an iterator for the week day numbers that will be used for one week. The first value from the
iterator will be the same as the value of the £irstweekday property.

itermonthdates (year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days (as
datetime. date objects) for the month and all days before the start of the month or after the end of
the month that are required to get a complete week.

itermonthdays (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (), but not
restricted by the datetime. date range. Days returned will simply be day of the month numbers.
For the days outside of the specified month, the day number is 0.

itermonthdays2 (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (), but not
restricted by the datetime.date range. Days returned will be tuples consisting of a day of the
month number and a week day number.

itermonthdays3 (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (), but not
restricted by the datet ime. date range. Days returned will be tuples consisting of a year, a month
and a day of the month numbers.

New in version 3.7.

itermonthdays4 (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (), but not
restricted by the datet ime. date range. Days returned will be tuples consisting of a year, a month, a
day of the month, and a day of the week numbers.

New in version 3.7.

monthdatescalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

monthdays2calendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples
of day numbers and weekday numbers.

8.3. calendar — General calendar-related functions 223


https://github.com/python/cpython/tree/3.10/Lib/calendar.py

The Python Library Reference, Release 3.10.18

monthdayscalendar (year, month)

Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar (year, width=3)
Return the data for the specified year ready for formatting. The return value is a list of month rows. Each

month row contains up to width months (defaulting to 3). Each month contains between 4 and 6 weeks
and each week contains 1-7 days. Days are datet ime. date objects.

yeardays2calendar (year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()).

Entries in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this
month are zero.

yeardayscalendar (year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()).
Entries in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar (firstweekday=0)
This class can be used to generate plain text calendars.

TextCalendar instances have the following methods:

formatmonth (theyear, themonth, w=0, [=0)
Return a month’s calendar in a multi-line string. If wis provided, it specifies the width of the date columns,
which are centered. If /is given, it specifies the number of lines that each week will use. Depends on the
first weekday as specified in the constructor or set by the set firstweekday () method.

prmonth (theyear, themonth, w=0, [=0)
Print a month’s calendar as returned by formatmonth ().

formatyear (theyear, w=2, I=1, c=6, m=3)
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, [, and ¢
are for date column width, lines per week, and number of spaces between month columns, respectively.
Depends on the first weekday as specified in the constructor or set by the setfirstweekday ()
method. The earliest year for which a calendar can be generated is platform-dependent.

pryear (theyear, w=2, I=1, c=6, m=3)
Print the calendar for an entire year as returned by formatyear ().

class calendar.HTMLCalendar (firstweekday=0)
This class can be used to generate HTML calendars.

HTMLCalendar instances have the following methods:

formatmonth (theyear, themonth, withyear=True)

Return a month’s calendar as an HTML table. If withyear is true the year will be included in the header,
otherwise just the month name will be used.

formatyear (theyear, width=3)

Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months per
TOW.

formatyearpage (theyear, width=3, css='calendar.css', encoding=None)
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of
months per row. css is the name for the cascading style sheet to be used. None can be passed if no style

sheet should be used. encoding specifies the encoding to be used for the output (defaulting to the system
default encoding).

HTMLCalendar has the following attributes you can override to customize the CSS classes used by the
calendar:

cssclasses
A list of CSS classes used for each weekday. The default class list is:

224 Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

cssclasses = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"]

more styles can be added for each day:

cssclasses = ["mon text-bold", "tue", "wed", "thu", "fri", "sat", "sun red

N n}

Note that the length of this list must be seven items.

cssclass_noday
The CSS class for a weekday occurring in the previous or coming month.

New in version 3.7.

cssclasses_weekday head
A list of CSS classes used for weekday names in the header row. The default is the same as css—
classes.

New in version 3.7.

cssclass_month_head
The month’s head CSS class (used by formatmonthname () ). The default value is "month".

New in version 3.7.

cssclass_month
The CSS class for the whole month’s table (used by formatmonth () ). The default value is "month™.

New in version 3.7.

cssclass_year
The CSS class for the whole year’s table of tables (used by formatyear ()). The default value is
n ye ar n .

New in version 3.7.

cssclass_year_head
The CSS class for the table head for the whole year (used by formatyear ()). The default value is
n ye ar n .

New in version 3.7.

Note that although the naming for the above described class attributes is singular (e.g. cssclass_month
cssclass_noday), one can replace the single CSS class with a space separated list of CSS classes, for
example:

"text-bold text-red"

Here is an example how HTMLCalendar can be customized:

class CustomHTMLCal (calendar.HTMLCalendar) :
cssclasses = [style + " text-nowrap" for style in
calendar.HTMLCalendar.cssclasses]
cssclass_month_head = "text-center month-head"
cssclass_month = "text-center month"
cssclass_year = "text-italic lead"

class calendar.LocaleTextCalendar (firstweekday=0, locale=None)

This subclass of TextCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode.

class calendar.LocaleHTMLCalendar (firstweekday=0, locale=None)

This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode.

8.3. calendar — General calendar-related functions 225




The Python Library Reference, Release 3.10.18

Note: The formatweekday () and formatmonthname () methods of these two classes temporarily change
the current locale to the given locale. Because the current locale is a process-wide setting, they are not thread-safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday (weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY, WEDNE S —
DAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For example, to set
the first weekday to Sunday:

import calendar
calendar.setfirstweekday (calendar.SUNDAY)

calendar. firstweekday ()
Returns the current setting for the weekday to start each week.

calendar.isleap (year)
Returns True if year is a leap year, otherwise False.

calendar.leapdays (v, y2)
Returns the number of leap years in the range from y/ to y2 (exclusive), where y/ and y2 are years.

This function works for ranges spanning a century change.

calendar .weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970-...), month (1-12), day (1-31).

calendar .weekheader (n)
Return a header containing abbreviated weekday names. n specifies the width in characters for one weekday.

calendar .monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and month.

calendar .monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month are
represented by zeros. Each week begins with Monday unless set by set firstweekday ().

calendar .prmonth (theyear, themonth, w=0, [=0)
Prints a month’s calendar as returned by month ().

calendar .month (theyear, themonth, w=0, [=0)
Returns a month’s calendar in a multi-line string using the formatmonth () of the TextCalendar class.

calendar.precal (year, w=0, I=0, c=6, m=3)
Prints the calendar for an entire year as returned by calendar ().

calendar.calendar (year, w=2, I=1, c=6, m=3)
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear () of the
TextCalendar class.

calendar.timegm (fuple)
An unrelated but handy function that takes a time tuple such as returned by the gmt ime () function in the
t ime module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In fact, t ime. gmtime () and t imegm () are each others’ inverse.

The calendar module exports the following data attributes:

calendar.day_name
An array that represents the days of the week in the current locale.

calendar.day_abbr
An array that represents the abbreviated days of the week in the current locale.

226 Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

calendar.month_name
An array that represents the months of the year in the current locale. This follows normal convention of January
being month number 1, so it has a length of 13 and month_name [0] is the empty string.

calendar.month_abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal conven-
tion of January being month number 1, so it has a length of 13 and month_abbr [0] is the empty string.

calendar .MONDAY

calendar.TUESDAY

calendar .WEDNESDAY
calendar.THURSDAY
calendar .FRIDAY

calendar.SATURDAY
calendar.SUNDAY

Aliases for day numbers, where MONDAY is O and SUNDAY is 6.

See also:
Module datetime Object-oriented interface to dates and times with similar functionality to the ¢ ime module.

Module time Low-level time related functions.

8.4 collections — Container datatypes

Source code: Lib/collections/ _init__.py

This module implements specialized container datatypes providing alternatives to Python’s general purpose built-in
containers, dict, 1ist, set,and tuple.

namedtuple () | factory function for creating tuple subclasses with named fields

deque list-like container with fast appends and pops on either end
ChainMap dict-like class for creating a single view of multiple mappings
Counter dict subclass for counting hashable objects

OrderedDict dict subclass that remembers the order entries were added
defaultdict dict subclass that calls a factory function to supply missing values

UserDict wrapper around dictionary objects for easier dict subclassing
UserList wrapper around list objects for easier list subclassing
UserString wrapper around string objects for easier string subclassing

8.4.1 chainMap objects

New in version 3.3.

A ChainMap class is provided for quickly linking a number of mappings so they can be treated as a single unit. It
is often much faster than creating a new dictionary and running multiple update () calls.

The class can be used to simulate nested scopes and is useful in templating.

class collections.ChainMap (*maps)
A ChainMap groups multiple dicts or other mappings together to create a single, updateable view. If no maps
are specified, a single empty dictionary is provided so that a new chain always has at least one mapping.

The underlying mappings are stored in a list. That list is public and can be accessed or updated using the maps
attribute. There is no other state.

Lookups search the underlying mappings successively until a key is found. In contrast, writes, updates, and
deletions only operate on the first mapping.

8.4. collections — Container datatypes 227


https://github.com/python/cpython/tree/3.10/Lib/collections/__init__.py

The Python Library Reference, Release 3.10.18

A ChainMap incorporates the underlying mappings by reference. So, if one of the underlying mappings gets
updated, those changes will be reflected in Cha i nMap.

All of the usual dictionary methods are supported. In addition, there is a maps attribute, a method for creating
new subcontexts, and a property for accessing all but the first mapping:

maps
A user updateable list of mappings. The list is ordered from first-searched to last-searched. It is the only
stored state and can be modified to change which mappings are searched. The list should always contain
at least one mapping.

new_child (m=None, **kwargs)
Returns a new ChainMap containing a new map followed by all of the maps in the current instance. If
m is specified, it becomes the new map at the front of the list of mappings; if not specified, an empty
dictis used, sothatacallto d.new_child () isequivalentto: ChainMap ({}, *d.maps). Ifany
keyword arguments are specified, they update passed map or new empty dict. This method is used for
creating subcontexts that can be updated without altering values in any of the parent mappings.

Changed in version 3.4: The optional m parameter was added.
Changed in version 3.10: Keyword arguments support was added.

parents
Property returning a new ChainMap containing all of the maps in the current instance except the first
one. This is useful for skipping the first map in the search. Use cases are similar to those for the nonlo-
cal keyword used in nested scopes. The use cases also parallel those for the built-in super () function.
A reference to d.parents is equivalent to: ChainMap (*d.maps[1:]).

Note, the iteration order of a ChainMap () is determined by scanning the mappings last to first:

>>> baseline = {'music': 'bach', 'art': 'rembrandt'}

>>> adjustments = {'art': 'van gogh', 'opera': 'carmen'}
>>> list (ChainMap (adjustments, baseline))

['music', 'art', 'opera']

This gives the same ordering as a series of dict.update () calls starting with the last mapping:

>>> combined = baseline.copy ()
>>> combined.update (adjustments)
>>> list (combined)

['music', 'art', 'opera']

Changed in version 3.9: Added support for | and | = operators, specified in PEP 584.

See also:

o The MultiContext class in the Enthought CodeTools package has options to support writing to any mapping in
the chain.

« Django’s Context class for templating is a read-only chain of mappings. It also features pushing and popping
of contexts similar to the new_child () method and the parents property.

o The Nested Contexts recipe has options to control whether writes and other mutations apply only to the first
mapping or to any mapping in the chain.

A greatly simplified read-only version of Chainmap.

228 Chapter 8. Data Types


https://www.python.org/dev/peps/pep-0584
https://github.com/enthought/codetools/blob/4.0.0/codetools/contexts/multi_context.py
https://github.com/enthought/codetools
https://github.com/django/django/blob/main/django/template/context.py
https://code.activestate.com/recipes/577434/
https://code.activestate.com/recipes/305268/

The Python Library Reference, Release 3.10.18

ChainMap Examples and Recipes

This section shows various approaches to working with chained maps.

Example of simulating Python’s internal lookup chain:

import builtins
pylookup = ChainMap (locals (), globals (), vars(builtins))

Example of letting user specified command-line arguments take precedence over environment variables which in turn
take precedence over default values:

import os, argparse
defaults = {'color': 'red', 'user': 'guest'}

parser = argparse.ArgumentParser ()

parser.add_argument ('-u', '——user')

parser.add_argument ('-c', '——-color')

namespace = parser.parse_args()

command_line_args = {k: v for k, v in vars (namespace).items() if v is not None}

combined = ChainMap (command_line_args, os.environ, defaults)
print (combined['color'])
print (combined['user'])

Example patterns for using the Cha inMap class to simulate nested contexts:

c = ChainMap () # Create root context

d = c.new_child() # Create nested child context

e = c.new_child() # Child of ¢, independent from d

e.maps[0] # Current context dictionary —-- like Python's locals()
e.maps[—1] # Root context —-- like Python's globals/()

e.parents # Enclosing context chain —- like Python's nonlocals
dl'x"'"] =1 # Set value 1in current context

dl'x"] # Get first key in the chain of contexts

del d['x"] # Delete from current context

list (d) # All nested values

k in d # Check all nested values

len (d) # Number of nested values

d.items () # All nested items

dict (d) # Flatten into a regular dictionary

The ChainMap class only makes updates (writes and deletions) to the first mapping in the chain while lookups will
search the full chain. However, if deep writes and deletions are desired, it is easy to make a subclass that updates
keys found deeper in the chain:

class DeepChainMap (ChainMap) :
'Variant of ChainMap that allows direct updates to inner scopes'

def _ setitem__ (self, key, value):
for mapping in self.maps:
if key in mapping:

mappinglkey] = value
return
self.maps([0] [key] = value

def _ delitem__ (self, key):
for mapping in self.maps:
if key in mapping:
del mappinglkey]

(continues on next page)

8.4. collections — Container datatypes 229




The Python Library Reference, Release 3.10.18

(continued from previous page)

return
raise KeyError (key)

>>> d = DeepChainMap ({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})
>>> d['lion'] = 'orange' # update an existing key two levels down

>>> d['snake'] = 'red' # new keys get added to the topmost dict

>>> del d['elephant'] # remove an existing key one level down

>>> d # display result

DeepChainMap ({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})

8.4.2 Counter objects

A counter tool is provided to support convenient and rapid tallies. For example:

>>> # Tally occurrences of words in a list

>>> cnt = Counter()

>>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue'l]:
cnt [word] += 1

>>> cnt

Counter ({'blue': 3, 'red': 2, 'green': 1})

>>> # Find the ten most common words in Hamlet

>>> import re

>>> words = re.findall(r'\w+', open('hamlet.txt') .read() .lower())

>>> Counter (words) .most_common (10)

[("the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

class collections.Counter ( [iterable—or—mapping] )
A Counter is a dict subclass for counting hashable objects. It is a collection where elements are stored
as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer value
including zero or negative counts. The Counter class is similar to bags or multisets in other languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

>>> ¢ = Counter () # a new, empty counter

>>> ¢ = Counter('gallahad") # a new counter from an iterable
>>> ¢ = Counter ({'red': 4, 'blue': 2}) # a new counter from a mapping
>>> ¢ = Counter (cats=4, dogs=8) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero count for missing items instead of
raising a KeyError:

>>> ¢ = Counter (['eggs', 'ham'])

>>> c['bacon'] # count of a missing element 1is.
—Zero

0

Setting a count to zero does not remove an element from a counter. Use de 1 to remove it entirely:

>>> c['sausage'] = 0 # counter entry with a zero count
>>> del c|['sausage'] # del actually removes the entry

New in version 3.1.

Changed in version 3.7: As a dict subclass, Counter inherited the capability to remember insertion order.
Math operations on Counter objects also preserve order. Results are ordered according to when an element is
first encountered in the left operand and then by the order encountered in the right operand.

Counter objects support additional methods beyond those available for all dictionaries:

230 Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

elements ()

Return an iterator over elements repeating each as many times as its count. Elements are returned in the
order first encountered. If an element’s count is less than one, e Ilement s () will ignore it.

>>> ¢ = Counter (a=4, b
>>> sorted(c.elements (

2, c=0, d=—2)
)
[VaV, ’aV, YaV, 'a’, L}

)
b', 'b']

most__common ( [n ] )
Return a list of the n most common elements and their counts from the most common to the least. If n
is omitted or None, most_ common () returns all elements in the counter. Elements with equal counts
are ordered in the order first encountered:

>>> Counter ('abracadabra') .most_common (3)
[(ta', 5), ('b', 2), ('r', 2)]

subtract ( [iterable-or-mapping ] )
Elements are subtracted from an iterable or from another mapping (or counter). Like dict . update ()
but subtracts counts instead of replacing them. Both inputs and outputs may be zero or negative.

>>> ¢ = Counter(a=4, b=2, c=0, d=-2)

>>> d = Counter (a=1, b=2, c=3, d=4)

>>> c.subtract (d)

>>> ¢

Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

New in version 3.2.

total ()
Compute the sum of the counts.

>>> ¢ = Counter (a=10, b=5, c=0)
>>> c.total ()
15

New in version 3.10.

The usual dictionary methods are available for Counter objects except for two which work differently for
counters.

fromkeys (iterable)
This class method is not implemented for Counter objects.

update ( [itemble-or-mapping] )
Elements are counted from an iterable or added-in from another mapping (or counter). Like dict.
update () but adds counts instead of replacing them. Also, the iterable is expected to be a sequence
of elements, not a sequence of (key, value) pairs.

Counters support rich comparison operators for equality, subset, and superset relationships: ==, !=, <, <=, >, >=.
All of those tests treat missing elements as having zero counts so that Counter (a=1) == Counter (a=1,
b=0) returns true.

New in version 3.10: Rich comparison operations were added.

Changed in version 3.10: In equality tests, missing elements are treated as having zero counts. Formerly,
Counter (a=3) and Counter (a=3, b=0) were considered distinct.

Common patterns for working with Counter objects:

c.total () # total of all counts

c.clear () # reset all counts

list (c) # list unique elements

set (c) # convert to a set

dict (c) # convert to a regular dictionary

(continues on next page)

8.4. collections — Container datatypes 231




The Python Library Reference, Release 3.10.18

(continued from previous page)

c.items () # convert to a list of (elem, cnt) pairs
Counter (dict (list_of_pairs)) # convert from a list of (elem, cnt) pairs
c.most_common () [:—n—-1:-1] # n least common elements

+c # remove zero and negative counts

Several mathematical operations are provided for combining Counter objects to produce multisets (counters that
have counts greater than zero). Addition and subtraction combine counters by adding or subtracting the counts
of corresponding elements. Intersection and union return the minimum and maximum of corresponding counts.
Equality and inclusion compare corresponding counts. Each operation can accept inputs with signed counts, but the
output will exclude results with counts of zero or less.

>>> ¢ = Counter (a=3, b=1)
>>> d = Counter (a=1, b=2)

>>> ¢ + d # add two counters together: c[x] + d[x]
Counter({'a': 4, 'b': 3})

>>> ¢ - d # subtract (keeping only positive counts)
Counter({'a': 2})

>>> ¢ & d # intersection: min(c[x], d[x])
Counter({'a': 1, 'b': 1})

>>> ¢ | d # union: max(c[x], d[x])

Counter({'a': 3, 'b': 2})

>>> ¢ == # equality: c[x] == d[x]

False

>>> ¢ <= d # inclusion: c[x] <= d[x]

False

Unary addition and subtraction are shortcuts for adding an empty counter or subtracting from an empty counter.

>>> ¢ = Counter (a=2, b=-4)
>>> +C

Counter ({'a': 2})

>>> —C

Counter ({'b': 4})

New in version 3.3: Added support for unary plus, unary minus, and in-place multiset operations.

Note: Counters were primarily designed to work with positive integers to represent running counts; however, care
was taken to not unnecessarily preclude use cases needing other types or negative values. To help with those use
cases, this section documents the minimum range and type restrictions.

e The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values are
intended to be numbers representing counts, but you could store anything in the value field.

o The most_common () method requires only that the values be orderable.

« For in-place operations such as c [key] += 1, the value type need only support addition and subtraction.
So fractions, floats, and decimals would work and negative values are supported. The same is also true for
update () and subtract () which allow negative and zero values for both inputs and outputs.

o The multiset methods are designed only for use cases with positive values. The inputs may be negative or zero,
but only outputs with positive values are created. There are no type restrictions, but the value type needs to
support addition, subtraction, and comparison.

e The elements () method requires integer counts. It ignores zero and negative counts.

See also:
« Bag class in Smalltalk.
« Wikipedia entry for Multisets.

o C++ multisets tutorial with examples.

232 Chapter 8. Data Types



https://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
https://en.wikipedia.org/wiki/Multiset
http://www.java2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 3.10.18

« For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer Pro-
gramming Volume II, Section 4.6.3, Exercise 19.

o To enumerate all distinct multisets of a given size over a given set of elements, see itertools.
combinations_with_replacement ():

map (Counter, combinations_with_replacement ('ABC', 2)) # —-—-> AA AB AC BB BC CC

8.4.3 deque objects

class collections.deque ([iterable[, maxlen] ] )
Returns a new deque object initialized left-to-right (using append ()) with data from iterable. If iterable is
not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque
with approximately the same O(1) performance in either direction.

Though 11 st objects support similar operations, they are optimized for fast fixed-length operations and incur
O(n) memory movement costs for pop (0) and insert (0, v) operations which change both the size and
position of the underlying data representation.

If maxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is bounded
to the specified maximum length. Once a bounded length deque is full, when new items are added, a corre-
sponding number of items are discarded from the opposite end. Bounded length deques provide functionality
similar to the tail filter in Unix. They are also useful for tracking transactions and other pools of data where
only the most recent activity is of interest.

Deque objects support the following methods:

append (x)
Add x to the right side of the deque.

appendleft (x)
Add x to the left side of the deque.

clear ()
Remove all elements from the deque leaving it with length O.

copy ()
Create a shallow copy of the deque.

New in version 3.5.

count (x)
Count the number of deque elements equal to x.

New in version 3.2.

extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iterable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left appends
results in reversing the order of elements in the iterable argument.

index (x[, start[, stop] ] )
Return the position of x in the deque (at or after index start and before index sfop). Returns the first
match or raises ValueError if not found.

New in version 3.5.

insert (i, x)
Insert x into the deque at position i.

If the insertion would cause a bounded deque to grow beyond maxlen, an TndexError is raised.

8.4. collections — Container datatypes 233



The Python Library Reference, Release 3.10.18

New in version 3.5.

pop ()
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError.

popleft ()
Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError

remove (value)
Remove the first occurrence of value. If not found, raises a ValueError.

reverse ()
Reverse the elements of the deque in-place and then return None.

New in version 3.2.

rotate (n=/)
Rotate the deque n steps to the right. If # is negative, rotate to the left.

When the deque is not empty, rotating one step to the right is equivalent to d.appendleft (d.
pop () ), and rotating one step to the left is equivalent to d . append (d.popleft ()).

Deque objects also provide one read-only attribute:

maxlen
Maximum size of a deque or None if unbounded.

New in version 3.1.

In addition to the above, deques support iteration, pickling, len (d), reversed (d), copy.copy (d), copy.
deepcopy (d), membership testing with the in operator, and subscript references such as d[0] to access the
first element. Indexed access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists
instead.

Starting in version 3.5, deques support __add__ (),__mul__ (),and __imul__ ().

Example:

>>> from collections import deque

>>> d = deque('ghi'") # make a new deque with three items
>>> for elem in d: # iterate over the deque's elements
. print (elem.upper())

G

H

I

>>> d.append('J") # add a new entry to the right side

S

>>> d.appendleft ('f")
>>> d # show the representation of the deque
deque([lfl, lgl, 'hl, 'il, 'j'})

add a new entry to the left side

>>> d.pop () # return and remove the rightmost item
ljl

>>> d.popleft () # return and remove the leftmost item
lfl

>>> list (d) # list the contents of the deque

['g', lh', li']

>>> d[0] # peek at leftmost item

lgl

>>> d[-1] # peek at rightmost item

lil

>>> list (reversed(d)) # list the contents of a deque in reverse

[viv, vhv, vgv]

(continues on next page)

234 Chapter 8. Data Types




The Python Library Reference, Release 3.10.18

(continued from previous page)

>>> 'h' in d # search the deque

True

>>> d.extend('Jk1l") # add multiple elements at once
>>> d

deque(['g', 'h', 'i', '3', 'k', '1'])

>>> d.rotate (1) # right rotation

>>> d

deque(['1l', 'g', 'h', 'i', '3', 'k'])

>>> d.rotate (-1) # left rotation

>>> d

deque(['g', lhl, 'i'I vjl’ 'k', 'l'])

>>> deque (reversed(d)) # make a new deque 1in reverse order
deque(['1', 'k', '3', 'i', 'h', 'g'l)

>>> d.clear () # empty the deque

>>> d.pop () # cannot pop from an empty deque

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
d.pop ()
IndexError: pop from an empty deque

>>> d.extendleft ('abc') # extendleft () reverses the input order
>>> d
deque (['c', 'b', 'a'l)

deque Recipes

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tail filter in Unix:

def tail (filename, n=10):
'Return the last n lines of a file'
with open(filename) as f:
return deque (f, n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right
and popping to the left:

def moving_average (iterable, n=3):
# moving_average ([40, 30, 50, 46, 39, 44]) ——-> 40.0 42.0 45.0 43.0
# https://en.wikipedia.org/wiki/Moving _average
it = iter (iterable)
d = deque(itertools.islice(it, n-1))
d.appendleft (0)
s = sum(d)
for elem in it:
s += elem - d.popleft ()
d.append (elem)
yield s / n

A round-robin scheduler can be implemented with input iterators stored in a deque. Values are yielded from the
active iterator in position zero. If that iterator is exhausted, it can be removed with popleft (); otherwise, it can
be cycled back to the end with the rotate () method:

def roundrobin (*iterables) :

"roundrobin ('ABC', 'D', 'EF') -——> A D E B F C"
iterators = deque (map(iter, iterables))
while iterators:

try:

(continues on next page)

8.4. collections — Container datatypes 235



https://en.wikipedia.org/wiki/Round-robin_scheduling

The Python Library Reference, Release 3.10.18

(continued from previous page)

while True:
yield next (iterators[0])
iterators.rotate (-1)

except Stoplteration:

# Remove an exhausted iterator.
iterators.popleft ()

The rotate () method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate () method to position elements to be popped:

def delete_nth(d, n):

d.rotate (—n)
d.popleft ()
d.rotate (n)

To implement degue slicing, use a similar approach applying rotate () to bring a target element to the left side of
the deque. Remove old entries with popleft (), add new entries with extend (), and then reverse the rotation.
With minor variations on that approach, it is easy to implement Forth style stack manipulations such as dup, drop,
swap, over, pick, rot,and roll.

8.4.4 defaultdict objects

class collections.defaultdict (default factory=None, /[, ])

Return a new dictionary-like object. defaultdict isasubclass of the built-in dict class. It overrides one
method and adds one writable instance variable. The remaining functionality is the same as for the di ct class
and is not documented here.

The first argument provides the initial value for the default_ factory attribute; it defaults to None. All
remaining arguments are treated the same as if they were passed to the dict constructor, including keyword
arguments.

defaultdict objects support the following method in addition to the standard dict operations:

__missing__ (key)

If the default_factory attribute is None, this raises a KeyError exception with the key as ar-
gument.

If default_rfactory is not None, it is called without arguments to provide a default value for the
given key, this value is inserted in the dictionary for the key, and returned.

If calling default_ factory raises an exception this exception is propagated unchanged.

This method is called by the __getitem__ () method of the dict class when the requested key is
not found; whatever it returns or raises is then returned or raised by __getitem__ ().

Note that _ _missing () is not called for any operations besides _ getitem__ (). This
means that get () will, like normal dictionaries, return None as a default rather than using de-—
fault_factory.

defaultdict objects support the following instance variable:

default_factory

This attribute is used by the __missing__ () method; it is initialized from the first argument to the
constructor, if present, or to None, if absent.

Changed in version 3.9: Added merge (|) and update ( | =) operators, specified in PEP 584.

236

Chapter 8. Data Types



https://www.python.org/dev/peps/pep-0584

The Python Library Reference, Release 3.10.18

defaultdict Examples

Using 1ist asthe default_factory,itiseasy to group a sequence of key-value pairs into a dictionary of lists:

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict (list)
>>> for k, v in s:

d[k] .append(v)

>>> sorted(d.items ())
[("blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created
using the default_factory function which returns an empty 1ist. The 1ist .append () operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the
list for that key) and the 1ist . append () operation adds another value to the list. This technique is simpler and
faster than an equivalent technique using dict.setdefault ():

>>> d = {}
>>> for k, v in s:
d.setdefault (k, []).append(v)

>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 31)]

Setting the default_factory to int makes the defaultdict useful for counting (like a bag or multiset in
other languages):

>>> s = 'mississippi’
>>> d = defaultdict (int)
>>> for k in s:

d[k] += 1

>>> sorted(d.items())
[¢rit, 4), ('m', 1), ('p', 2), ('s', 4)]

When a letter is first encountered, it is missing from the mapping, so the default_factory functioncalls int ()
to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int () which always returns zero is just a special case of constant functions. A faster and more flexible
way to create constant functions is to use a lambda function which can supply any constant value (not just zero):

>>> def constant_factory(value) :
return lambda: value
>>> d = defaultdict (constant_factory ('<missing>"))
>>> d.update (name='John', action='ran')
>>> ! to "% d
'John ran to <missing>'

Setting the default_factoryto set makes the defaultdict useful for building a dictionary of sets:

>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
>>> d defaultdict (set)
>>> for k, v in s:

d[k].add (v)

>>> sorted(d.items ())
[('blue', {2, 4}), ('red', {1, 3})]

8.4. collections — Container datatypes 237




The Python Library Reference, Release 3.10.18

8.4.5 namedtuple () Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code. They
can be used wherever regular tuples are used, and they add the ability to access fields by name instead of position
index.

collections.namedtuple (typename, field_names, *, rename=False, defaults=None, module=None)
Returns a new tuple subclass named typename. The new subclass is used to create tuple-like objects that have
fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass also have
a helpful docstring (with typename and field_names) and a helpful __repr__ () method which lists the tuple
contents in a name=value format.

The field_names are a sequence of strings such as ['x', 'y']. Alternatively, field_names can be a single
string with each fieldname separated by whitespace and/or commas, for example 'x y'or 'x, y'.

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be a
keyword such as class, for, return, global, pass, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For example, [ 'abc',
'def', 'ghi', 'abc']isconvertedto [ 'abc', '_1', 'ghi', '_3'],eliminating the keyword
def and the duplicate fieldname abc.

defaults can be None or an iterable of default values. Since fields with a default value must come after any
fields without a default, the defaults are applied to the rightmost parameters. For example, if the fieldnames
are ['x', 'y', 'z'] andthe defaultsare (1, 2),then x will be a required argument, y will default to
1, and z will default to 2.

If module is defined, the __module__ attribute of the named tuple is set to that value.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more
memory than regular tuples.

To support pickling, the named tuple class should be assigned to a variable that matches typename.
Changed in version 3.1: Added support for rename.

Changed in version 3.6: The verbose and rename parameters became keyword-only arguments.
Changed in version 3.6: Added the module parameter.

Changed in version 3.7: Removed the verbose parameter and the _source attribute.

Changed in version 3.7: Added the defaults parameter and the _field_defaults attribute.

>>> # Basic example

>>> Point = namedtuple('Point', ['x', 'y'])

>>> p = Point (11, y=22) # instantiate with positional or keyword arguments
>>> pl[0] + p[l] # indexable like the plain tuple (11, 22)

33

>>> x, y =p # unpack like a regular tuple

>>> x, Yy

(11, 22)

>>> p.x + p.y # fields also accessible by name

33

>>> p # readable __ _repr.  with a name=value style

Point (x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sglite3
modules:

EmployeeRecord = namedtuple ('EmployeeRecord', 'name, age, title, department,.
—paygrade')

import csv

(continues on next page)

238 Chapter 8. Data Types




The Python Library Reference, Release 3.10.18

(continued from previous page)

for emp in map (EmployeeRecord._make, csv.reader (open("employees.csv", "rb"))):
print (emp.name, emp.title)

import sqglite3
conn = sqglite3.connect ('/companydata')
cursor = conn.cursor ()
cursor.execute ('SELECT name, age, title, department, paygrade FROM employees')
for emp in map (EmployeeRecord._make, cursor.fetchall()):
print (emp.name, emp.title)

In addition to the methods inherited from tuples, named tuples support three additional methods and two attributes.
To prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple._make (iterable)
Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point._make (t)
Point (x=11, y=22)

somenamedtuple._asdict ()
Return a new dict which maps field names to their corresponding values:

>>> p = Point (x=11, y=22)
>>> p._asdict ()
{'x': 11, 'y': 22}

Changed in version 3.1: Returns an OrderedDict instead of a regular dict.

Changed in version 3.8: Returns a regular dict instead of an OrderedDict. Asof Python 3.7, regular dicts
are guaranteed to be ordered. If the extra features of OrderedDict are required, the suggested remediation
is to cast the result to the desired type: OrderedDict (nt._asdict ()).

somenamedtuple._replace (**kwargs)
Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point (x=11, y=22)
>>> p._replace (x=33)
Point (x=33, y=22)

>>> for partnum, record in inventory.items():
.. inventory[partnum] = record._replace (price=newprices|[partnum], .
—timestamp=time.now())

somenamedtuple._fields
Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types from
existing named tuples.

>>> p._fields # view the field names
('X', 'yl)

>>> Color = namedtuple('Color', 'red green blue')

>>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
>>> Pixel (11, 22, 128, 255, 0)

Pixel (x=11, y=22, red=128, green=255, blue=0)

somenamedtuple._field_defaults
Dictionary mapping field names to default values.

>>> Account namedtuple ('Account', ['type', 'balance']l, defaults=[0])
>>> Account._field_defaults

(continues on next page)

8.4. collections — Container datatypes 239



The Python Library Reference, Release 3.10.18

(continued from previous page)

{'"balance': 0}
>>> Account ('premium')
Account (type='premium', balance=0)

To retrieve a field whose name is stored in a string, use the getattr () function:

>>> getattr(p, 'x'")
11

To convert a dictionary to a named tuple, use the double-star-operator (as described in tut-unpacking-arguments):

>> d = {'x': 11, 'y': 22}
>>> Point (**d)

Point (x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is how
to add a calculated field and a fixed-width print format:

>>> class Point (namedtuple ('Point’', ['x', 'y'])):

slots = ()
@property
def hypot (self):

return (self.x ** 2 + self.y ** 2) ** 0.5

def _ str_ (self):
Ce return 'Point: x= y= hypot= ' % (self.x, self.y, self.
—hypot)

>>> for p in Point (3, 4), Point (14, 5/7):
Ce. print (p)

Point: x= 3.000 vy= 4.000 hypot= 5.000
Point: x=14.000 vy= 0.714 hypot=14.018

The subclass shown above sets __slots__ to an empty tuple. This helps keep memory requirements low by
preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
_ fields attribute:

>>> Point3D = namedtuple('Point3D', Point._fields + ('z',))

Docstrings can be customized by making direct assignments to the __doc___ fields:

>>> Book = namedtuple('Book', ['id', 'title', 'authors'])

>>> Book._ doc_ += ': Hardcover book in active collection'

>>> Book.id. doc = '13-digit ISBN'

>>> Book.title. doc_ = 'Title of first printing’

>>> Book.authors._ _doc__ = 'List of authors sorted by last name'

Changed in version 3.5: Property docstrings became writeable.
See also:

e See typing.NamedTuple for a way to add type hints for named tuples. It also provides an elegant notation
using the class keyword:

class Component (NamedTuple) :
part_number: int
weight: float
description: Optional[str] = None

o See types.SimpleNamespace () for a mutable namespace based on an underlying dictionary instead of
a tuple.

240 Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

The dataclasses module provides a decorator and functions for automatically adding generated special
methods to user-defined classes.

8.4.6 OrderedDict objects

Ordered dictionaries are just like regular dictionaries but have some extra capabilities relating to ordering operations.
They have become less important now that the built-in dict class gained the ability to remember insertion order
(this new behavior became guaranteed in Python 3.7).

Some differences from dict still remain:

The regular dict was designed to be very good at mapping operations. Tracking insertion order was sec-
ondary.

The OrderedDict was designed to be good at reordering operations. Space efficiency, iteration speed, and
the performance of update operations were secondary.

The OrderedDict algorithm can handle frequent reordering operations better than dict. As shown in the
recipes below, this makes it suitable for implementing various kinds of LRU caches.

The equality operation for OrderedD1ict checks for matching order.

A regular dict can emulate the order sensitive equality test withp == g and all(kl == k2 for
k1, k2 in zip(p, 9)).

The popitem () method of OrderedDict has a different signature. It accepts an optional argument to
specify which item is popped.

A regular dict can emulate OrderedDict’s od.popitem (last=True) with d.popitem () which is
guaranteed to pop the rightmost (last) item.

A regular dict can emulate OrderedDict’s od.popitem(last=False) with (k
next (iter(d)), d.pop (k)) which will return and remove the leftmost (first) item if it exists.

OrderedDict has amove_to_end () method to efficiently reposition an element to an endpoint.

A regular dict can emulate OrderedDict’s od.move_to_end(k, last=True) withd[k] = d.
pop (k) which will move the key and its associated value to the rightmost (last) position.

A regular dict does not have an efficient equivalent for OrderedDict’s od.move_to_end (k,
last=False) which moves the key and its associated value to the leftmost (first) position.

Until Python 3.8, dict lackeda ___reversed__ () method.

class collections.OrderedDict ([items])

Return an instance of a dict subclass that has methods specialized for rearranging dictionary order.
New in version 3.1.

popitem (last=True)
The popitem () method for ordered dictionaries returns and removes a (key, value) pair. The pairs are
returned in LIFO order if last is true or FIFO (first-in, first-out) order if false.

move_to_end (key, last=True)
Move an existing key to either end of an ordered dictionary. The item is moved to the right end if last is
true (the default) or to the beginning if last is false. Raises Ke yError if the key does not exist:

>>> d = OrderedDict.fromkeys ('abcde')
>>> d.move_to_end('b")

>>> "' join (d)

'acdeb'

>>> d.move_to_end('b', last=False)
>>> ''_ join (d)

'bacde’

New in version 3.2.

8.4. collections — Container datatypes 241



The Python Library Reference, Release 3.10.18

In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using reversed ().

Equality tests between OrderedDict objects are order-sensitive and are implemented as list (odl.
items ())==1ist (od2.items () ). Equality tests between OrderedDict objects and other Mapping ob-
jects are order-insensitive like regular dictionaries. This allows OrderedDict objects to be substituted anywhere
a regular dictionary is used.

Changed in version 3.5: The items, keys, and values views of OrderedDict now support reverse iteration using
reversed().

Changed in version 3.6: With the acceptance of PEP 468, order is retained for keyword arguments passed to the
OrderedDict constructor and its update () method.

Changed in version 3.9: Added merge (| ) and update (| =) operators, specified in PEP 584.
OrderedDict Examples and Recipes

It is straightforward to create an ordered dictionary variant that remembers the order the keys were last inserted. If
a new entry overwrites an existing entry, the original insertion position is changed and moved to the end:

class LastUpdatedOrderedDict (OrderedDict) :
'Store items in the order the keys were last added’

def _ setitem__ (self, key, value):
super () ._ _setitem__ (key, value)
self.move_to_end(key)

An OrderedDict would also be useful for implementing variants of functools.lru_cache():

from time import time

class TimeBoundedLRU:
"LRU Cache that invalidates and refreshes old entries."

def _ init_ (self, func, maxsize=128, maxage=30):
self.cache = OrderedDict () # { args : (timestamp, result)}
self.func = func
self.maxsize = maxsize

self.maxage = maxage

def _ call_ (self, *args):
if args in self.cache:
self.cache.move_to_end(args)

timestamp, result = self.cachelargs]
if time () - timestamp <= self.maxage:
return result
result = self.func(*args)
self.cachelargs] = time(), result

if len(self.cache) > self.maxsize:
self.cache.popitem(0)
return result

class MultiHitLRUCache:
""" LRU cache that defers caching a result until
it has been requested multiple times.

To avoid flushing the LRU cache with one-time requests,
we don't cache until a request has been made more than once.

mn

def _ init__ (self, func, maxsize=128, maxrequests=4096, cache_after=1):

(continues on next page)

242 Chapter 8. Data Types



https://www.python.org/dev/peps/pep-0468
https://www.python.org/dev/peps/pep-0584

The Python Library Reference, Release 3.10.18

(continued from previous page)

self.requests = OrderedDict () # { uncached_key : request_count }
self.cache = OrderedDict () # { cached_key : function_result }
self.func = func

self.maxrequests = maxrequests # max number of uncached requests
self.maxsize = maxsize # max number of stored return values

self.cache_after = cache_after

def _ _call__(self, *args):
if args in self.cache:
self.cache.move_to_end(args)
return self.cachelargs]
result = self.func(*args)
self.requests[args] = self.requests.get(args, 0) + 1
if self.requests[args] <= self.cache_after:
self.requests.move_to_end(args)
if len(self.requests) > self.maxrequests:
self.requests.popitem(0)
else:
self.requests.pop(args, None)
self.cachel[args] = result
if len(self.cache) > self.maxsize:
self.cache.popitem(0)
return result

8.4.7 UserDict objects

The class, UserDict acts as a wrapper around dictionary objects. The need for this class has been partially sup-
planted by the ability to subclass directly from dict; however, this class can be easier to work with because the
underlying dictionary is accessible as an attribute.

class collections.UserDict ( [initialdata] )
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible via
the data attribute of UserDict instances. If initialdata is provided, dat a is initialized with its contents;
note that a reference to initialdata will not be kept, allowing it to be used for other purposes.

In addition to supporting the methods and operations of mappings, UserDi ct instances provide the following
attribute:

data
A real dictionary used to store the contents of the UserDict class.

8.4.8 UserList objects

This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which can inherit
from them and override existing methods or add new ones. In this way, one can add new behaviors to lists.

The need for this class has been partially supplanted by the ability to subclass directly from I i st; however, this class
can be easier to work with because the underlying list is accessible as an attribute.

class collections.UserList ( [list] )
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of list, defaulting to the
empty list []. list can be any iterable, for example a real Python list or a UserLi st object.

In addition to supporting the methods and operations of mutable sequences, UserLi st instances provide the
following attribute:

data
A real 1ist object used to store the contents of the UserList class.

8.4. collections — Container datatypes 243




The Python Library Reference, Release 3.10.18

Subclassing requirements: Subclasses of UserList are expected to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance
of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class
will need to be overridden; please consult the sources for information about the methods which need to be provided
in that case.

8.4.9 Userstring objects

The class, UserSt ring acts as a wrapper around string objects. The need for this class has been partially supplanted
by the ability to subclass directly from st r; however, this class can be easier to work with because the underlying
string is accessible as an attribute.

class collections.UserString (seq)
Class that simulates a string object. The instance’s content is kept in a regular string object, which is accessible
via the data attribute of UserSt ring instances. The instance’s contents are initially set to a copy of seq.
The seq argument can be any object which can be converted into a string using the built-in st r () function.

In addition to supporting the methods and operations of strings, UserSt ring instances provide the following
attribute:

data
A real st r object used to store the contents of the UserSt ring class.

Changed in version 3.5: New methods __getnewargs
printable, and maketrans.

s rmod__, casefold, format_map, is—

8.5 collections.abc — Abstract Base Classes for Containers

New in version 3.3: Formerly, this module was part of the collect ions module.

Source code: Lib/_collections_abc.py

This module provides abstract base classes that can be used to test whether a class provides a particular interface; for
example, whether it is iashable or whether it is a mapping.

An issubclass () or isinstance () test for an interface works in one of three ways.

1) A newly written class can inherit directly from one of the abstract base classes. The class must supply the required
abstract methods. The remaining mixin methods come from inheritance and can be overridden if desired. Other
methods may be added as needed:

Direct inheritance

Extra method not required by the ABC
Required abstract method

Required abstract method

class C(Sequence) :
def _ init_ (self):
def _ getitem__ (self, index):
def = len_ (self):
def count (self, wvalue):

H FH W W W

Optionally override a mixin method

>>> issubclass (C, Sequence)
True

>>> isinstance (C(), Sequence)
True

2) Existing classes and built-in classes can be registered as “virtual subclasses” of the ABCs. Those classes should
define the full API including all of the abstract methods and all of the mixin methods. This lets users rely on is—
subclass () or isinstance () tests to determine whether the full interface is supported. The exception to this
rule is for methods that are automatically inferred from the rest of the API:

244 Chapter 8. Data Types



https://github.com/python/cpython/tree/3.10/Lib/_collections_abc.py

The Python Library Reference, Release 3.10.18

class D: # No inheritance
def _ init_ (self): # Extra method not required by the ABC
def _ _getitem__ (self, index): # Abstract method
def _ len__ (self): # Abstract method
def count (self, wvalue): # Mixin method
def index(self, wvalue): # Mixin method
Sequence.register (D) # Register instead of inherit
>>> issubclass (D, Sequence)
True
>>> isinstance (D (), Sequence)
True
In this example, class D does not need to define __contains__,_ iter_,and __ reversed__ because the

in-operator, the iteration logic, and the reversed () function automatically fall back tousing __getitem__ and
len

3) Some simple interfaces are directly recognizable by the presence of the required methods (unless those methods
have been set to None):

class E:
def _ iter_ (self):
def _ next_  (next):

>>> issubclass (E, Iterable)
True

>>> isinstance(E(), Iterable)
True

Complex interfaces do not support this last technique because an interface is more than just the presence of method
names. Interfaces specify semantics and relationships between methods that cannot be inferred solely from the
presence of specific method names. For example, knowing that a class supplies __getitem__, ___len__ , and
__iter__ isinsufficient for distinguishing a Sequence from a Mapping.

New in version 3.9: These abstract classes now support [ 1. See Generic Alias Type and PEP 585.

8.5.1 Collections Abstract Base Classes

The collections module offers the following ABCs:

8.5. collections.abc — Abstract Base Classes for Containers 245



https://www.python.org/dev/peps/pep-0585

The Python Library Reference, Release 3.10.18

ABC Inherits Abstract Methods Mixin Methods
from
Container! __contains_
Hashable! __hash___
Tterable'? __iter_
Iterator! Iter— __next__ __iter_
able
Reversiblel Iter— __reversed___
able
Generator! Itera-— send, throw close,__iter_ ,_ next_
tor
Sized' __len_
Callablel __call__
Collection! Sized, __contains__,
Iter- __iter_ , len
able,
Con-—
tainer
Sequence Re—- __getitem__, __contains_ ,_ _iter_
versible,| __len_ __reversed_ , index, and count
Collec-
tion
MutableSequence | Se— _ _getitem__, Inherited Sequence methods and
quence __setitem__, append, reverse, extend, pop,
__delitem_ , remove,and ___iadd_
__len_ ,insert
ByteString Se— _ _getitem__, Inherited Sequence methods
quence __len_
Set Collec— __contains__, _le_, 1t ., eq_ ,__ne_ ,
tion __iter_,_ len_ _gt__, ge__,__and__,
_or_,_ sub_, xor_ ,and
isdisjoint
MutableSet Set __contains__, Inherited Set methods and clear,
__diter_, len_ , pop, remove, __ior__,_ _iand__,
add, discard __dixor_ ,and__isub___
Mapping Collec— __getitem_ , __contains__, keys,items,
tion __diter_,_ len_ values,get,__eq ,and_ _ne_
MutableMapping Mapping | __getitem_ , Inherited Mapping methods and pop,
__setitem_ , popitem, clear, update, and
__delitem_ , setdefault
_diter_,_ len_
MappingView Sized __len_
ItemsView Map- __contains_ ,_ iter_
pingView,
Set
KeysView Map— __contains__,__iter_
pingView,
Set
ValuesView Map- __contains_ ,_iter_
pingView,
Collec-
tion
Awaitable! __await___
Coroutinel Await-— send, throw close
able
AsyncIterable! __aiter_
AsyncIteratorl Asynclt— | __anext___ __aiter_
erable
zfgyncGenerator1 ﬁigzgitf asend, athrow aclose,__aléﬁgptér_&ab%ﬁ}:rvpej




The Python Library Reference, Release 3.10.18

8.5.2 Collections Abstract Base Classes - Detailed Descriptions

class collections.abc.Container
ABC for classes that provide the __contains__ () method.

class collections.abc.Hashable
ABC for classes that provide the __hash__ () method.

class collections.abc.Sized
ABC for classes that provide the __1en__ () method.

class collections.abc.Callable
ABC for classes that provide the __call__ () method.

class collections.abc.Iterable
ABC for classes that provide the __iter__ () method.

Checking isinstance (obj, Iterable) detects classes that are registered as Iterable or that have
an__iter__ () method, but it does not detect classes that iterate with the __getitem__ () method. The
only reliable way to determine whether an object is iterable is to call iter (obj).

class collections.abc.Collection
ABC for sized iterable container classes.

New in version 3.6.

class collections.abc.Iterator
ABC for classes that provide the __iter () and ___next___ () methods. See also the definition of iter-
ator.

class collections.abc.Reversible
ABC for iterable classes that also provide the __reversed__ () method.

New in version 3.6.

class collections.abc.Generator
ABC for generator classes that implement the protocol defined in PEP 342 that extends iterators with the
send (), throw () and close () methods. See also the definition of generaror.

New in version 3.5.

class collections.abc.Sequence

class collections.abc.MutableSequence

class collections.abc.ByteString
ABC:s for read-only and mutable sequences.

Implementation note: Some of the mixin methods, such as __iter_ (), __reversed__ ()
and index (), make repeated calls to the underlying _ getitem__ () method. Consequently, if
__getitem__ () is implemented with constant access speed, the mixin methods will have linear perfor-
mance; however, if the underlying method is linear (as it would be with a linked list), the mixins will have
quadratic performance and will likely need to be overridden.

Changed in version 3.5: The index() method added support for stop and start arguments.

class collections.abc.Set
class collections.abc.MutableSet
ABC:s for read-only and mutable sets.

class collections.abc.Mapping
class collections.abc.MutableMapping
ABC:s for read-only and mutable mappings.

! These ABCs override object.__subclasshook__ () to support testing an interface by verifying the required methods are present
and have not been set to None. This only works for simple interfaces. More complex interfaces require registration or direct subclassing.

2 Checking isinstance (obj, Iterable) detects classes that are registered as Iterable or that have an __iter__ () method,
but it does not detect classes that iterate with the __getitem__ () method. The only reliable way to determine whether an object is iterable is
tocall iter (obj).

8.5. collections.abc — Abstract Base Classes for Containers 247


https://www.python.org/dev/peps/pep-0342

The Python Library Reference, Release 3.10.18

class collections.abc.MappingView

class collections.abc.ItemsView

class collections.abc.KeysView

class collections.abc.ValuesView
ABC:s for mapping, items, keys, and values views.

class collections.abc.Awaitable
ABC for awaitable objects, which can be used in await expressions. Custom implementations must provide
the _ _await__ () method.

Coroutine objects and instances of the Corout ine ABC are all instances of this ABC.

Note: In CPython, generator-based coroutines (generators decorated with types.coroutine () or
asyncio.coroutine ()) are awaitables, even though they do not have an __await__ () method.
Using isinstance (gencoro, Awaitable) for them will return False. Use inspect.
isawaitable () to detect them.

New in version 3.5.

class collections.abc.Coroutine
ABC for coroutine compatible classes. These implement the following methods, defined in coroutine-objects:
send (), throw (), and close (). Custom implementations must also implement __await__ (). All
Coroutine instances are also instances of Awaitable. See also the definition of coroutine.

Note: In CPython, generator-based coroutines (generators decorated with types.coroutine () or
asyncio.coroutine ()) are awaitables, even though they do not have an _ _await__ () method.
Using isinstance (gencoro, Coroutine) for them will return False. Use inspect.
isawaitable () to detect them.

New in version 3.5.

class collections.abc.AsyncIterable
ABC for classes that provide __aiter__ method. See also the definition of asynchronous iterable.

New in version 3.5.

class collections.abc.AsyncIterator
ABC for classes that provide __aiter__and __anext__ methods. See also the definition of asynchronous
iterator.

New in version 3.5.

class collections.abc.AsyncGenerator
ABC for asynchronous generator classes that implement the protocol defined in PEP 525 and PEP 492.

New in version 3.6.

8.5.3 Examples and Recipes

ABC:s allow us to ask classes or instances if they provide particular functionality, for example:

size = None
if isinstance (myvar, collections.abc.Sized):
size = len (myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs. For
example, to write a class supporting the full Set API, it is only necessary to supply the three underlying abstract
methods: __contains__ (),__iter_ (),and__len__ (). The ABC supplies the remaining methods such
as__and__ () and isdisjoint ():

248 Chapter 8. Data Types



https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492

The Python Library Reference, Release 3.10.18

class ListBasedSet (collections.abc.Set) :

""" Alternate set implementation favoring space over speed

and not requiring the set elements to be hashable. '''
def _ init_ (self, iterable):

self.elements = 1lst = []

for value in iterable:

if value not in 1lst:
lst.append(value)

def @ iter (self):
return iter (self.elements)

def _ contains_ (self, value):
return value in self.elements

def = len_ (self):
return len(self.elements)

sl = ListBasedSet ('abcdef'")
s2 = ListBasedSet ('defghi'")
overlap = sl & s2 # The __and__ () method is supported automatically

Notes on using Set and MutableSet as a mixin:

(1) Since some set operations create new sets, the default mixin methods need a way to create new instances from
an iterable. The class constructor is assumed to have a signature in the form ClassName (iterable).
That assumption is factored-out to an internal classmethod called _from_iterable () which calls
cls (iterable) to produce a new set. If the Set mixin is being used in a class with a different con-
structor signature, you will need to override _from_iterable () with a classmethod or regular method
that can construct new instances from an iterable argument.

(2) To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le_ () and
__ge__ (), then the other operations will automatically follow suit.

(3) The Set mixin provides a_hash () method to compute a hash value for the set; however, _hash__ () is
not defined because not all sets are hashable or immutable. To add set hashability using mixins, inherit from
both Set () and Hashable (),thendefine _ _hash__ = Set._hash.

See also:
 OrderedSet recipe for an example built on MutableSet.

« For more about ABCs, see the abc module and PEP 3119.

8.6 heapqg — Heap queue algorithm

Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children. This imple-
mentation uses arrays for which heap [k] <= heap[2*k+1] and heap[k] <= heap[2*k+2] for all k,
counting elements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The
interesting property of a heap is that its smallest element is always the root, heap [0].

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable
since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest (called a “min
heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place sorting).

8.6. heapg — Heap queue algorithm 249



https://code.activestate.com/recipes/576694/
https://www.python.org/dev/peps/pep-3119
https://github.com/python/cpython/tree/3.10/Lib/heapq.py

The Python Library Reference, Release 3.10.18

These two make it possible to view the heap as a regular Python list without surprises: heap [0] is the smallest
item, and heap. sort () maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function
heapify().

The following functions are provided:

heapqg.heappush (heap, item)
Push the value item onto the heap, maintaining the heap invariant.

heapq.heappop (heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty, In—
dexError is raised. To access the smallest item without popping it, use heap [0].

heapqg.heappushpop (heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action runs more
efficiently than heappush () followed by a separate call to heappop ().

heapg.heapify (x)
Transform list x into a heap, in-place, in linear time.

heapqg.heapreplace (heap, item)
Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t change. If
the heap is empty, TndexError is raised.

This one step operation is more efficient than a heappop () followed by heappush () and can be more
appropriate when using a fixed-size heap. The pop/push combination always returns an element from the heap
and replaces it with item.

The value returned may be larger than the ifem added. If that isn’t desired, consider using heappushpop ()
instead. Its push/pop combination returns the smaller of the two values, leaving the larger value on the heap.

The module also offers three general purpose functions based on heaps.

heapqg.merge ( *iterables, key=None, reverse=False)
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple
log files). Returns an iferator over the sorted values.

Similar to sorted (itertools.chain (*iterables)) butreturns an iterable, does not pull the data
into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).

Has two optional arguments which must be specified as keyword arguments.

key specifies a key function of one argument that is used to extract a comparison key from each input element.
The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the input elements are merged as if each comparison
were reversed. To achieve behavior similar to sorted (itertools.chain(*iterables), re-—
verse=True), all iterables must be sorted from largest to smallest.

Changed in version 3.5: Added the optional key and reverse parameters.

heapqg.nlargest (n, iterable, key=None)
Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies a
function of one argument that is used to extract a comparison key from each element in iterable (for example,
key=str.lower). Equivalent to: sorted(iterable, key=key, reverse=True) [:n].

heapg.nsmallest (n, iterable, key=None)
Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, specifies a
function of one argument that is used to extract a comparison key from each element in iterable (for example,
key=str.lower). Equivalent to: sorted (iterable, key=key) [:n].

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use the
sorted () function. Also, when n==1, it is more efficient to use the built-in min () and max () functions. If
repeated usage of these functions is required, consider turning the iterable into an actual heap.

250 Chapter 8. Data Types



The Python Library Reference, Release 3.10.18

8.6.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values one at a
time:

>>> def heapsort (iterable) :
h =[]
for value in iterable:
heappush (h, wvalue)
return [heappop (h) for i in range(len (h))]

>>> heapsort ([1, 3, 5, 7, 9, 2, 4, 6, 8, 01])
[Ol 1[ 2’ 3! 4’ 5[ 6[ 7! 8’ 91

This is similar to sorted (iterable), butunlike sorted (), this implementation is not stable.

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside the
main record being tracked:

>>> h = []
>>> heappush (h,
>>> heappush (h,
>>> heappush (h
>>> heappush (h,
>>> heappop (h)
(1, 'write spec')

'write code'))
'release product'))
'write spec'))
'create tests'))

~

~

14

w = 3 !
~

~

8.6.2 Priority Queue Implementation Notes

A priority queue is common use for a heap, and it presents several implementation challenges:

« Sort stability: how do you get two tasks with equal priorities to be returned in the order they were originally
added?

» Tuple comparison breaks for (priority, task) pairs if the priorities are equal and the tasks do not have a default
comparison order.

« If the priority of a task changes, how do you move it to a new position in the heap?
« Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry count, and
the task. The entry count serves as a tie-breaker so that two tasks with the same priority are returned in the order
they were added. And since no two entry counts are the same, the tuple comparison will never attempt to directly
compare two tasks.

Another solution to the problem of non-comparable tasks is to create a wrapper class that ignores the task item and
only compares the priority field:

from dataclasses import dataclass, field
from typing import Any

@dataclass (order=True)
class PrioritizedItem:
priority: int
item: Any=field (compare=False)

The remaining challenges revolve around finding a pending task and making changes to its priority or removing it
entirely. Finding a task can be done with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would break the heap structure invariants. So,
a possible solution is to mark the entry as removed and add a new entry with the revised priority:

8.6. heapg — Heap queue algorithm 251



https://en.wikipedia.org/wiki/Heapsort
https://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 3.10.18

pg = [] # list of entries arranged in a heap
entry_finder = {} # mapping of tasks to entries
REMOVED = '<removed-task>"' # placeholder for a removed task
counter = itertools.count () # unique sequence count

def add_task (task, priority=0):
'Add a new task or update the priority of an existing task'
if task in entry_finder:
remove_task (task)

count = next (counter)
entry = [priority, count, task]
entry_finder[task] = entry

heappush (pg, entry)

def remove_task (task):
'Mark an existing task as REMOVED. Raise KeyError if not found.'
entry = entry_finder.pop (task)
entry[-1] = REMOVED

def pop_task():
'Remove and return the lowest priority task. Raise KeyError if empty.'
while pqg:
priority, count, task = heappop (pqg)
if task is not REMOVED:
del entry_finder[task]
return task
raise KeyError ('pop from an empty priority queue')

8.6.3 Theory

Heaps are arrays for whicha [k] <= a[2*k+1]anda[k] <= a[2*k+2] forall k, counting elements from 0.
For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap
is that a [0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below
are k,notal[k]:

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell k is topping 2*k+1 and 2*k+2. In a usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and
the rule becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the two
topped cells.

If this heap invariant is protected at all time, index O is clearly the overall winner. The simplest algorithmic way to
remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the O position,
and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly
logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the
inserted items are not “better” than the last 0’th element you extracted. This is especially useful in simulation contexts,

252 Chapter 8. Data Types




The Python Library Reference, Release 3.10.18

where the tree holds all incoming events, and the “win” condition means the smallest scheduled time. When an event
schedules other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a
heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, whose size is usually related to the amount of CPU memory), followed by a merging
passes for these runs, which merging is often very cleverly organised'. It is very important that the initial sort produces
the longest runs possible. Tournaments are a good way to achieve that. If, using all the memory available to hold a
tournament, you replace and percolate items that happen to fit the current run, you’ll produce runs which are twice
the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the O’th item on disk and get an input which may not fit in the current tournament (because
the value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly the
same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run.
Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to
keep a ‘heap’ module around. :-)

8.7 bisect — Array bisection algorithm

Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is called b i sect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (the boundary conditions are already right!).

The following functions are provided:

bisect.bisect_left (q, x, lo=0, hi=len(a), *, key=None)
Locate the insertion point for x in @ to maintain sorted order. The parameters lo and /i may be used to specify
a subset of the list which should be considered; by default the entire list is used. If x is already present in a,
the insertion point will be before (to the left of) any existing entries. The return value is suitable for use as the
first parameter to 1ist .insert () assuming that a is already sorted.

The returned insertion point i partitions the array a into two halves so that all (val < x for val in
allo : 1i]) fortheleftsideand all (val >= x for val in a[i : hi]) for the right side.

key specifies a key function of one argument that is used to extract a comparison key from each element in the
array. To support searching complex records, the key function is not applied to the x value.

If key is None, the elements are compared directly with no intervening function call.
Changed in version 3.10: Added the key parameter.

bisect .bisect_right (a, x, lo=0, hi=len(a), *, key=None)

bisect .bisect (a, x, l0=0, hi=len(a), *, key=None)
Similar to bisect_left (), but returns an insertion point which comes after (to the right of) any existing
entries of x in a.

! The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capa-
bilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far
in advance) that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge). Some tapes
were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to
watch! From all times, sorting has always been a Great Art! :-)

8.7. bisect — Array bisection algorithm 253


https://github.com/python/cpython/tree/3.10/Lib/bisect.py

The Python Library Reference, Release 3.10.18

The returned insertion point i partitions the array a into two halves so that all (val <= x for wval in
allo : 1i]) fortheleftsideand all (val > x for val in a[i : hi]) for the right side.

key specifies a key function of one argument that is used to extract a comparison key from each element in the
array. To support searching complex records, the key function is not applied to the x value.

If key is None, the elements are compared directly with no intervening function call.
Changed in version 3.10: Added the key parameter.

bisect.insort_left (aq, x, lo=0, hi=len(a), *, key=None)
Insert x in a in sorted order.

This function first runs bisect_left () tolocate an insertion point. Next, it runs the insert () method
on a to insert x at the appropriate position to maintain sort order.

To support inserting records in a table, the key function (if any) is applied to x for the search step but not for
the insertion step.

Keep in mind that the O (1og n) search is dominated by the slow O(n) insertion step.
Changed in version 3.10: Added the key parameter.

bisect.insort_right (a, x, lo=0, hi=len(a), *, key=None)
bisect.insort (a, x, lo=0, hi=len(a), *, key=None)
Similar to insort_left (), butinserting x in a after any existing entries of x.

This function first runs bisect_right () tolocate an insertion point. Next, it runs the insert () method
on a to insert x at the appropriate position to maintain sort order.

To support inserting records in a table, the key function (if any) is applied to x for the search step but not for
the insertion step.

Keep in mind that the O (1og n) search is dominated by the slow O(n) insertion step.

Changed in version 3.10: Added the key parameter.

8.7.1 Performance Notes

When writing time sensitive code using bisect() and insort(), keep these thoughts in mind:

« Bisection is effective for searching ranges of values. For locating specific values, dictionaries are more perfor-
mant.

 The insort() functions are O (n) because the logarithmic search step is dominated by the linear time insertion
step.

« The search functions are stateless and discard key function results after they are used. Consequently, if the
search functions are used in a loop, the key function may be called again and again on the same array elements.
If the key function isn’t fast, consider wrapping it with functools. cache () to avoid duplicate computa-
tions. Alternatively, consider searching an array of precomputed keys to locate the insertion point (as shown
in the examples section below).

See also:
« Sorted Collections is a high performance module that uses bisect to managed sorted collections of data.

o The SortedCollection recipe uses bisect to build a full-featured collection class with straight-forward search
methods and support for a key-function. The keys are precomputed to save unnecessary calls to the key function
during searches.

254 Chapter 8. Data Types


https://grantjenks.com/docs/sortedcollections/
https://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 3.10.18

8.7.2 Searching Sorted Lists

The above bisect () functions are useful for finding insertion points but can be tricky or awkward to use for
common searching tasks. The following five functions show how to transform them into the standard lookups for
sorted lists:

def index(a, x):
'Locate the leftmost value exactly equal to x'
i = bisect_left (a, x)
if i != len(a) and al[i] == x:
return i
raise ValueError

def find_ 1t (a, x):
'Find rightmost value less than x'
i = bisect_left (a, x)
if i:
return al[i-1]
raise ValueError

def find_le(a, x):
'Find rightmost value less than or equal to x'
i = bisect_right(a, x)
if i:
return al[i-1]
raise ValueError

def find gt (a, x):
'Find leftmost value greater than x'
i = bisect_right(a, x)
if i != len(a):
return ali]
raise ValueError

def find_ge(a, x):
'Find leftmost item greater than or equal to x'
i = bisect_left (a, x)
if 1 != len(a):
return ali]
raise ValueError

8.7.3 Examples

The bisect () function can be useful for numeric table lookups. This example uses bisect () to look up a letter
grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89 is a ‘B’,
and so on:

>>> def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):
i = bisect (breakpoints, score)
return grades|[i]

>>> [grade (score) for score in [33, 99, 77, 70, 89, 90, 100]]
['E", VA', IC', ICV, IBII IAII lAl]

The bisect () and insort () functions also work with lists of tuples. The key argument can serve to extract the
field used for ordering records in a table:

>>> from collections import namedtuple
>>> from operator import attrgetter
>>> from bisect import bisect, insort

(continues on next page)

8.7. bisect — Array bisection algorithm 255




The Python Library Reference, Release 3.10.18

(continued from previous page)

>>> from pprint import pprint
>>> Movie = namedtuple('Movie', ('name', 'released', 'director'))

>>> movies = [
Movie ('Jaws', 1975, 'Speilberg'),
Movie ('Titanic', 1997, 'Cameron'),
Movie ('The Birds', 1963, 'Hitchcock'),
Movie ('Aliens', 1986, 'Scott')

>>> # Find the first movie released after 1960

>>> by_vyear = attrgetter('released')

>>> movies.sort (key=by_year)

>>> movies[bisect (movies, 1960, key=by_year)]

Movie (name='The Birds', released=1963, director='Hitchcock"')

>>> # Insert a movie while maintaining sort order

>>> romance = Movie ('Love Story', 1970, 'Hiller'")

>>> insort (movies, romance, key=by_year)

>>> pprint (movies)

[Movie (name="'The Birds', released=1963, director='Hitchcock'),
Movie (name='Love Story', released=1970, director='Hiller'),
Movie (name='Jaws', released=1975, director='Speilberg'),
Movie (name='Aliens', released=1986, director='Scott'),

Movie (name='Titanic', released=1997, director='Cameron')]

If the key function is expensive, it is possible to avoid repeated function calls by searching a list of precomputed keys
to find the index of a record:

>>> data = [('red', 5), ('blue', 1), ('yellow', 8), ('black', 0)]
>>> data.sort (key=lambda r: r[1]) # Or use operator.itemgetter(1).
>>> keys = [r[l] for r in data] # Precompute a list of keys.
>>> datal[bisect_left (keys, 0)]

("black', 0)

>>> datal[bisect_left (keys, 1)]

("blue', 1)

>>> data[bisect_left (keys, 5)]

('"red', 5)

>>> datal[bisect_left (keys, 8)]

('yellow', 8)

8.8 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

256 Chapter 8. Data Types




The Python Library Reference, Release 3.10.18

Type code | C Type Python Type Minimum size in bytes | Notes
'b! signed char int 1

'B' unsigned char int 1

u' wchar_t Unicode character | 2 (1)
'h' signed short int 2

"' unsigned short int 2

it signed int int 2

' unsigned int int 2

'l signed long int 4

' unsigned long int 4

'q' signed long long int 8

Q' unsigned long long | int 8

£ float float 4

'd’ double float 8

Notes:
(1) It can be 16 bits or 32 bits depending on the platform.

Changed in version 3.9: array ('u') now uses wchar_t as C type instead of deprecated Py_UNICODE.
This change doesn’t affect its behavior because Py_UNICODE is alias of wchar_t since Python 3.3.

Deprecated since version 3.3, will be removed in version 4.0.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed through the array. i temsi ze attribute.

The module defines the following item:

array.typecodes
A string with all available type codes.

The module defines the following type:

class array.array (typecode[, initializer] )
A new array whose items are restricted by typecode, and initialized from the optional initializer value, which
must be a list, a bytes-like object, or iterable over elements of the appropriate type.

If given a list or string, the initializer is passed to the new array’s fromlist (), frombytes (),or fro—
municode () method (see below) to add initial items to the array. Otherwise, the iterable initializer is passed
to the extend () method.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication.
When using slice assignment, the assigned value must be an array object with the same type code; in all other
cases, TypeError is raised. Array objects also implement the buffer interface, and may be used wherever
bytes-like objects are supported.

Raises an auditing event array.__new___ with arguments typecode, initializer.

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (x)
Append a new item with value x to the end of the array.

buffer info()
Return a tuple (address, length) giving the current memory address and the length in elements
of the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
array.buffer_info() [1] * array.itemsize. This is occasionally useful when working
with low-level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain

8.8. array — Efficient arrays of numeric values 257



The Python Library Reference, Release 3.10.18

ioctl () operations. The returned numbers are valid as long as the array exists and no length-changing
operations are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make
use of this information), it makes more sense to use the buffer interface supported by array objects.
This method is maintained for backward compatibility and should be avoided in new code. The buffer
interface is documented in bufferobjects.

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of values, Runt imeError is raised. It is useful when reading data from a file written
on a machine with a different byte order.

count (x)
Return the number of occurrences of x in the array.

extend (iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly the
same type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its
elements must be the right type to be appended to the array.

frombytes (s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been
read from a file using the fromfile () method).

New in version 3.2: fromstring () is renamed to frombytes () for clarity.

fromfile (f, n)
Read 7 items (as machine values) from the file object f and append them to the end of the array. If less
than » items are available, EOFError is raised, but the items that were available are still inserted into
the array.

fromlist (list)
Append items from the list. This is equivalentto for x in list: a.append (x) except thatif
there is a type error, the array is unchanged.

fromunicode (s)
Extends this array with data from the given unicode string. The array must be a type 'u' array; other-
wise a ValueErrorisrai